
Query-Based Outlier Detection in Heterogeneous Information
Networks

Jonathan Kuck†,*, Honglei Zhuang†,*, Xifeng Yan‡, Hasan Cam§, and Jiawei Han†

Jonathan Kuck: jkuck@illinois.edu; Honglei Zhuang: hzhuang3@illinois.edu; Xifeng Yan: xyan@cs.ucsb.edu; Hasan Cam:
hasan.cam.civ@mail.mil; Jiawei Han: hanj@illinois.edu
†Department of Computer Science, University of Illinois at Urbana-Champaign

‡Computer Science Department, University of California at Santa Barbara

§US Army Research Lab

Abstract

Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad

applications. However, in real data sets with high-dimensional space, most outliers are hidden in

certain dimensional combinations and are relative to a user’s search space and interest. It is often

more effective to give power to users and allow them to specify outlier queries flexibly, and the

system will then process such mining queries efficiently. In this study, we introduce the concept of

query-based outlier in heterogeneous information networks, design a query language to facilitate

users to specify such queries flexibly, define a good outlier measure in heterogeneous networks,

and study how to process outlier queries efficiently in large data sets. Our experiments on real data

sets show that following such a methodology, interesting outliers can be defined and uncovered

flexibly and effectively in large heterogeneous networks.

1. INTRODUCTION

Heterogeneous networks are the networks composed of multi-typed, interconnected vertices

and links. Since the real world information entities are interconnected, forming numerous,

gigantic networks, heterogeneous information networks are ubiquitous and form the basic

semantic structure of interconnected data. Thus, detecting anomalies or finding outliers in

such networks becomes an important task in network analysis. Although outlier detection

has been studied extensively in data mining and various application fields [5, 14], outlier

detection in heterogeneous information networks poses several unique challenges:

1. Unlike many outlier analysis methods that work on homogeneous datasets (e.g.,
find anomalous communications in a communication network), this new endeavor

needs fundamental changes on the definition and detection of outliers since it

involves heterogeneously typed vertices and links.

Distribution of this paper is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0
*The first two authors made equal contributions.

HHS Public Access
Author manuscript
Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

Published in final edited form as:
Adv Database Technol. 2015 March ; 2015: 325–336. doi:10.5441/002/edbt.2015.29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. In a gigantic network, and particularly in a heterogeneous network, it is unrealistic

to discover all outliers using “global” techniques. The variety of vertex types, edge

types, and paths connecting particular vertices creates many potential viewpoints

from which outliers may be classified. These views are difficult to compare and

possibly conflicting.

3. Data analysts (as users) need to obtain results promptly to react to outliers or

further elaborate their queries. This creates a big challenge to efficiently process

outlier queries in heterogeneous information networks.

Based on the above observations, we propose a new outlier detection task, called query-
based outlier detection in heterogeneous information networks, by facilitating users to

compose various kinds of outlier queries flexibly in heterogeneous networks via a novel

query language; defining a new outlier measure, called NetOut, to measure the outlierness in

such heterogeneous networks; and developing an efficient network detection algorithm for

this task. The following is an example that illustrates our ideas.

Motivating example

The DBLP network is a network generated from the computer science bibliographic

publication database1 that consists of a set of vertex types: paper (P), venue (V), author (A),

and term (T). A research publication entry essentially generates a set of links of the types P
− V, P − A, and P − T, each connecting in the network a paper with its publication venue, set

of authors and set of terms, respectively.

It is unrealistic and meaningless to find outliers with respect to all types of the vertices in the

entire heterogeneous network. However, it is more interesting to give users freedom to

specify what they want. For example, a user can confine the outliers to be among the

coauthors of Christos Faloutsos (i.e., all the authors connected with Christos via at least one

joint paper).

Even for this author set, it is still unclear what aspect the outliers should be judged by:

should the outliers be judged based on their publication venues or their collaborators? The

former may lead to finding those who publish multiple papers in rather different venues than

the majority of Christos’ coauthors; whereas the latter may find those who have rather

different collaboration behavior than the majority of his coauthors. Different judgment

criteria lead to rather different results, which makes it essential to ask users to specify the

criteria explicitly. Furthermore, a user may like to find outliers among Christos’ coauthors,

not compared within this coauthor set itself but compared with another explicitly specified

set, such as prolific EDBT authors (e.g., those who have published at least 10 papers in

EDBT).

From this example, one can see that it is necessary to provide an outlier query language with

which a user can specify the candidate set (e.g., Christos’ coauthors), the aspect (e.g.,
publishing venues) by which the outliers will be judged, and sometimes the reference set

1http://www.informatik.uni-trier.de/~ley/db

Kuck et al. Page 2

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.informatik.uni-trier.de/~ley/db

(e.g., prolific EDBT authors). With such primitives, a user can flexibly and unambiguously

specify the outliers to be mined in a heterogeneous network.

Besides providing flexible ways for users to interact with the system to specify outlier

queries in networks, another important issue is how to define the outlier measures for

heterogeneous networks. Taking the query, “finding outlying co-authors of Christos in terms

of their publishing venues”, it is important to work out a good outlier measure in

heterogeneous networks so that one can readily identify the outliers among Christos’ co-

authors who published multiple papers at rather different venues than that by the majority

coauthors of Christos. Such intuition may help us work out a new definition of outlier

measure in heterogeneous networks.

In this study, we work on this interesting problem and have made the following

contributions.

1. We introduce the concept of query-based outlier in heterogeneous information

networks, formalize different components for an outlier query in such networks,

and develop a user-friendly, meta-path based outlier query language that allows

users to interact with the outlier detection system using their intuition;

2. We introduce a new outlier measure, NetOut, which defines query-based outlierness

in heterogeneous information networks, with respect to the queries specified by

users;

3. We develop an efficient computation method to find query-based outliers in

heterogeneous information networks and analyze our performance improvement in

the efficiency study.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3

introduces the basic concepts. Section 4 introduces the formal definition of outlier query,

and designs a query language as an interface for users to specify outlier queries. Section 5

develops a new outlier measure, NetOut, and shows its effectiveness. Section 6 outlines the

implementation of the proposed outlier detection system as well as several query

optimization techniques. The performance study of the comparative methods, as well as the

efficiency study are reported in Section 7. We present an overall discussion in Section 8 and

provide concluding remarks in Section 9.

2. RELATED WORK

Outlier detection

The field of outlier detection has been explored for years. A good overview of outlier

detection techniques can be found in surveys [5, 14].

Our work is most related to the thread of research on networked data outlier detection. There

are some early explorations on network outlier detection on bipartite graphs [23]. But most

existing studies are confined to homogeneous networks. For example, Gao et al. [6] studied

contextual outliers in (homogeneous) networks, i.e. outliers deviating from their closely

connected peers; Akoglu et al. [1] proposed OddBall, which takes several network structural

Kuck et al. Page 3

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

properties as features to identify outliers in weighted graphs; Gupta et al. [8] studied outliers

in terms of their abnormal dynamics among communities; Perozzi et al. [19] and Li et al.
[18] explored outlier detection in attributed graphs. Zong et al. [30] studied how to detect

abnormal network events and their possible sources. However, these methods are not

applicable to heterogeneous information networks. For heterogeneous networks, Gupta et al.
[7] proposed to measure outlierness based on community distribution of each vertex in the

network; Gupta et al. [9] also studied outlier detection based on assumption of association-

based cliques in networks.

Although a great variety of research has been done on outlier detection given a data set, few

of them really consider doing outlier detection in a query-based fashion. Gupta et al. [11]

proposed using a template subgraph as a query for finding outlier subgraphs, but the

definition of a query in this work is not general enough to be extended to most common use

cases. Efficient mining of top-k outliers in large databases has been studied in early research.

For example, Ramaswamy et al. [20] proposed a partition-based algorithm to mine top-k
outliers in very large databases, using a distance-based outlier detection algorithm [17]; Jin

et al. [15] presented an algorithm based on“micro-clusters”to find top-k outliers using the

local outlier factor (LOF) measure [4]. Nevertheless, they only optimize for a certain type of

outlier definition on the entire data set. Schubert et al. [22] proposed a generalized point of

view for local outlier detection, but it does not explicitly consider the query-based scenario.

In this work we generalize the outlier detection framework and give users flexibility to

specify their own definition of an outlier.

Query languages for heterogeneous networks

Managing data organized in heterogeneous information networks is a challenging problem.

Compared to a traditional relational database, data is organized in an arbitrary and

potentially more complicated graphical structure. There are several different threads of

research on developing graph query languages and optimizing queries. A comparison of

different graph database models can be found in [2, 3]. Research related to the semantic web

usually organizes information into machine-readable web information represented in a

language called Resource Description Framework (RDF) [12]. Optimization of the RDF

query language SPARQL is studied in [21]. Cypher2 is another query language utilized by

open-source graph database Neo4j; while GraphQL [13] is another query language which

supports querying by graph structure. For graph query optimization, Yan et al. [26, 27] and

Zhao et al. [29] proposed indexing strategies to efficiently process graph queries. As

knowledge graphs have attracted more studies in recent years, there is also some recent

research on querying schema-less graphs. Kasneci et al. [16] studies keyword search on

knowledge graphs; Yang et al. [28] propose an SQL framework where users do not need to

specify the querying graph schema/structure precisely. Gupta et al. [10] proposed a method

to efficiently find the top-k most interesting subgraphs in a heterogeneous network.

However, as far as we know, none of the current graph query languages explicitly support

queries for outlier detection in graphs.

2http://docs.neo4j.org/chunked/stable/cypher-introduction.html

Kuck et al. Page 4

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://docs.neo4j.org/chunked/stable/cypher-introduction.html

3. PRELIMINARIES

Real-world informational or abstract entities are often interconnected, forming multiple

gigantic networks. When such networks can be structured around a small number of entity/

link types, many interesting properties can be explored systematically. Here we introduce a

few related concepts.

Definition 1 (Heterogeneous information network)

A heterogeneous information network [25] is an information network with multiple types of
vertices. Without loss of generality, it can be defined as a directed network G = (, ℰ ϕ,)

where is the set of vertices, and ℰ is the set of edges. There is a vertex type mapping
function ϕ : → where is the set of types, i.e., each vertex υ ∈ belongs to a
particular type T ∈ . For undirected cases, an undirected edge can be viewed as two
symmetric directed edges. When there exists only one vertex type, the network reduces to a
homogeneous information network.

A bibliographic network, such as DBLP, is a heterogeneous information network where

there are four types of vertices: paper (P), venue (V), author (A), and term (T), and an edge

type represents a type of link between two vertex types (e.g., P − V represents that paper P
was published in venue V).

To formalize the relationships between two vertices in a heterogeneous network, meta-paths

[24] have been used to represent semantic links at the schema level.

Definition 2 (Meta-path)

In a heterogeneous network G, a meta-path is an ordered sequence of vertex types, denoted
as = (T0 − T1 − … − Tl), or = (T0T1 … Tl), where Tx ∈ .

In a bibliographic network, ca = (APA) is a meta-path, representing the coauthorship

between two authors.

We also introduce two basic operators for meta-paths.

Definition 3 (Reversal of a meta-path)

A meta-path = (T0T1 … Tl) can be reversed, where the reversed path is denoted as −1 =

(TlTl−1 … T0).

As an example, if = (APV), then its reversal −1 = (VPA).

Definition 4 (Concatenation of meta-paths)

Given two meta-paths 1 = (T1,0 … T1,l) and 2 = (T2,0 … T2,l′). If T1,l = T2,0, then 1 can
be concatenated by 2, where the concatenated meta-path is denoted as (1 2) = (T1,0 …

T1,lT2,1 … T2,l′).

For example, if we have two meta-paths 1 = (APV) and 2 = (VPT), 1 can be

concatenated by 2, and the concatenated meta-path (1 2) = (APVPT).

Kuck et al. Page 5

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meta-paths provide the schema to instantiate actual paths in a heterogeneous network.

Definition 5 (Meta-path instantiation)

We say an instantiation of is a path in G, denoted as p = (υ0υ1 … υl), satisfying ϕ(υx) =

Tx, ∀x = 0, 1, …, l. A meta-path can be instantiated by different paths. We represent the set
of all path instances of meta-path between vertices υi and υj by π (υi, υj).

As an example, for authors Ava and Liam in Figure 1(b), the number of instantiations of

meta-path ca = (APA) connecting them represents the number of papers they have

coauthored, denoted as |π ca(Ava, Liam)| = 1. Similarly, for authors Liam and Zoe, the

number of instantiations of meta-path ca connecting them is |π ca(Liam, Zoe)| = 2.

Based on the definition of a meta-path, we can define the “neighbors” of a vertex in a

heterogeneous network. Different from traditional homogeneous networks, immediate

neighbors of a certain vertex could be of different types and therefore have different

semantics. Also, vertices that are multiple hops away from the given vertex can be

meaningful “neighbors”. For the sake of generality, we define the neighborhood of a vertex

with respect to a given meta-path. Formally,

Definition 6 (Neighborhood)

In a heterogeneous network G, we define the neighborhood of a certain vertex υi with regard
to a given meta-path as N (υi) = {υj|π (υi, υj) ≠ ∅}.

For example, the set of coauthors of author Zoe in Figure 1(b) can be represented by

N ca(Zoe) = {Ava, Liam}.

Every vertex υj, in the neighborhood of vertex υi, is connected to υi by at least one

instantiation of the specified meta-path. However, multiple instantiations may exist. To

better characterize the neighborhood of a vertex, we further define a vector representation of

the neighborhood as a “neighbor vector”.

Definition 7 (Neighbor vector)

We define a function σ : V ↦ ℕ|V| as the neighbor vector function. With regard to a given
meta-path , it returns the neighbor vector given a certain vertex as input, where the j-th
dimension is the count of paths instantiated by between υi and υj. More precisely

For example, given meta-path ca, Zoe’s neighbor vector contains the count of papers co-

authored with each of her coauthors, σ ca(Zoe) = [Ava : 1, Liam : 2, Zoe : 5]. Alternatively,

Zoe’s neighbor vector given meta-path υ = (APV) is the count of papers that she has

published in each venue, σ υ(Zoe) = [ICDE : 2, KDD : 3].

Kuck et al. Page 6

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. OUTLIER QUERIES

In this section, we formalize the definition of a query in the context of outlier detection in

heterogeneous information networks. We also design a query language for users to specify

queries.

4.1 General Formalization

Generally, a declarative query for outliers consists of two parts, a candidate set containing all

the candidates that are potentially meaningful outliers, and a reference set providing a

reference for outliers to be compared. In most outlier detection frameworks, the candidate

set and the reference set are both assumed to be the entire data set. In our query-based

outlier detection framework, users are provided with the flexibility to specify the candidate

and reference sets of their interest, which enables our framework to be applicable to a

broader range of scenarios.

Another important part of a user query is how the vertices should be compared. In a

heterogeneous network, vertices can be compared in many different ways. For example, a

pair of authors in a bibliographic information network can be compared based on how much

their coauthors overlap, or how many common conferences they attend. Users should be

given the flexibility to determine how they would like to compare two vertices.

There are two alternative ways to formulate the comparison method in a query. One is to

directly ask the user to define a comparison function κ : Sc × Sr ↦ ℝ to compare vertices in

the candidate and reference sets; another is to ask the user to declare how a vertex should be

characterized, and leave the implementation of the comparison method to the system. In

most cases users are clear about the semantics of the desired outliers (e.g. comparing two

authors based on their coauthors), but do not necessarily understand how to formulate a

comparison function accordingly (e.g. comparing two authors by the number of their

common coauthors), so we adopt the second query formulation where users specify how to

characterize vertices using a meta-path based language.

Based on the principles above, we assemble a query for outlier detection with the following

modules: the candidate set, the reference set, feature meta-path(s) to specify how a vertex is

characterized in the context of outlier detection, and an optional vector used to weight

feature meta-paths. To be precise,

Definition 8 (General outlier query)—An outlier query in a heterogeneous network G
is denoted by Q = (Sc, Sr, P, w), where Sc ⊂ V is the candidate set of vertices, from which
the outliers will be chosen; Sr ⊂ V is the reference set of vertices, serving as the reference of
normal vertices; P = (1, …, m) is a collection of feature meta-paths, describing the user’s
intuition of which aspects should characterize candidate vertices; w ∈ ℝm is a weighting
vector for feature meta-paths, and by default is an all-one vector if not specified by users.
The outlier detection algorithm should return outliers as a subset of the candidate set, i.e. Ω

⊂ Sc, that are significantly different from vertices in Sr, in terms of the given meta-paths and
weighting vector.

Kuck et al. Page 7

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As an example, if we want to find outliers among Christos Faloutsos’ coauthors, then Sc

should be defined as all of Christos’ coauthors. In the most intuitive scenario the reference

set Sr will be the same as Sc. A more complicated query could consist of finding outliers

among Christos Faloutsos’ coauthors who are unusual with respect to all computer science

authors. In this case Sc should still be all of Christos’ coauthors, but Sr should be all authors

in computer science.

We also need to explicitly state how we are going to define outliers. For example, if we want

to find outliers among Christos’ coauthors who publish papers in substantially different

venues, then it would be appropriate to define a single feature meta-path (APV) to extract all

the publishing venues of each author.

Notice that although not explicitly pointed out in the definition, in this paper, we are

assuming that all the vertices in Sc ∪ Sr are of the same type, which is a more intuitive

scenario. Also, we require all the meta-paths 1, …, m has their first element in the same

vertex type as vertices in Sc and Sr, otherwise we cannot extract meaningful features from

the given feature meta-paths.

To bring this general framework to real-world use cases in heterogeneous information

networks, we need a powerful query language for users to specify the query.

4.2 Outlier Query Language

In this subsection, we present an outlier query language. It is capable of effectively

supporting most outlier queries in a heterogeneous information network. Outlier detection is

not part of the basic functionality supported by traditional SQL languages and relational

databases. Due to the complexity of heterogeneous information networks, writing in SQL to

specify an outlier detection query can be extremely awkward. Therefore, we define a query

language for our outlier detection problem. Notice that although our query language is

designed specifically for outlier detection queries in heterogeneous information networks,

with minor modification it can also be applied to other types of data sets such as relational

databases.

General Formulation—The general structure of a statement for an outlier query is:

FIND OUTLIERS FROM … //Candidate set

COMPARED TO … //Reference set

JUDGED BY … //Feature meta-paths

TOP …; //Number of outliers to return

In the FROM or COMPARED TO clauses, users can specify a set of vertices. For the FROM

clause, users specify the candidate set Sc, namely the set of vertices from which outliers are

selected. The COMPARED TO clause is used to specify the reference set Sr, namely the set of

vertices used as a reference. Notice that the COMPARED TO clause is optional. If it is not

specified, the reference set Sr will be the same as the candidate set Sc.

Kuck et al. Page 8

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the JUDGED BY clause, users are required to give a single feature meta-path or a

collection of feature meta-paths P. The weights of different feature meta-paths may

optionally be provided. Vertices in Sr and Sc are compared based on the feature meta-paths

and their weights. The top-k outliers, where k is specified in the TOP clause, are returned as

results.

In the next part of this subsection, we introduce how to actually specify a set of vertices, and

how to specify a collections of (weighted) feature meta-paths. Then we give several

examples.

Specifying candidate/reference set—In the simplest case, users can refer to a certain

vertex by its type and name:

venue{"EDBT"}

which returns all the venue-typed vertices with exactly the name “EDBT”.

In many cases, users are interested in outliers in a certain local area in the network.

Therefore, we allow the user to specify the neighborhood of a certain vertex, with regard to

the definition in Section 3. Recall that to define a neighborhood requires a specific vertex υi

and meta-path . We use the dot operator to concatenate different types and represent a

meta-path, where the first element is a specified vertex. As an example:

venue{"EDBT"}.paper.author

returns the neighborhood of venue-typed vertex EDBT with respect to meta-path (VPA).

More formally it returns N (υi), where υi is the vertex that represents the venue EDBT and

 = (VPA). Semantically, it is the set of all the authors with papers published in the venue

EDBT.

We also allow users to specify additional conditions in a WHERE clause, to further restrict the

vertices selected in the candidate or reference set. For example, the set of authors who have

published in the conference EDBT and who have published more than 10 papers can be

specified as:

venue{"EDBT"}.paper.author AS A

WHERE COUNT(A.paper) > 10

Multiple SQL-style operations can be applied to extract each vertex set. For instance, a user

can generate the union of multiple sets using the UNION operator:

venue{"EDBT"}.paper.author

Kuck et al. Page 9

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

UNION

venue{"ICDE"}.paper.author

which will return the set of authors who have published in EDBT or ICDE.

Alternatively, a user can generate the intersection of several sets using the INTERSECT

operator:

venue{"EDBT"}.paper.author

INTERSECT

venue{"ICDE"}.paper.author

which will return the set of authors who have published in both EDBT and ICDE.

Specifying feature meta-paths—A meta-path in our query language can simply be

represented as an ordered list of types separated by dots. For example, in a bibliographic

network, we can specify the feature meta-path (APV) to compare authors with respect to

their publishing venues as:

author.paper.venue

in the JUDGED BY clause.

If there are multiple aspects, namely multiple feature meta-paths, that a user would like to

use when classifying outliers, we separate different meta-paths by commas “,”. For example,

a user may judge outlier authors based on both their publishing venues and their coauthors.

Meta-paths (APV) and (APA) are given as feature meta-paths and we write in the JUDGED

BY clause:

author.paper.venue, author.paper.author

We have shown that our query language can support the specification of a collection of

feature meta-paths P. When users want to define different weights for different meta-paths,

we also allow users to specify the weights in this query language, by writing the weight after

a colon following the corresponding meta-path. As an example, suppose the user wants to

judge outliers based on both their publishing venues and their coauthors, weighting the

venues with twice the importance of coauthors. We can write in the JUDGED BY clause

author.paper.venue: 2.0, author.paper.author

where as author.paper.author is explicitly assigned a weight, it is by default weighted

as 1.

Kuck et al. Page 10

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Notice, we require that all specified feature meta-paths have the same type in their first

element as vertices in Sc and Sr.

4.3 Example queries

Example 1—To find the top-10 outliers among Christos’ coauthors in terms of venues they

publish (i.e., find 10 authors in Christos’ coauthor who publish in the weirdest venues), we

write the query:

FIND OUTLIERS

FROM author{"Christos Faloutsos"}.paper.author

JUDGED BY author.paper.venue

TOP 10;

Since no reference set is specified, the outliers are determined by comparing with others in

the candidate set A.

Example 2—Alternatively, a user might want to find outliers in Christos’ coauthors who

are significantly different from the authors in the KDD community, in terms of the venues

they publish in and their coauthors. We can write this query as:

FIND OUTLIERS

FROM

 author{"Christos Faloutsos"}.paper.author

COMPARED TO

 venue{"KDD"}.paper.author

JUDGED BY

 author.paper.venue,

 author.paper.author

TOP 10;

Example 3—To find the top-50 outliers among SIGMOD authors, who have published at

least 5 papers, with respect to their coauthors (weight 1) and the vocabulary used in their

paper titles (weight 3), we write the query:

FIND OUTLIERS

FROM venue{"SIGMOD"}.paper.author AS A

 WHERE COUNT(A.paper) >= 5

JUDGED BY

 author.paper.author,

 author.paper.term : 3.0

TOP 50;

Kuck et al. Page 11

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5. NETWORK-BASED OUTLIER MEASURE: NETOUT

There have been many outlierness measures for numerical and categorical data. However,

defining a good outlierness measure for use in heterogeneous information networks is still a

challenging problem. The major challenge is the ambiguity of outlier semantics, as there are

multiple types of paths connecting vertices.

Basic principle

In this section we define the properties of an outlier in a heterogeneous information network

given a specific query. We address the problem for the query of finding outlier vertices

among a set of candidate vertices with respect to a set of reference vertices, when judged by

a specific feature meta-path. The feature meta-path and sets of candidate and reference

vertices are given in the query formulation. The definition should be intuitive while utilizing

the rich information provided by the network.

In general, an outlier among a group is an object that differs substantially from the rest of the

group. In the context of finding outliers in a network, we look for vertices that are least

connected to the group, but it is also important to consider each vertex’s maximum potential

for connectivity when comparing its group connectivity with that of other vertices. In the

context of our specific problem, we follow the basic principle that outlying vertices should

be most structurally disconnected from the reference set, with respect to their expected

potential for connectivity.

5.1 Normalized Connectivity

We begin by presenting a measure to express the connectivity between two individual

vertices with respect to their potential connectivity. Later we will apply it between individual

candidate vertices and all vertices in the reference set to determine an outlier score for each

candidate vertex.

In our query language we allow the user to specify a collection of feature meta-paths P. In

this section we only consider queries where P consists of a single feature meta-path .

Finding outliers given a collection of weighted feature meta-paths can be done in a number

of ways. The connectivity between vertices can be redefined, or independent outlier scores

can be computed considering each feature meta-path independently and then averaged. We

leave the problem of determining the best method to a future study.

The meta-path can be viewed by the user as specifying a traditional feature type which

will be used to judge the outlierness of each candidate vertex. We are interested in finding

outliers that are most structurally disconnected, so we construct the symmetric meta-path

linking the candidate type to itself, sym = (−1).

We can now define the connectivity κ between two vertices, υa and υb, as the number of path

instantiations of sym between the two vertices, κ(υa, υb) = |π sym(υa, υb)|. The visibility of

vertex υa is the connectivity between υa and itself, κ(υa, υa), which is a measure of a

vertex’s potential connectivity with other vertices. We define the normalized connectivity

between vertices υa and υb as the ratio of their connectivity to υa’s visibility:

Kuck et al. Page 12

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 9 (Normalized Connectivity)—Given heterogeneous network G containing
two vertices υa and υb of type T ∈ and symmetric meta-path sym = (−1) = (T … T),

the normalized connectivity between υa and υb is defined as

Note that κ̃(υa, υb) ≠ κ̃(υb, υa) when κ(υa, υa) ≠ κ(υb, υb). Normalized connectivity can be

interpreted in terms of a random walk beginning at υa along meta-path sym. The probability

of ending at υb is , where σ is the neigbor vector function defined in Section

3. The probability of returning to υa is . The probability of ending at υb

divided by the probability of returning to υa is then , which is the normalized

connectivity κ̃(υa, υb). This fits with our intuition well. The probability of returning to υa

acts as a normalization constant such that the normalized connectivity between υa and itself

will always be 1. When υa is more connected to υb than itself, κ̃(υa, υb) > 1. When υa is less

connected to υb than itself, κ̃(υa, υb) < 1. Comparing κ̃(υa, υc) with κ̃(υb, υc) shows whether

it is more likely to arrive at υc in a random walk beginning at υa or υb (normalized by the

likelihood of returning to the original vertex).

Example 4—We use a concrete example (Cf. Figure 2) to illustrate the behavior of

normalized connectivity. We examine two authors Jim and Mary in a bibliographic network

G given feature meta-path = (APV).

The connectivity (path count) between Jim and Mary is 2×4+1×2+3×6 = 28. The normalized

connectivities in this example are κ̃(Jim, Mary) = 0.5 and κ̃(Mary, Jim) = 2. This reflects

that Jim’s connectivity with Mary is half his connectivity with himself, while Mary’s

connectivity with Jim is twice that with herself.

5.2 Outlier Measure: NetOut

To measure a certain vertex υi’s outlierness with regard to a given reference set Sr we sum

the normalized connectivity between υi and all vertices in Sr. This gives υi’s connectivity to

the reference set as a whole, normalized by its potential connectivity. The lower this

normalized group connectivity, the more likely that υi is an outlier. We define the outlierness

measure NetOut as:

Definition 10 (Outlierness in Heterogeneous Networks: NetOut)—In a
heterogeneous network G, given a query Q, for any υi ∈ Sc, the outlierness can be measured
by

Kuck et al. Page 13

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where smaller Ω values correspond to greater likelihood of being an outlier. We refer to
ΩNetOut(υi; Q) as simply Ω(υi; Q) outside this section when there is no potential ambiguity.

Rather than summing υi’s normalized connectivity with every vertex in the reference set, we

could find the minimum or maximum normalized connectivity between υi and any vertex in

the reference set. In many cases finding the minimum normalized connectivity is not

meaningful because many vertices in the candidate set are completely disconnected from at

least one vertex in the reference set. To evaluate the usefulness of finding the maximum

normalized connectivity consider two vertices υi and υj. Vertex υi is moderately connected

to one vertex in the reference set but completely disconnected from every other context

vertex. Vertex υj is weakly connected to every vertex in the reference set. In most cases it is

hard to justify that υj should be a stronger outlier than υi.

Summing the normalized connectivities has the additional advantage of computational

efficiency. Computing NetOut for every vertex in the candidate set can be reduced to an (|

Sr|+|Sc|) operation. In comparison, using the minimum or maximum normalized connectivity

instead would always require (|Sr| × |Sc|) time.

Next we justify our use of normalized connectivity when defining NetOut by comparing

with the similarity measures PathSim and cosine similarity.

PathSim—Superficially it may appear that a similarity measure could be used instead of

normalized connectivity in our outlier detection problem. The normalized connectivity

between two vertices is not a true similarity measure because it lacks symmetry. In this

section we introduce the similarity measure PathSim for comparison, to justify the need for

normalized connectivity.

In a previous study of similarity search in heterogenous information networks [24], PathSim

was introduced as an interesting measure to define network-based structural similarity. The

PathSim measure between two vertices υi and υj following a meta-path in a heterogeneous

information network is defined as,

For comparison purposes we define:

PathSim sym(υi, υj) is defined by the connectivity between υi and υj divided by the average

of υi and υj ’s visibility. Based on this formula, PathSim assigns high similarity values to the

vertices that are strongly connected (i.e., there are many paths between υi and υj following

the meta-path) but having low average visibility (i.e., there are not many other paths from υi

or υj reaching υi or υj itself).

Kuck et al. Page 14

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

PathSim has demonstrated its promise at similarity search in heterogeneous information

networks. Comparing to Sim-Rank or Personalized PageRank, PathSim assigns lower

similarity to vertices whose connectivity is high but whose visibilities differ.

Cosine Similarity—We define a comparable version of NetOut using the cosine similarity

instead of normalized connectivity:

Where σ (υi) is the neighbor vector function defined in Section 3.

NetOut Example—We consider a toy example to demonstrate NetOut’s properties. Table

1 shows the publication records of candidate authors. In this example we consider a query

giving the reference set composed of 100 authors with publication records identical to

Sarah’s and feature meta-path = (APV). Table 2 shows NetOut scores for each candidate

author. We compare with outlier scores computed using PathSim and the cosine similarity in

place of normalized connectivity in the NetOut formula.

Sarah is clearly not an outlier, with Ω(Sarah;Q) = 100 (normalized connectivity with

identical vertices of 1 multiplied by the size of the reference set). Rob has an unusual

publication record and a low NetOut score, signifying he is a potential outlier. Lucy’s

publication differs from authors in the reference set, but is more similar than Robs, giving

her a higher NetOut score than Rob.

Next we compare NetOut scores with outlier scores computed using PathSim and the cosine

similarity in place of normalized connectivity. PathSim is computed using the meta-path

(APVPA). The cosine similarity is computed using each author’s neighbor vector (defined in

Section 3). All three measures find the same outlier ordering for Sarah, Rob, and Lucy.

Joe has published only two papers in the venue SIGGRAPH. While SIGGRAPH is an

unusual venue, Joe’s publication record is currently unstable and likely to change over the

course of his life. It is possible that his first publications are simply noise. NetOut does not

classify Joe as an outlier. While his connectivity with authors in the reference set is low, this

is expected because of his low visibility. In a random walk beginning at Joe following the

meta-path (APVPA), the probability of reaching an author in the reference set is the same as

the probability of returning to Joe. However, the PathSim and cosine similarity versions both

classify Joe as an outlier with very low scores.

Emma is clearly a very unusual author, and this is apparent in her NetOut score. She has

only published in the unusual venue SIGGRAPH and she has published more papers than

the authors in the reference set, so we can assume her publication record is stable at this

point. Her outlier score computed using PathSim is actually higher than Joe’s, because her

visibility is more similar to the visibility of authors in the reference set. Emma’s outlier

score computed using the cosine similarity is the same as Joe’s. Both have neighbor vectors

with the same direction, so their cosine similarity with other authors is identical. NetOut

Kuck et al. Page 15

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computed using nor malized connectivity finds outliers without bias towards any particular

visibility, while PathSim and the cosine similarity are biased towards authors with low

visibility.

NetOut Experimental Comparison—To further explain our use of normalized

connectivity, rather than a symmetric similarity measure such as PathSim or CosSim, we

employ a concrete example on DBLP data set to compare the results returned by different

methods.

We construct a query, to find top-5 outliers among all the coauthors of Christos Faloutsos, in

terms of their publishing venues. The context and candidate sets are specified as Faloutsos’

co-authors and the feature meta-path is given by = (APV).

The comparison results are shown in Table 3. The top outliers found by NetOut defined

using normalized connectivity are active in fields besides data mining, which is Christos’

primary focus, and have a wide range of visibilities. Adam Wright has published roughly 30

papers, while Katia P. Sycara has published roughly 300 papers. In contrast, all the top-5

outliers found by PathSim or CosSim are authors who have published less than 2 papers,

which makes them uninteresting as outliers. This further demonstrates the inherent bias

towards candidate vertices with low visibility when using PathSim or the cosine similarity.

6. IMPLEMENTATION

In this section we briefly introduce some technical details regarding the implementation of

our query-based outlier detection system. We first introduce a basic baseline implementation

and then optimizations to improve the efficiency of query execution.

6.1 Baseline

There are two basic steps to execute an outlier query: retrieve the candidate and reference

sets Sc and Sr and calculate the outlierness of each vertex in the reference set based on the

given feature meta-paths.

For retrieval of Sc and Sr, the basic operations are finding a vertex υi given its name and type

and then traversing the network from υi while counting the instantiations of the given meta-

path. The first operation can be naively implemented by a hash table, or a trie, which is

relatively efficient. The second basic operation, materializing a meta-path , has time

complexity exponential to the length of .

A naïve way to calculate the outlierness measure would be to first calculate the normalized

connectivity κ̃(·, ·) between each vertex in the candidate set Sc and each vertex in the

references set Sr, then sum up all the κ̃(υi, ·) for each vertex in Sc to obtain the outlierness.

However, this has time complexity of O(|Sr| × |Sc|).

Recall the definition of connectivity, κ(·, ·):

Kuck et al. Page 16

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The calculation of NetOut can be re-written as:

(1)

Notice that the term ∑υj∈Sr σ (υj) remains the same for all υi ∈ Sc. Therefore we can first

calculate it, then calculate the outlierness value NetOut for all vertices υi ∈ Sc. Therefore,

the time complexity of calculating NetOut for every candidate vertex is only O(|Sr| + |Sc|).

However, even if the calculation of NetOut is efficient, it is still relatively slow compared to

actually obtaining the neighbor vector σ (υi) for a given υi and meta-path . Materializing

this neighbor vector requires traversal of the heterogeneous network, which can be time-

consuming when the specified meta-path is long or the degree of the vertex of interest is

high. Therefore we aim to optimize the query processing time by reducing the

materialization time of meta-paths.

6.2 Optimization

Pre-materialization—To accelerate the materialization of meta-paths, we can pre-

compute the materialization of length-2 meta-paths. Depending on the pattern of user

queries we may compute all length-2 paths or only a subset. To be more precise, for each

vertex υi ∈ V, and all possible such that | | = 2, we can calculate and store the vector

σP(υi).

In the execution of a query, it may be necessary to calculate σP(υi) for an arbitrary meta-path

. We can always decompose into several length-2 meta-paths as = (1 ⋯ k), where |

1| = ⋯ = | k−1| = 2. If the original meta-path is even-length, then | k| = 2.

Notice that for any = (1 2), we have

which implies that by decomposing an arbitrary meta-path into several length-2 meta-

paths, we can calculate σ (υi) by multiplication of indexed vectors. Even if the original

meta-path is odd-length, we only need to traverse the network for a single hop. Retrieving an

index can be of O(1) by storing the vectors in a hash table and the time complexity of

multiplication is affordable when the vectors are sparse.

By efficiently retrieving σ (υi), multiple steps in the query processing benefit, including the

retrieval of candidate set Sc and reference set Sr, and the calculation of connectivity

functions.

Selective pre-materialization—The aforementioned indexing strategy pre-calculates the

indexed vectors for all vertices with regard to all length-2 meta-paths. This exhaustive

indexing strategy guarantees efficiency improvement, but can also result in a large index

Kuck et al. Page 17

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

table. To achieve reasonable efficiency while conserving memory, we may only want to

construct length-2 meta-paths starting from a certain set of vertices.

To this end, a strategy is to count the frequency with which different vertices appear in

queries. The query set used for selecting vertices for building indices is referred to as

“initialization query set” for SPM. The initialization query set can be existing query logs, or

else synthetic queries when query logs are not available. A certain absolute or relative

threshold is set, and length-2 meta-paths are only computed beginning at vertices that appear

in queries with frequency above the set threshold.

7. EXPERIMENTAL RESULTS

In this section we evaluate experimental performance.

7.1 Experiment Setup

Data set—We employ a bibliographic data set from ArnetMiner3 to construct a

heterogeneous information network. The data set consists of 2, 244, 018 publications and 1,

274, 360 authors in the field of computer science. The heterogeneous network contains 4

types of vertices: paper, venue, author and term. Possible type of edges include paper-author

(written-by), paper-venue (published in) and paper-term (title contains).

Query sets—In order to check the efficiency performance of our algorithm, we randomly

select 10,000 author-typed vertices from the heterogeneous information networks. Three

different types of queries are shown in Table 4, which are referred to as “query templates”.

For each template, we substitute the randomly selected vertices into the position indicated by

the dot “·”, to generate 10,000 queries. We refer to each set of queries as i. These randomly

generated query sets are used in efficiency studies.

Comparison methods—In efficiency studies, we compare the following

implementations.

• Baseline. The baseline implementation without pre-materialization (Cf. Equation

(1)).

• Pre-Materialization (PM). All length-2 meta-path instantiations are pre-computed

and stored.

• Selective Pre-Materialization (SPM). A subset of all length-2 meta-path

instantiations are pre-computed and stored, for selected vertices that frequently

appear in Sc given a set of specified queries, where the relative frequency threshold

is set to 0.01.

We use the set of all possible queries for the given query template as the initialization query

set in SPM.

3http://arnetminer.org/AMinerNetwork

Kuck et al. Page 18

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arnetminer.org/AMinerNetwork

7.2 Case Study

We examine the effectiveness of our proposed outlierness measure by checking the

experimental results of several typical queries. The results are summarized in Table 5.

In our first two experiments we use Christos Faloutsos’ coauthors as the candidate and

reference sets. We use author.paper.venue in the first experiment as the single feature

meta-path and author.paper.author in the second.

The first query we try is to find outliers with regard to their publishing venues. The returned

top-10 outliers of Christos’ coauthors are actually quite deviated from his research field

(with one exception), which is data mining. For example, Adam Wright works on

biomedical informatics; Philip Koopman is in the area of embedded systems. Interestingly,

Nicholas D. Sidiropoulos publishes most of his work in the community of signal processing.

However, one of his research interests is tensor analytics and mining, which is closely

related to Christos Faloutsos’ research interests. As we are judging outliers based on

publishing communities, Nicholas D. Sidiropoulos is still listed as one of the top outliers.

Although most of the aforementioned outliers are relatively established authors in their own

fields, John Chien-Han Tseng is a student who has published only one paper in the venue

KDIR (a very rare venue for authors in the reference set to publish in). Tseng’s appearance

demonstrates that our method does not discriminate against candidate outliers based on their

visibility.

In the second query, we still search for outliers among Christos’ coauthors, but judged by

their coauthors. The results are substantially different from the first query, with only one

overlapping author (Katia P. Sycara). This is evidence that in a heterogeneous information

network outliers can be reasonably defined in multiple ways, resulting in totally different

outcomes. Without user-specified queries, mining outliers can be an ill-defined problem

leading to semantic ambiguity. The top outliers are still mainly in fields other than data

mining, with an interesting exception: Ee-Peng Lim is a researcher who also focuses on

social network analysis and mining4, with a significant number of papers published in data

mining venues. Lim is still listed as an outlier among Christos’ coauthors, as his collaborator

network does not overlap much with Christos’ collaborators. This is a typical example of the

importance of providing a specific outlier definition. Outliers under one definition could be

totally normal given another definition.

In the third query, we attempt to find outliers among KDD authors, with respect to their

publishing venues. The top outlier turns out to be “NULL” which represents missing data.

Other top outliers are also interesting: Wolfgang Glänzel is a professor of economics and

business, with the majority of his papers published in economic related venues; Paul M.

Thompson has published most papers in medical or neuroscience venues.

4https://sites.google.com/site/aseplim/

Kuck et al. Page 19

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://sites.google.com/site/aseplim/

7.3 Efficiency Studies

We also examine the efficiency performance of our different query optimization strategies.

In this experiment, we process the query sets generated from the query template in Table 4

and measure the system performance by query processing time.

Improved efficiency with pre-materialization—In Figure 3 we compare the

performance of the baseline implementation, the implementation with all length-2 meta-

paths pre-materialized (PM), and the selective pre-materialized version with relative

frequency threshold 0.01 (SPM). With pre-materialization the efficiency can always be

improved significantly, 5–100 times faster than the baseline implementation. This verifies

the effectiveness of the indexing strategy. The performance of SPM is generally worse than

the fully materialized version PM, but is more than 10 times faster than the baseline in query

set 3.

In-depth efficiency analysis of SPM—For the SPM strategy, we conduct a study to

look into the processing time spent on different parts. As shown in Figure 4, For almost all

query sets, most of the processing time is spent on materializing feature meta-paths of

vertices without pre-materialization. Loading pre-stored instantiations of feature meta-paths

for vertices with materialization is the least time consuming part, while calculating NetOut

can be slower. Calculating inner products between vectors is potentially more expensive than

retrieving vectors from indices.

Threshold studies for SPM—We check the performance of SPM strategies with

different relative frequency threshold. We construct indices with the relative frequency

threshold set at 0.001, 0.01, 0.05, and 0.1 respectively, and compare both the processing time

and index size, as shown in Figure 5. Not surprisingly, the index size decreases as the

threshold rises, while the average query processing time also increases. A relatively optimal

threshold is likely to be found between 0.01 and 0.05, considering both factors.

8. DISCUSSION

Alternative query language design

There are other ways to define the query language with more generality. It is possible to

allow users to specify functions that are not meta-path based for measuring the similarity

between two vertices, or to allow users to define their own outlierness measure, etc..
However, maximizing the generality will require users to have more expertise knowledge,

which violates our principle to provide users with a more declarative language. In

comparison, our language design is simple and satisfies most needs for data analysis.

Outlierness measure

The outlierness measure NetOut we defined in this paper is easy to compute compared to

many state of the art outlier detection algorithms. It is still possible to substitute other outlier

detection algorithms based on our query-based outlier detection framework, as long as they

support the input specified by our queries. However, most of them are not efficient enough to

be suited for users’ exploratory query behavior. Our experiments comparing with other

Kuck et al. Page 20

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

outlier detection algorithms (e.g. LOF [4]) suggest that they cannont produce better results

than NetOut.

Extensions

Although we frame our query-based outlier detection study in a closed-schema

heterogeneous information network data set, our framework can easily be extended to a

broader range of data sets. For example, our query language can be applied to open-schema

networks such as a knowledge graph, and the baseline implementation of NetOut should also

be applicable. It is also possible to apply our query-based outlier detection idea on

traditional relational databases, with a structure similar to our defined outlier query

language, but changing the meta-path-based language into SQL. It would be interesting to

develop a query-based outlier detection system for different types of data sets, based on our

defined framework and query language, while exploring the implementation challenges.

There are additional directions to further facilitate users’ exploratory interaction with the

system. For example, instead of returning the top-k outliers after the user specifies the query,

it might be helpful to visualize outliers to provide more insight. Alternatively, the system

could find the approximate top-k outliers, with confidences, while the query is being

processed so that users can determine whether to continue processing the query. The system

might even be able to suggest how the users can modify their queries to get more interesting,

or more unusual, outliers.

9. CONCLUSION

In this paper, we propose a query-based outlier detection framework. We design a query

language for outlier detection in heterogeneous information networks, which gives users

flexibility to mine various types of outliers based on their intuition. We also propose NetOut,

a novel meta-path based outlierness measure for mining outliers in heterogeneous networks,

and show its effectiveness compared to other outlierness measures. We finally present

implementation details, where we utilize pre-materialization and selective pre-

materialization to optimize query processing time. Experimental results show that our

proposed query-based outlier detection framework can efficiently return meaningful results

for a range of queries.

Acknowledgements

Research was sponsored in part by the Army Research Lab. under Cooperative Agreement No. W911NF-09-2-0053
(NSCTA) and W911NF-11-2-0086, the Army Research Office under Cooperative Agreement No.
W911NF-13-1-0193, National Science Foundation IIS-1017362, IIS-1320617, and IIS-1354329,
HDTRA1-10-1-0120, NIH Big Data to Knowledge (BD2K) (U54), and MIAS, a DHS-IDS Center for Multimodal
Information Access and Synthesis at UIUC.

REFERENCES

1. Akoglu, L.; McGlohon, M.; Faloutsos, C. PAKDD. Springer; 2010. Oddball: Spotting anomalies in
weighted graphs; p. 410-421.

2. Angles, R. ICDE Workshops. IEEE; 2012. A comparison of current graph database models; p.
171-177.

Kuck et al. Page 21

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3. Angles R, Gutierrez C. Survey of graph database models. ACM Computing Surveys (CSUR). 2008;
40(1):1.

4. Breunig, MM.; Kriegel, H-P.; Ng, RT.; Sander, J. SIGMOD. ACM; 2000. Lof: identifying density-
based local outliers; p. 93-104.

5. Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Computing Surveys. 2009;
41(3):15:1–15:58.

6. Gao, J.; Liang, F.; Fan, W.; Wang, C.; Sun, Y.; Han, J. KDD. ACM; 2010. On community outliers
and their efficient detection in information networks; p. 813-822.

7. Gupta, M.; Gao, J.; Han, J. ECML/PKDD. Springer; 2013. Community distribution outlier detection
in heterogeneous information networks; p. 557-573.

8. Gupta, M.; Gao, J.; Sun, Y.; Han, J. KDD. ACM; 2012. Integrating community matching and outlier
detection for mining evolutionary community outliers; p. 859-867.

9. Gupta, M.; Gao, J.; Yan, X.; Cam, H.; Han, J. ASONAM. IEEE; 2013. On detecting association-
based clique outliers in heterogeneous information networks; p. 108-115.

10. Gupta, M.; Gao, J.; Yan, X.; Cam, H.; Han, J. ICDE. IEEE; 2014. Top-k interesting subgraph
discovery in information networks; p. 820-831.

11. Gupta M, Mallya A, Roy S, Cho JH, Han J. Local learning for mining outlier subgraphs from
network datasets. SDM. 2014

12. Gutierrez, C.; Hurtado, C.; Mendelzon, AO. PODS. ACM; 2004. Foundations of semantic web
databases; p. 95-106.

13. He, H.; Singh, AK. SIGMOD. ACM; 2008. Graphs-at-a-time: query language and access methods
for graph databases; p. 405-418.

14. Hodge VJ, Austin J. A survey of outlier detection methodologies. Artificial Intelligence Review.
2004; 22(2):85–126.

15. Jin, W.; Tung, AK.; Han, J. KDD. ACM; 2001. Mining top-n local outliers in large databases; p.
293-298.

16. Kasneci, G.; Suchanek, FM.; Ifrim, G.; Ramanath, M.; Weikum, G. ICDE. IEEE; 2008. Naga:
Searching and ranking knowledge; p. 953-962.

17. Knox EM, Ng RT. Algorithms for mining distancebased outliers in large datasets. VLDB.
1998:392–403.

18. Li N, Sun H, Chipman K, George J, Yan X. A probabilistic approach to uncovering attributed
graph anomalies. SDM. 2014

19. Perozzi, B.; Akoglu, L.; Iglesias Sánchez, P.; Müller, E. KDD. ACM; 2014. Focused clustering and
outlier detection in large attributed graphs; p. 1346-1355.

20. Ramaswamy, S.; Rastogi, R.; Shim, K. SIGMOD. Vol. 29. ACM; 2000. Efficient algorithms for
mining outliers from large data sets; p. 427-438.

21. Schmidt, M.; Meier, M.; Lausen, G. ICDT. ACM; 2010. Foundations of sparql query optimization;
p. 4-33.

22. Schubert E, Zimek A, Kriegel H-P. Local outlier detection reconsidered: a generalized view on
locality with applications to spatial, video, and network outlier detection. Data Mining and
Knowledge Discovery. 2014; 28(1):190–237.

23. Sun J, Qu H, Chakrabarti D, Faloutsos C. Neighborhood formation and anomaly detection in
bipartite graphs. ICDM. 2005:418–425.

24. Sun Y, Han J, Yan X, Yu PS, Wu T. Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. Proceedings of the VLDB Endowment. 2011; 4(11)

25. Sun, Y.; Norick, B.; Han, J.; Yan, X.; Yu, PS.; Yu, X. KDD. ACM; 2012. Integrating meta-path
selection with user-guided object clustering in heterogeneous information networks; p. 1348-1356.

26. Yan, X.; Yu, PS.; Han, J. SIGMOD. ACM; 2004. Graph indexing: a frequent structure-based
approach; p. 335-346.

27. Yan X, Yu PS, Han J. Substructure similarity search in graph databases. SIGMOD. 2005

28. Yang S, Wu Y, Sun H, Yan X. Schemaless and structureless graph querying. Proceedings of the
VLDB Endowment. 2014; 7(7)

Kuck et al. Page 22

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

29. Zhao P, Han J. On graph query optimization in large networks. Proceedings of the VLDB
Endowment. 2010; 3(1–2):340–351.

30. Zong, B.; Wu, Y.; Song, J.; Singh, AK.; Cam, H.; Han, J.; Yan, X. KDD. ACM; 2014. Towards
scalable critical alert mining; p. 1057-1066.

Kuck et al. Page 23

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Bibliographic network schema and instantiated network.

Kuck et al. Page 24

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Path instantiations of the meta-path (APVPA) connecting authors Jim and Mary

Kuck et al. Page 25

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Comparing total execution time for 10,000 randomly generated queries between the baseline

implementation and the implementation with pre-materialization.

Kuck et al. Page 26

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
In-depth analysis of query processing time using selective pre-materialization strategies with

the relative frequency threshold set to 0.01. “Not indexed vectors” indicates processing time

spent on meta-path materialization from vertices without pre-materialization; “Indexed

vectors” indicates time spent looking up pre-materialized meta-paths from materialized

vertices; “Outlierness calculation” indicates calculation time of NetOut.

Kuck et al. Page 27

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Comparison of efficiency performance with different relative frequency threshold in

selective pre-materialization indexing strategy.

Kuck et al. Page 28

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuck et al. Page 29

Table 1

Publication records of candidate and reference vertices. The reference set contains 100 authors with identical

publication records, given by the reference author.

VLDB KDD STOC SIGGRAPH

Reference Author 10 10 1 1

Sarah 10 10 1 1

Rob 0 1 20 20

Lucy 0 5 10 10

Joe 0 0 0 2

Emma 0 0 0 30

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuck et al. Page 30

Table 2

NetOut outlier scores of select candidate vertices given a query whose feature meta-path is = (APV) and

reference set is given in Table 1, compared with scores computed using PathSim and the cosine similarity in

place of normalized connectivity.

ΩNetOut ΩPathSim ΩCosSim

Sarah 100 100 100

Rob 6.24 9.97 12.43

Lucy 31.11 32.79 32.83

Joe 50 1.94 7.04

Emma 3.33 5.44 7.04

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuck et al. Page 31

Ta
b

le
 3

C
om

pa
ri

ng
 d

if
fe

re
nt

 o
ut

lie
rn

es
s

m
ea

su
re

, w
ith

 q
ue

ry
 S

c
=

 S
r =

au
th

or
(“

C
hr

is
to

s
Fa

lo
ut

so
s”

).
pa

pe
r.a

ut
ho

r
an

d
fe

at
ur

e
m

et
a-

pa
th

 =

 (
A

PV
)

O
ut

lie
rs

 f
ou

nd

by
 n

or
m

al
iz

ed
 c

on
ne

ct
iv

ity
 a

re
 in

te
re

st
in

g
ou

tli
er

s,
 w

hi
le

 o
ut

lie
rs

 f
ou

nd
 b

y
Pa

th
Si

m
 o

r
C

os
Si

m
 a

re
 a

ut
ho

rs
 w

ith
 v

er
y

fe
w

 p
ap

er
s,

 w
hi

ch
 a

re
 n

ot

in
te

re
st

in
g.

M
et

ho
d

Ω
N

et
O

ut
Ω

P
at

hS
im

Ω
C

os
Si

m

R
an

ki
ng

N
am

e
Ω

-v
al

ue
N

am
e

Ω
-v

al
ue

N
am

e
Ω

-v
al

ue

1
A

da
m

 W
ri

gh
t

2.
54

W
en

ya
o

H
o

1.
07

Jo
hn

 C
hi

en
-H

an
 T

se
ng

0.
00

22

2
Ph

ili
p

K
oo

pm
an

2.
55

Fe
rn

an
da

 B
al

em
1.

12
Fe

rn
an

da
 B

al
em

0.
00

38

3
N

ic
ho

la
s

D
. S

id
ir

op
ou

lo
s

3.
29

R
eb

ec
ca

 B
. B

uc
hh

ei
t

1.
31

G
uo

qi
an

g
Sh

an
0.

00
46

4
K

at
ia

 P
. S

yc
ar

a
3.

64
Jo

hn
 C

hi
en

-H
an

 T
se

ng
1.

41
W

en
ya

o
H

o
0.

00
66

5
D

av
id

 S
. D

oe
rm

an
n

3.
65

C
hi

-D
on

g
C

he
n

1.
47

C
hi

-D
on

g
C

he
n

0.
00

77

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuck et al. Page 32

Table 4

Query templates used to construct query sets for efficiency experiments. 10,000 random authors are selected

and substituted where indicated by “·” in each query template.

Number Query Templates

1 FIND OUTLIERS FROM author{·}.paper.author
JUDGED BY author.paper.venue
TOP 10;

2 FIND OUTLIERS IN author{·}.paper.venue
JUDGED BY venue.paper.term
TOP 10;

3 FIND OUTLIERS IN author{·}.paper.term
JUDGED BY term.paper.venue
TOP 10;

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuck et al. Page 33

Table 5

Case study of NetOut results on several queries.

Sc = Sr = author(“Christos Faloutsos”).paper.author
 = author.paper.venue

Ranking Name Ω-Value

1 Adam Wright 2.54

2 Philip Koopman 2.55

3 Nicholas D. Sidiropoulos 3.29

4 Katia P. Sycara 3.64

5 David S. Doermann 3.65

6 Asim Smailagic 3.69

7 John Chien-Han Tseng 4.00

8 Daniel P. Siewiorek 4.22

9 Jessica K. Hodgins 4.52

10 Dimitris N. Metaxas 4.57

Sc = Sr = author(“Christos Faloutsos”).paper.author
 = author.paper.author

Ranking Name Ω-value

1 Dimitris N. Metaxas 1.06

2 Bin Zhang 1.06

3 Hui Zhang 1.07

4 Lionel M. Ni 1.07

5 Bin Liu 1.08

6 Joel H. Saltz 1.08

7 Yang Wang 1.08

8 Hao Wang 1.08

9 Ee-Peng Lim 1.12

10 Katia P. Sycara 1.13

Sc = Sr = venue(“KDD”).paper.author
 = author.paper.venue

1 NULL 1.27

2 Wolfgang Glänzel 4.99

3 Paul M. Thompson 6.46

4 Yehuda Lindell 9.21

5 Kwan-Liu Ma 12.2

6 Dhabaleswar K. Panda 13.23

7 Christos Davatzikos 13.95

8 Andrzej Skowron 14.62

9 Anil K. Jain 15.75

10 Fillia Makedon 15.95

Adv Database Technol. Author manuscript; available in PMC 2016 April 08.

