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Abstract—Motivated by real applications, heterogeneous learn-
ing has emerged as an important research area, which aims
to model the co-existence of multiple types of heterogeneity. In
this paper, we propose a HEterogeneous REpresentation learn-
ing model with structured Sparsity regularization (HERES) to
learn from multiple types of heterogeneity. HERES aims to
leverage two kinds of information to build a robust learning
system. One is the rich correlations among heterogeneous
data such as task relatedness, view consistency, and label
correlation. The other is the prior knowledge of the data
in the form of, e.g., the soft-clustering of the tasks. HERES
is a generic framework for heterogeneous learning, which
integrates multi-task, multi-view, and multi-label learning into
a principled framework based on representation learning. The
objective of HERES is to minimize the reconstruction loss
of using the factor matrices to recover the input matrix for
heterogeneous data, regularized by the structured sparsity
constraint. The resulting optimization problem is challenging
due to the non-smoothness and non-separability of structured
sparsity. We develop an iterative updating method to solve
the problem. Furthermore, we prove that the reformulation
of structured sparsity is separable, which leads to a family of
efficient and scalable algorithms for solving structured sparsity
penalized problems. The experimental results in comparison
with state-of-the-art methods demonstrate the effectiveness of
the proposed approach.

1. Introduction
In many data mining applications, heterogeneity is an

intrinsic property of the data, which has fueled the research
on heterogeneous learning [15], [36], [37], [44] in recent
years. In this paper, we focus on the co-existence of triple
types of heterogeneity such as task, view, and label hetero-
geneity. Take image annotation as an example. The images
collected from different websites or using different devices
follow different feature distributions, corresponding to task
heterogeneity. The images are represented by different types
of features, such as global features, grid-based features,
bag of visual words, corresponding to view heterogeneity.
Also, each image is usually associated with multiple classes,
corresponding to label heterogeneity. On the other hand, the
data may exhibit the soft-clustering property from differ-
ent perspectives. For example, the tasks may be naturally

grouped into clusters with overlap. Here, the goal is to
build a heterogeneous representation learning system to
maximally leverage the correlations among heterogeneous
data, while imposing the structured sparsity regularization
to encode our prior knowledge in the model.

The major challenges arising from these problems are
two-fold. One is how to model the rich correlations among
the heterogeneous data such as task relatedness [5], view
consistency [10], and label correlation [46], in a principled
framework [37]. The other is how to solve the structured
sparsity regularized problem, which is challenging due to
the properties of non-smoothness and non-separability.

In this paper, we propose a HEterogeneous REpresenta-
tion learning model with structured Sparsity regularization
(HERES). HERES is a generic approach for heterogeneous
learning from multiple types of heterogeneity, which in-
corporates the task relatedness, view consistency, and la-
bel correlation into a principled framework. Specifically,
we study the heterogeneous learning problem from matrix
factorization perspective, which decomposes the data matrix
into basis matrix and encoding matrix. HERES models the
task relatedness by requiring different tasks to share a com-
mon basis matrix, the view consistency (or label correlation)
by requiring different views (or labels) to share a common
encoding matrix. The objective of HERES is to minimize
the reconstruction loss of using both the basis matrices and
the encoding matrices to recover the heterogeneous data,
penalized by the structured sparsity. The structured sparsity
regularization allows us to encode our prior knowledge of
the data (e.g., the soft-clustering of tasks) into the model.
It requires the similar tasks to behave similarly in selecting
the informative latent features, while truncating the irrele-
vant ones, which enhances the robustness and improves the
generalization performance of the model.

The main obstacle to solve this problem is the non-
smoothness and non-separability of the structured sparsity.
To tackle this problem, we first transform the nonsmooth
objective with structured sparsity into a smooth one by
making use of an auxiliary function. Then, we prove that
the reformulated problem is separable. Thanks to this ap-
pealing property, we are able to split the structured sparsity
penalized problem into multiple independent sub-problems,
which can be solved in parallel. The sub-problems enjoy the
nice properties of convexity and having analytical solutions.



Also, it is worth mentioning that the proposed structured
sparsity subsumes various sparsity regularizations, such as
task-specific sparsity, task-common sparsity, their combi-
nations, etc. The main contributions of this paper can be
summarized as follows:

• We propose a novel heterogeneous representation
learning model with structured sparsity to learn from
complex heterogeneity by leveraging the correlations
and prior knowledge of heterogeneous data.

• HERES generalizes heterogeneous learning with s-
ingle or dual heterogeneity by integrating multi-task,
multi-view, and multi-label learning into a principled
framework based on representation learning.

• We prove that the reformulation of structured spar-
sity is separable, which leads to a family of efficient
and scalable algorithms for solving the structured
sparsity regularized problems.

• Experimental results on various data sets show the
effectiveness of the proposed approach.

The rest of the paper is organized as follows. After the
review of the related work in Section 2, we present the
proposed model in Section 3, and discuss some of its special
cases in Section 4. Section 5 shows the experimental results.
Finally, we conclude the paper in Section 6.

2. Related Work
In this section, we review the related work on both struc-

tured sparsity regularization and heterogeneous learning.

2.1. Structured Sparsity
Imposing sparsity regularizations such as Lasso [32] and

group Lasso [43] on learning model usually leads to better
performance and model interpretability. While Lasso [32]
using the `1 penalty results in sparse models, it can not
leverage any prior information such as the natural grouping
of features. When features are partitioned into groups, group
Lasso [43] leads to the selection of groups of features. How-
ever, the non-overlapping group structure in group Lasso
limits its applicability.

Some recent work has studied the structured sparsity
problem. Most of them are based on first-order or second-
order optimization algorithms. A straightforward solution is
to duplicate features that belong to more than one group,
and apply forward-backward splitting algorithms on the
expanded space [16]. However, it is limited by its scalability
and the need to maintain the data consistency. A primal-dual
algorithm for overlapping group sparse regularization was
proposed in [26] with no need of data duplication, which is
based on proximal methods. A network flow algorithms for
structured sparsity was introduced in [24]. It shows that the
proximal operator associated with the structured norm can
be computed by solving a quadratic min-cost flow problem.
In [28], an alternation direction method was developed for
structured sparsity penalized problem, which is based on
the augmented Lagrangian method. The Structured-Lasso
(SLasso) presented in [17] applied an active set algorithm
to solve the optimization problem. In [2], the proximal

gradient method was adopted to solve the overlapping group
Lasso, and a fixed point method was developed to com-
pute the proximal operator. A smoothing proximal gradient
method [7] reformulated the structured sparse regression
problems by using the Nesterov’s smoothing technique, and
solved the approximation problem by proximal gradient
method. The FoGLasso method [42] solved the overlapping
group Lasso penalized problem via the accelerated gradient
descent method using the proximal operator as a key build-
ing block. The structural graphical Lasso approach [39] es-
tablished a bridge between the computation of the proximal
operator associated with a structural regularization and the
derivation of a screening rule for structural graphical Lasso.

2.2. Heterogeneous Learning
Heterogeneous learning aims to leverage different types

of heterogeneity such as task, view, and label heterogeneity,
to improve the learning performance.

Multi-task learning seeks to learn the relatedness among
multiple tasks to improve the learning performance for
each task. Different assumptions on task relatedness lead to
different regularizations imposed on the model. Multi-task
feature learning [1], [23] assumed that multiple related tasks
share a low-dimensional representation. Clustered multi-task
learning [47] assumed that multiple tasks follow a clustered
structure. Trace-norm regularized methods constrained the
models of different tasks to share a low-dimensional sub-
space [1], [19]. Robust multi-task learning aimed to identify
irrelevant tasks by decomposing the model into a shared
feature structure that captures task relatedness, and a group-
sparse structure that detects outliers [11]. Sparsity regu-
larizations are widely used in multi-task learning, such as
`2,1-norm regularized method [1], group Lasso regularized
method [40], sparse group Lasso regularized methods [48],
tree-guided group Lasso regularized method [20], tree-
guided fused lasso [14], elastic net regularized method [12],
etc.

In multi-label learning, each instance is associated with
a set of labels. The key issue for multi-label learning is how
to exploit the correlations among multiple labels. Multi-label
learning methods can be classified into three categories [46]:
first-order method such as ML-kNN [45], second-order ap-
proach such as Rank-SVM [9], and high-order methods.
High-order methods have become the mainstream of multi-
label learning due to their strong correlation-modeling ca-
pabilities. To name a few, subspace learning approach LS-
ML [18] assumed that a common subspace is shared among
multiple labels; trace-norm regularized method LEML [41]
modeled a multi-label learning framework with rank con-
straints; multi-label feature learning method [6] applied
`2,1-norm regularization to the objective function to make
the classifier robust for outliers; sparse local embeddings
method SLEEC [3] learned a small ensemble of local dis-
tance preserving embeddings, and used `1 regularization
to obtain sparse embeddings. Some other methods such as
TRAM [21] worked in a transductive way by leveraging
the information from unlabeled data to estimate the optimal
label concept compositions.



The goal of multi-view learning is to leverage the com-
plementary information among different views to improve
the performance [4]. Multi-view learning methods can be
divided into two groups: co-regularization algorithms such
as SVM-2K [10] and CoMR [30], and canonical-correlation
analysis (CCA) based algorithms [31]. Some recent work
aimed to learn the subspaces from multi-view data, such as
the MISL algorithm [35] which discovered a latent intact
representation of the data by using Cauchy loss to measure
the reconstruction cost; the MSL [34] model which tried to
jointly recover the corresponding latent representation and
reconstruction model; the subspace representation learning
method [13] which formulated the unsupervised multi-view
clustering as a joint optimization problem with a common
subspace representation matrix and a group sparsity induc-
ing norm. Both of [13], [34] used `2,1 norm regularization
for the subspace representation learning.

Most recently, heterogeneous learning from multiple
types of heterogeneity became to receive much attentions,
such as multi-task multi-view learning which modeled task
relatedness in the presence of multiple views [15], [36],
[44], multi-view multi-label learning which modeled both
the view consistency and the label correlation [38], and het-
erogeneous learning from triple types of heterogeneity [37]
including task, view, and label heterogeneity.

In this paper, we focus on heterogeneous learning from
triple types of heterogeneity by leveraging both the corre-
lations among heterogeneous data and the prior knowledge
on the data, which is formulated as a structured sparsity
regularized representation learning problem. These make our
work distinctive from the previous approaches.

3. The Proposed HERES Model

We first introduce the proposed HERES model. Then,
an efficient algorithm is developed to solve the optimization
problem.

3.1. Objective

Suppose we are given multi-task multi-view multi-label
data. T and V are the numbers of tasks and views, respec-
tively. Let Xij ∈ Rdj×ni be the feature-instance matrix
for the data of i-th task and j-th view, Yi ∈ Rm×ni the
label-instance matrix for the data of i-th task, where ni is
the number of instances in i-th task, dj is the number of
features in j-th view, and m is the number of labels.

The i-th row and j-th column vectors of a matrix W are
represented by Wi: and W:j , respectively. diag(v) returns a
diagonal matrix with elements of vector v on the main di-
agonal. ‖W‖F is the Frobenius norm of matrix W . The `2,1
norm of a matrix W is defined as ‖W‖2,1 =

∑
i ‖Wi:‖2 =∑

i

√∑
jW

2
ij .

We study the heterogeneous learning problem from
matrix factorization perspective. We try to reconstruct the
feature-instance matrix and label-instance matrix by let-
ting Xij ≈ Bjφi and Yi ≈ Uφi simultaneously, where

1 ≤ i ≤ T and 1 ≤ j ≤ V . Here, φi ∈ Rp×ni is the
encoding matrix, where p is the dimensionality of the latent
space. Bj ∈ Rdj×p is the basis matrix for the feature-
instance data. U ∈ Rm×p is the basis matrix for label-
instance data.

The main idea of the proposed HERES model is to learn
a robust representation from the heterogeneous data. First,
HERES integrates multi-task, multi-view, and multi-label
learning into a principled framework based on representation
learning. We model the task relatedness by requiring differ-
ent tasks to share a common basis matrix Bj in the j-view.
The label correlation is encoded into the common basis
matrix U shared across multiple tasks. The view consistency
is captured in the common encoding matrix φi shared across
multiple views for the i-task. Also, the decompositions of
the feature-instance and the label-instance matrices in the i-
task share the common encoding matrix φi. Second, HERES
leverages the prior knowledge on the soft-clustering of the
tasks to build a robust system by imposing the structured
sparsity regularization on the model. Let G be the number of
task clusters. Denote the set of task index in the kth cluster
by g (k), and the cluster set by Ω = {g(k)|1 ≤ k ≤ G}. Let
φ(k) be the block matrix corresponding to the kth cluster,
which is a concatenated matrix of all the encoding matrices
φi(1 ≤ i ≤ T ) if i ∈ g(k). For example, ‖[φ1, · · · , φT ]‖2,1
puts all tasks into one cluster and encourages them to share
a common sparsity structure. The soft-clustering of tasks is
given as the prior knowledge.

The objective of HERES is to minimize the reconstruc-
tion loss resulting from using both the basis matrices and
encoding matrices to recover the heterogeneous data, while
imposing the structured sparsity constraints on the groups
of the encoding matrices, i.e.,

min
U

min
{Bj}

min
{φi}

T∑
i=1

V∑
j=1

‖Xij −Bjφi‖2F + λ2 ‖Yi − Uφi‖2F

+

G∑
k=1

αk
∥∥φ(k)

∥∥
2,1

(1)

where λ and αk (1 ≤ k ≤ G) are non-negative parameters
to control the importance of the empirical loss and the
structured sparsity, respectively. The l2,1 norm

∥∥φ(k)∥∥2,1
encourages certain rows of φ(k) to become sparse, hence
reducing the dimensionality of the learned representations
for the kth task cluster.

The intuition behind the HERES model is as follows.
First, φi can be viewed as the new representations of the
instances of i-th task in the latent space, which acts as a
bridge to connect the feature spaces between different views,
as well as to connect the feature space in each view with the
label space. Taking webpage classification as an example,
the words (one view) on the webpage, the hyperlinks (anoth-
er view) pointing to the webpage, and categories (labels) of
webpage could be linked by the latent topics of the webpage.
Second, Bj can be viewed as the new representations of the
features of j-th view in the latent space, which builds the
connection among tasks. Likewise, U can be viewed as the



new representations of the labels in the latent space, which
correlates the multiple labels of different tasks. Furthermore,
HERES introduces the structured sparsity regularization to
encourage the similar tasks to behave similarly in selecting
the most informative bases, while truncating the irrelevant
ones.

By letting Xi =


Xi1

...
XiV

λYi

 , B =


B1

...
BV
λU

 , φ = {φi}, Eq. 1

can be transformed into a compact form:

min
B

min
φ

T∑
i=1

‖Xi −Bφi‖2F +

G∑
k=1

αk
∥∥φ(k)∥∥2,1 (2)

To avoid degeneracy in representation learning, we add the
smoothness regularization on the basis matrix B. Then, the
overall objective of HERES is as follow:

min
B

min
φ

T∑
i=1

‖Xi −Bφi‖2F +

G∑
k=1

αk
∥∥φ(k)∥∥2,1 + β ‖B‖2F

(3)
where β is a non-negative parameter to control the smooth-
ness of the model.

The major advantages of the proposed HERES model
are two-fold. First, it is a generic framework for learn-
ing complex heterogeneity. HERES is widely applicable
to heterogeneous learning with single or multiple types
of heterogeneity. Second, the introduced structured sparsity
allows for the modeling of soft-clustering of tasks. It ac-
commodates multiple sparsity regularizations. For example,
we can simultaneously impose multiple types of sparsity
constraints on the model, such as task-specific sparsity, task-
common sparsity, their combinations, etc. Task-specific spar-
sity ‖φi‖2,1 is used to capture the task-dependent structures,
while task-common sparsity ‖[φ1, · · · , φT ]‖2,1 is used to
capture the task-independent structures. Some case studies
will be introduced in the next section.

3.2. Optimization

Solving the optimization problem in HERES is chal-
lenging due to the non-smoothness and non-separability
of structured sparsity. Although the overlapping sparsity
constraints are difficult to separate in its original form, we
find that the reformulation of the problem is separable. Next,
we first transform the non-smooth problem into a smooth
one by making use of an auxiliary function. Then, we prove
the separability of the new formulation of structured sparsity,
which leads to an efficient and scalable algorithm to solve
the structured sparsity penalized problem.

Theorem 1. [Reformulation of Objective] The objective
function in Eq. 3 with respect to φ is non-increasing under
the update

φ(t+1) = argmin
φ

T∑
i=1

‖Xi −Bφi‖2F +

G∑
k=1

αktr
[
φT(k)D

(t)

(k)φ(k)

]
(4)

where t is the iteration index, and

D
(t)

(k) = diag

 1

2
∥∥∥[φ(t)

(k)

]
1:

∥∥∥
2

, · · · , 1

2

∥∥∥∥[φ(t)

(k)

]
p:

∥∥∥∥
2

 . (5)

Proof. We make use of an auxiliary function to derive the
updating rule for φ. Let

F (φ) =

T∑
i=1

‖Xi −Bφi‖2F +

G∑
k=1

αk
∥∥φ(k)∥∥2,1

=

T∑
i=1

‖Xi −Bφi‖2F +

G∑
k=1

αk

p∑
r=1

∥∥[φ(k)]r:
∥∥
2

Then, we define a new function,

J
(
φ, φ(t)

)
=

T∑
i=1

‖Xi −Bφi‖2F+

G∑
k=1

αk

p∑
r=1

‖[φ(k)]r:‖22 + ‖[φ(t)(k)]r:‖
2
2

2‖[φ(t)(k)]r:‖2

where φ(t) is the value of φ at iteration t. Note that
J
(
φ, φ(t)

)
is an auxiliary function of F (φ) due to the facts

that J (φ, φ) = F (φ) and J
(
φ, φ(t)

)
≥ F (φ). The latter

follows from a2 + b2 ≥ 2ab for any scalars a and b.
Since J

(
φ, φ(t)

)
is an auxiliary function of F (φ), F (φ)

is non-increasing under the update

φ(t+1) = arg min
φ

J
(
φ, φ(t)

)
.

Similar to [27], we can obtain the derivative of J
(
φ, φ(t)

)
:

∂

∂φ
J
(
φ, φ(t)

)
=
∂

∂φ

 T∑
i=1

‖Xi −Bφi‖2F +

G∑
k=1

αk

p∑
r=1

‖[φ(k)]r:‖22
2‖[φ(t)(k)]r:‖2


=
∂

∂φ

[
T∑
i=1

‖Xi −Bφi‖2F +

G∑
k=1

αktr
(
φT(k)D

(t)
(k)φ(k)

)]

Since F
(
φ(t)
)

= J
(
φ(t), φ(t)

)
≥ min

φ
J
(
φ, φ(t)

)
=

J
(
φ(t+1), φ(t)

)
≥ F

(
φ(t+1)

)
, the objective function F (φ)

is non-increasing under the above update.

Theorem 2 shows that the reformulation of structured
sparsity is separable. The intuition of separability here is that
the optimization problem with the overlapping structured
sparsity can be split into multiple independent sub-problems,
which could be solved in parallel.



Theorem 2. [Separability of Structured Sparsity] The re-
formulation of structured sparsity is separable:

G∑
k=1

αktr
[
φT(k)D

(t)

(k)φ(k)

]

=

T∑
i=1

tr

φTi
 ∑

1≤k≤G,i∈g(k)

αkD
(t)

(k)

φi

 (6)

Proof.
G∑
k=1

αktr
[
φT(k)D

(t)

(k)φ(k)

]
=

G∑
k=1

αktr

[
p∑
r=1

[
D

(t)

(k)

]
rr
·
[
φ(k)

]T
r:

[
φ(k)

]
r:

]

=

G∑
k=1

αk

p∑
r=1

[
D

(t)

(k)

]
rr
·
∥∥[φ(k)

]
r:

∥∥2
2

=

G∑
k=1

αk

p∑
r=1

[
D

(t)

(k)

]
rr
·
∑
i∈g(k)

∥∥[φi]r:∥∥22
=

G∑
k=1

αk
∑
i∈g(k)

p∑
r=1

[
D

(t)

(k)

]
rr
·
∥∥[φi]r:∥∥22

=

G∑
k=1

αk
∑
i∈g(k)

tr
(
φTi D

(t)

(k)φi
)

=

T∑
i=1

tr

φTi
 ∑

1≤k≤G,i∈g(k)

αkD
(t)

(k)

φi


which completes the proof.

According to Theorem 1 and Theorem 2, the objective
function in Eq. 3 is then transformed into:

min
B

min
φ

T∑
i=1

‖Xi −Bφi‖2F + tr
[
φTi D

(t)
i φi

]
+ β ‖B‖2F (7)

where
D

(t)
i =

∑
1≤k≤G,i∈g(k)

αkD
(t)

(k) (8)

By now the optimization problem in Eq. 7 with respect to φ
can be split into T independent sub-problems, each of which
is related to φi (1 ≤ i ≤ T ), respectively. This appealing
property makes it possible to design an efficient and scalable
algorithm to solve the problem in parallel.

We reach the final solution of HERES. The objective
function in Eq. 7 is an unconstrained quadratic optimization
with respect to B and φi, respectively. Thus, we can obtain
the analytical solutions as shown in Theorem 3.

Theorem 3. [Optimums] The optimal solutions for the
objective function in Eq. 7 are as follows,

B =
(∑T

i=1
Xiφ

T
i

)(
βI +

∑T

i=1
φiφ

T
i

)−1

(9)

φi =
(
BTB +D

(t)
i

)−1

BTXi (10)

where 1 ≤ i ≤ T .

Proof. First, fix φ and optimize B. The zero gradient con-
dition of Eq. 7 with respect to B gives

βB +
∑T

i=1

(
Bφiφ

T
i −XiφTi

)
= 0

⇒B =
(∑T

i=1
Xiφ

T
i

)(
βI +

∑T

i=1
φiφ

T
i

)−1

Second, fix B and optimize φ. The zero gradient condition
of Eq. 7 with respect to φi gives

BTBφi −BTXi +D
(t)
i φi = 0

⇒φi =
(
BTB +D

(t)
i

)−1

BTXi

which completes the proof.

We summarize the above procedures into the HERES
algorithm as shown in Algorithm 1. We make use of
block coordinate descent method [33] to iteratively solve
the problem. It updates D(k), B and φi respectively in an
iterative way until convergence. Theorem 4 demonstrates the
convergence of the proposed HERES algorithm.

Theorem 4. [Convergence] The proposed HERES algorith-
m is guaranteed to converge to the local optimum.

Proof. Since the objective in Eq. 7 is block-wise convex
with respect to B and φi(1 ≤ i ≤ T ), according to the
property of block coordinate descent method (Lemma 3.1
in [33]), the proposed HERES algorithm based on block
coordinate descent will converge to the local optimum.

Algorithm 1 HERES Algorithm

Input: Feature-instance matrices Xij and label-instance
matrices Yi where 1 ≤ i ≤ T and ≤ j ≤ V , dimension
p, task clusters Ω, parameters αk (1 ≤ k ≤ G) , β, λ.

Output: Predicted label-instance matrices.
1: Set t = 0;
2: Initialize φ(t)i by using traditional clustering algorithm

such as K-means for each task, where 1 ≤ i ≤ T ;
3: repeat
4: Update D

(t)
(k) by Eq. 5 for each task cluster, where

1 ≤ k ≤ G;
5: Update B(t+1) by Eq. 9;
6: Update φ(t+1)

i by Eq. 10 for each task, where 1 ≤
i ≤ T ;

7: Set t← t+ 1;
8: until converged
9: return Predicted label-instance matrices Fi = Uφi

where 1 ≤ i ≤ T .

Regarding the algorithm complexity of HERES, the most
time or space consuming steps are to update B (step 5) and
φi (step 6). According to Eq. 9 and Eq. 10, the size of
the involved matrices in inversion is p × p, where p is the
dimensionality of the latent space. Note that we usually have
p � max(ni, dj), where ni is the number of instances in
i-th task, and dj is the number of feature in the j-th view.
Therefore, the proposed HERES algorithm is scalable to the
problem size.



4. Case Study
In this section, we introduce some special cases of the

proposed model. Based on the prior knowledge of the data,
the structured sparsity can be instantiated as various sparsity
regularizations.

It is well known that Lasso [32] encourages element-
wise sparsity; group Lasso [43] encourages group-wise s-
parsity; while sparse group Lasso [29] encourages both
group-wise and element-wise sparsity. Accordingly, in het-
erogeneous learning, we may hope to achieve task-level
sparsity, task-cluster-level sparsity, their combinations, etc.
All these sparsity regularizations can be accommodated
in the proposed model. Note that the structured sparsity
introduced here focuses on `2,1 norm, which is different
from Lasso, group Lasso, and sparse group Lasso that are
based on `1/`2 norm. Also, we study the structured sparsity
problem in heterogeneous representation learning, which is
more challenging since we need to simultaneously learn both
the basis matrix and the encoding matrix.

The following corollaries show some special cases of
the proposed model, which are based on the relationships
between the tasks and task clusters. In all the special cases,
the optimal solutions for B (Eq. 9) and φi (1 ≤ i ≤ T )
(Eq. 10) in HERES remain unchanged. The only difference
is the update of D(t)

i in Eq. 8, which can be further reduced
to specific forms. The proofs of the corollaries are omitted
for brevity.

Corollary 1. (Task-specific Sparsity): Suppose there are T
task clusters and each task corresponds one cluster, i.e., the
cluster set Ω = {{1}, · · · , {T}}, the objective function in
Eq. 3 is rewritten into

min
B,φ

∑T

i=1

(
‖Xi −Bφi‖2F + αi‖φi‖2,1

)
+ β ‖B‖2F

then, we obtain the diagonal matrix D(t)
i whose (j, j)(1 ≤

j ≤ p) element is
[
D

(t)
i

]
jj

= αi

2

∥∥∥∥[φ(t)
i

]
j:

∥∥∥∥
2

.

Corollary 2. (Task-common Sparsity): Suppose all the tasks
are in one cluster, i.e., the cluster set Ω = {{1, · · · , T}},
the objective in Eq. 3 is rewritten into

min
B,φ

∑T

i=1
‖Xi −Bφi‖2F + αa‖φa‖2,1 + β ‖B‖2F

where φa = [φ1, · · · , φT ] and αa is the parameter, then, we
obtain the diagonal matrix D(t)

i whose (j, j)(1 ≤ j ≤ p)

element is
[
D

(t)
i

]
jj

= αa

2

∥∥∥∥[φ(t)
a

]
j:

∥∥∥∥
2

.

Corollary 3. (Task-specific and Task-common Sparsity):
Suppose cluster set Ω = {{1}, · · · , {T}, {1, · · · , T}} con-
tains T + 1 clusters, the objective in Eq. 3 is rewritten into

min
B,φ

T∑
i=1

(
‖Xi −Bφi‖2F + αi‖φi‖2,1

)
+αa‖φa‖2,1+β ‖B‖2F

then, we obtain the diagonal matrix D(t)
i whose (j, j)(1 ≤

j ≤ p) element is
[
D

(t)
i

]
jj

= αi

2

∥∥∥∥[φ(t)
i

]
j:

∥∥∥∥
2

+ αa

2

∥∥∥∥[φ(t)
a

]
j:

∥∥∥∥
2

.

Note that in Corollary 3, each task belongs to two
clusters, i.e., i ∈ {i} and i ∈ {1, · · · , T}. In other words,
the cluster {1, · · · , T} overlaps with each of the remaining
T clusters. It facilitates the joint modeling of task-specific
sparsity and task-common sparsity.

It is worth pointing out that the scope of the proposed
structured sparsity is beyond these special cases. It allows
for flexible modeling of soft-clustering of tasks, i.e., each
task can belong to any clusters.

5. Experiments
We implement the model introduced in Corollary 3,

which employs the structured sparsity to capture both task-
dependent and task-independent relatedness.

5.1. Data Sets and Setup
We evaluate the algorithms on three benchmark data sets

including two text data and one image data. All of them are
available online1.

Reuters Corpus Volume I (RCV1V2) data set [22] is
widely used for the evaluation of heterogeneous learning al-
gorithm. RCV1V2 contains about 800,000 newswire stories.
There are three category sets of data: topics, industry codes,
and regions. Each of these category sets has a hierarchical
structures. It is common to use four subsets of this data,
each containing 6000 instances on average and with a total
number of 101 class labels.

EUR-Lex [25] data set contains nearly 20,000 text doc-
uments about European Union official laws, different kinds
of treaties and agreements, parliamentary journals. The doc-
uments are organized in a hierarchical structures according
to three different schemas: subject matter, directory codes,
and EUROVOC. There are 412 labels in total.

NUS-WIDE 2 is a real-world web image data set [8].
It consists of more than 269,000 images with over 5,000
user-provided tags, and ground-truth of 81 concepts with a
hierarchical structures. The images are represented by dif-
ferent types of visual features such as 64-D color histogram
in LAB color space, 144-D color correlogram in HSV color
space, 73-D edge distribution histogram, and 500-D bag of
visual words. The light version of NUS-WIDE is used in
our experiments.

In these data sets, the label refers to the multiple cat-
egories each instance belongs to. The task refers to clas-
sifying the instances belonging to different sub-categories,
which follow different data distributions [15], [37]. For the
NUS-WIDE data, the view refers to different types of visual
feature. For either RCV1V2 or EUR-Lex data set, similar
to [37], the data are represented by two views: one corre-
sponds to the TF-IDF features; and the other corresponds
to the latent topics obtained by applying probabilistic latent
semantic analysis3 on the term frequency.

Table 1 shows the properties of different data sets.
Label cardinality refers to the average number of labels

1. http://mulan.sourceforge.net/datasets-mlc.html
2. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3. http://lear.inrialpes.fr/people/verbeek/code



TABLE 1: Statistics of different data sets.
Data set Instances Features Labels Cardinality Density Diversity
RCV1V2 1 6000 47236 101 2.880 0.029 1028
RCV1V2 2 6000 47236 101 2.634 0.026 954
RCV1V2 3 6000 47229 101 2.614 0.026 939
RCV1V2 4 6000 47236 101 2.484 0.025 816
EUR-Lex 19348 5000 412 1.292 0.003 1615
NUS-WIDE 55615 708 81 1.869 0.023 18430

per instance. Accordingly, label density normalizes label
cardinality by the the number of labels. Label diversity is
the number of distinct label combinations observed in the
data set [46].

5.2. Evaluation Metrics and Comparison Methods
We use F1-score, accuracy and Hamming loss [46] as

the evaluation metrics to examine the performance of all
comparison algorithms on the test data.

F1-score is the ratio of predicted correct labels to the
mean of the numbers of actual labels and predicted labels,
averaged over all instances. F1-score is the harmonic mean
of precision and recall. Accuracy refers to the ratio of pre-
dicted correct labels to the intersection between actual labels
and predicted labels, averaged over all instances. Hamming
Loss is the sum of the prediction error (an incorrect label
is predicted) and the missing error (a relevant label not
predicted), normalized over total number of labels and total
number of instances. Note that the larger the values of F1-
score and accuracy, or the smaller the value of Hamming
loss, the better the performance of the learning algorithm.

In this work, we focus on improving the performance
of multi-label learning by leveraging the multiple types
of heterogeneity. We compare our method with the het-
erogeneous learning method HiMLS proposed recently in
[37]. Also, HERES is compared with different types of
multi-label learning 4 methods including: graph-based multi-
label approach ML-kNN [45], multi-label method based on
subspace learning LS-ML [18], and transductive multi-label
learning approach TRAM [21].

Note that both HERES and HiMLS [37] are capable of
learning from triple types of heterogeneity, while the other
methods are limited to a single type of heterogeneity, i.e.,
label heterogeneity. Therefore, for those methods dealing
with label heterogeneity only, their input is the combined
data, where the instances of all the tasks are pooled together,
and the features from each view are concatenated into one
single view.

We repeat the experiments ten times for each data set and
report the average performance and the standard deviation.
The parameters are tuned for each algorithm using cross-
validation on the training data.

5.3. Performance Study
Figures 1-3 (in next page) show the performance in

terms of F1-score, accuracy, and Hamming loss respectively
for the comparison methods on the six data sets. First of all,

4. Due to space limit, we omit the comparison results with multi-task or
multi-view learning, as their performance is not as good as HERES.

we observe that the results are basically consistent across
different metrics, i.e., the larger the F1-score, the larger the
accuracy, the smaller the Hamming loss.

The results show that both the proposed method HERES
and HiMLS [37] perform better than the other algorithms
in most cases. It demonstrates that learning performance
can be improved by leveraging the rich correlations among
heterogeneous data, such as the task relatedness, view con-
sistency, and label correlation. The other methods including
ML-kNN [45], LS-ML [18], and TRAM [21] only con-
sider the label correlation, while ignoring the other types
of heterogeneity. The results also suggest that treating the
instances in different tasks discriminatively is usually better
than just pooling them into one single task. Analogously,
treating different views in a complementary way is usually
better than just concatenating all the features together.

HERES performs the best among all the algorithms.
Although both HERES and HiMLS [37] take advantage
of triple heterogeneity, the major competency of HERES
over HiMLS lies in the proposed structured sparsity regu-
larization imposed on the model. Structured sparsity helps
pick out the informative latent features, while truncating the
irrelevant ones, which leads to a better representation of the
heterogeneous data in the new latent space. This automat-
ic feature learning procedure improves the generalization
performance of the model. Furthermore, structured sparsity
regularization provides a flexible way to encode the prior
knowledge on the data into the model. In this experiment,
we use task-specific sparsity to select the latent features
related to each individual task, while using the task-common
sparsity to pick out the latent features shared across multiple
tasks. As a consequence, it gains the performance promotion
by modeling the task relatedness in a more refined way.

In summary, heterogeneous learning could greatly bene-
fit from leveraging both the rich correlations among hetero-
geneous data including the task relatedness, view consisten-
cy, label correlation, as well as the prior knowledge about
the data such as the soft-clustering of tasks.

5.4. Influence of Parameters
It is interesting to study how the dimensionality p of the

latent space influences the performance of HERES. Taking
RCV1V2 1 data as an example, we vary p from 100 to
8000, and observe the change of performance. The result
is shown in Figure 4. We can see that HERES performs
better when p ≥ 2000 than p < 2000. A larger p indicate
a potential better representation capability of the model.
Then, the sparsity constraint imposed on the model helps
select the most informative latent features, leading to a better
performance.
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Figure 1: F1-score of different algorithms on the six data sets.

rcv1v2_1 rcv1v2_2 rcv1v2_3 rcv1v2_4 eurlex-dc nus-wide0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

 

 

HERES HiMLS ML-kNN LS-ML TRAM

Figure 2: Accuracy of different algorithms on the six data sets.
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Figure 3: Hamming loss of different algorithms on the six data sets.
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Figure 4: F1-score varies with dimension p.

Next, we study the performance of HERES varying with
the parameter αk, which is used to control the importance
of the structured sparsity. Note that in our experiments, the
cluster set Ω = {{1}, · · · , {T}, {1, · · · , T}} contains T + 1
clusters (please refer to Corollary 3 for details). Therefore,
we empirically set [α1, · · · , αT , αa] = [α, · · · , α, Tα]. The
performance of HERES with respect to α on RCV1V2 1
data is shown in Figure 5. First of all, the performance is
poor when α = 0. It suggests that the structured sparsity
constraint is indispensable to the proposed model. Then,
the performance increases significantly as α increases, and
reaches to the peak at α = 1/16. But a large α (e.g., α > 16)
may hurt the performance.
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Figure 5: F1-score varies with α (log4 scale).

Figure 6 shows the performance of HERES varying with
β on RCV1V2 1 data, which controls the importance of
smoothness regularization. When β = 0, it means that no
smoothness constraint is imposed on the model, resulting in
poor performance. The results show that HERES is robust
over a wide range of β values.
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Figure 6: F1-score varies with β (log4 scale).
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Figure 7: F1-score varies with λ (log4 scale).
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Figure 7 shows the performance sensitivity with respect
to λ, which is used to balance the contribution from em-
pirical loss. The performance curve is relatively flat when
λ ≤ 1. But a large λ (e.g., λ = 16) may hurt the perfor-
mance, suggesting that too much weight is placed on the
empirical loss.

We empirically study the convergence of HERES on the
RCV1V2 1 data set. The result is shown in Figure 8. The
F1-score increases rapidly, and becomes stable after a few
iterations. The results verify the fast convergence property
of the proposed algorithm.

6. Conclusion

In this paper, we propose a heterogeneous represen-
tation learning model with structured sparsity regulariza-
tion. HERES incorporates multiple types of correlations
among heterogeneous data into a representation learning
framework. The separability of the reformulated problem
leads to an efficient and scalable algorithm to solve the
structured sparsity regularized problem. The effectiveness
of the proposed method is validated on various data sets in
comparison with different heterogeneous learning methods.
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