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Abstract

Most of the existing multi-relational network em-
bedding methods, e.g., TransE, are formulated to
preserve pair-wise connectivity structures in the
networks. With the observations that significan-
t triangular connectivity structures and parallelo-
gram connectivity structures found in many re-
al multi-relational networks are often ignored and
that a hard-constraint commonly adopted by most
of the network embedding methods is inaccu-
rate by design, we propose a novel representation
learning model for multi-relational networks which
can alleviate both fundamental limitations. Scal-
able learning algorithms are derived using the s-
tochastic gradient descent algorithm and negative
sampling. Extensive experiments on real multi-
relational network datasets of WordNet and Free-
base demonstrate the efficacy of the proposed mod-
el when compared with the state-of-the-art embed-
ding methods.

1 Introduction
Representation learning has become an important research
track in the area of machine learning, with the aim of pro-
viding more informative numerical representations of the ob-
served data for applications like image classification, speech
recognition and text mining, etc. More specifically, network
embedding, which is to learn the distributed representations
of information networks, has attracted much attention due to
the promising empirical results obtained. In the literature, a
number of network embedding methods have been proposed,
including LINE [Tang et al., 2015], IONE [Liu et al., 2016],
SDNE [Wang et al., 2016], and DeepWalk [Perozzi et al.,
2014]. These methods learn only the representations of the
nodes in a network, and the edges are assumed to be single-
relational, that is, they are of the same type. For instance,
edges represent only “friendship” in a social network , and
only “collaboration” in the DBLP collaboration network.
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Figure 1: Trans-family vs. Triangular structures

A multi-relational network is represented by a directed
graph with the edges of various relation types typically in-
dicated by associating each edge from a source node to a
target node with a discrete label, denoted as (source, la-
bel, target) or (h, r, t). Such multi-relational networks, e.g.,
Google Knowledge Graph, semantic networks and multi-
relational social networks, have become important resources
to support more advanced information retrieval, question-
answering systems, etc. To learn the embedding of such a
network, it is common for both the node and edge represen-
tations to be learned at the same time.

Following the success of TransE [Bordes et al., 2013], a
series of translation-based methods have been proposed for
knowledge graph (KG) embedding to project the nodes (al-
so called entities) and the edges (also called relations) of the
KG onto a continuous vector space, e.g., TransH [Wang et
al., 2014b], TransR [Lin et al., 2015b], pTransE[Wang et
al., 2014a] and TransG [Xiao et al., 2015] (referred to as
“trans-family” hereafter), so that the local structural relation-
ship of the nodes and edges can be retained in their corre-
sponding embeddings. These approaches differ from each
other in the way of (1) whether the entities and relations are
projected onto the same subspace (e.g., TransH and TransR
project a KG onto different subspaces to reflect the relations’
semantics); (2) how the embedding objective function is de-
fined (e.g., TransE minimizes the so-called energy function of
fr (h, t) = ||h+ r − t|| , while pTransE maximizes the con-
ditional probability of (h, r, t) with the constraint h+ r = t).
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Figure 2: Triangular structure examples

In this paper, we focus on the representation learning of
the multi-relational networks, and propose our approach
based on the following two observations:

Observation 1: Methods in the trans-family are all con-
strained by h + r = t which cannot capture the structures
shown in Fig.2. For the directed graph with three nodes con-
necting to each other via a specific edge, there are two non-
isomorphic modes. In this paper, this structure is referred
to as the triangular structure which often appears in many
multi-relational networks. For example, Fig.2(c) illustrates
a fact in WordNet which accords with the mode in Fig.2(a),
where {internal secretion, endocrine, hormone} is the hy-
pernym of {adrenalin, adrenaline, epinephrin, epinephrine}
and {catecholamine}, {catecholamine} is the hypernym of
{adrenalin, adrenaline, epinephrin, epinephrine}, and the re-
lation edge is labeled “hypernym”. Note that WordNet is or-
ganized by the concept of synonym sets (so-called synsets),
where each node represents a set of words that are roughly
synonymous in a given context. Fig.2(d) illustrates another
fact in WordNet which accords with the mode in Fig.2(b),
where the relation edge is labeled as “similar to”. In the
trans-family, the scoring function fr (h, t) = ||h + r − t|| is
used to ensure the plausibility of triple (h, r, t). Accordingly,
the closeness of similar nodes can be guaranteed in the low-
dimensional Euclidean space. However, Euclidean geometry
breaks when encountering triangular structures. For example,
TransE requires the forms of vi + rs ≈ vj , vj + rs ≈ vk and
vi + rs ≈ vk to hold at the same time. However, as illustrat-
ed in Fig.1(a), for the former two equations to hold, we have
vi+2rs ≈ vk. The forcible updating rule in trans-family will
compromise the accuracy. Fig.1(b) shows that the accuracy of
the link prediction obtained by TransE and TransH decreases
as the number of the triangular structures increases 1.

Observation 2: Network embedding methods like LINE
[Tang et al., 2015] have been proposed to capture network
structures by exploring the first-order and second-order prox-
imities. The former corresponds to the edge strength be-
tween two connected nodes, while the latter corresponds to
the overlapping neighbors of the two nodes. Note that em-
bedding methods like LINE are deliberately designed for

1The experiments are conducted on WN18 dataset. The nodes
and edges which do not belong to a triangular structure are gradually
added to simulate the deceasing number of the triangular structures.

single-relational networks in which these two properties are
commonly seen. However, in multi-relational networks, the
strengths of the edges do not vary as much as in single-
relational networks2. For KGs like WordNet, most of nodes
are linked with each other by an edge of a specific relation
type only once. Besides, it is difficult to define the scale of
the strength when the relations have different semantic mean-
ings. In addition, the second-order proximity focuses on how
many neighbors of two nodes are exactly the same, whereas
in our framework we propose to relax such proximity defi-
nition by considering the proximity among the neighbors via
parallelogram structures. We have found that parallelogram
structures exist more often in multi-relational networks. Fig.3
illustrates the examples of parallelogram structures, where
{v1, v2, v5, v6} and {v1, v2, v3, v7} are the two instances of
the parallelogram structure with the parallel sides of the same
relation type. As shown in Fig.3, the two nodes v1 and v2
are linked to v3 and v7 via the same relation r1 respectively.
When v3 and v7 are linked by a relation r5, it is highly likely
v1 and v2 can be linked together via the same relation of their
neighbors, that is r5. Intuitively, given any three sides of the
parallelogram, we could infer the relation of the fourth one.

In this paper, we propose a multi-relational network em-
bedding method. The objective function is designed to con-
sider deliberately the triangular and parallelogram structures
to define node proximity, and thus to infer the representation-
s. In order to improve the efficiency, we adopt the stochastic
gradient descent algorithm and negative sampling to optimize
the objective function to reduce the training cost. We con-
duct extensive experiments over the tasks of triplet classifica-
tion and link prediction on the real datasets like WordNet and
Freebase. Experimental results demonstrate the effectiveness
of our model over several state-of-the-art methods.

2 Related Work
There are two lines of research related to our work, namely
network embedding and knowledge graph embedding.

2.1 Network Embedding
One of the recent attempts to address network embedding is
graph factorization (GF) [Ahmed et al., 2013] which utilizes

2For example, the number of mentions(@) of a user by another
user could be considered as the strength of these two users (nodes)
in single relational social networks.
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Figure 3: Parallelogram structure examples.

matrix factorization over undirected graph’s affinity matrix to
infer the low-dimensional embedding. Only first-order prox-
imity is preserved and nodes with close interaction are rep-
resented closely in the projected vector space. LINE [Tang
et al., 2015] is another recently proposed method to handle
large-scale network embedding for both directed and undi-
rected graphs, where both first-order and second-order prox-
imity measures have been considered. DeepWalk [Perozzi
et al., 2014] utilizes the distribution of node degree to model
network community structure via random walk and skip-gram
together to infer the network embedding. However, the stud-
ies show that DeepWalk tends to preserve the second-order
proximity only. SDNE [Wang et al., 2016] offers a semi-
supervised deep learning framework to address the problem
of learning representations of networks, in which the first-
order proximity and the second-order proximity are jointly
preserved. All the aforementioned approaches try to learn the
representations of nodes in single-relational networks. The
semantics of multiple relations are not addressed. Besides, as
explained in Sec. I, the first-order and second-order proximi-
ty measures may not be the representative local structures in
multi-relational networks.

2.2 Knowledge Graph Embedding
Recent advance of relational learning for knowledge graph
embedding has attracted much attention from industry and
academia. Among them, TransE [Bordes et al., 2013] is the
most well-known pioneer work which embeds both nodes and
edges of different relation types onto a low-dimensional vec-
tor space. The basic idea is to represent the edge (relation) of
two nodes (entities) as a translation operation in the embed-
ding space. Given the triplet (h, r, t), we expect the represen-
tation vector of the node t to be as close as possible to the
representation vector of the node h plus the relation r. The
objective function is ||h + r − t||. TransE is an efficient al-
gorithm for the embedding. However, it does not do well in
dealing with some mapping properties of relations, such as
reflexive, one-to-many, many-to-one, and many-to-many. To
alleviate the limitations, Wang et al. proposed TransH [Wang
et al., 2014b] to project the nodes in a relation-specific sub-
space (a hyperplane wr) to obtain h′ and t′ respectively for
each triplet (h, r, t). The translation is performed in the rela-
tion subspace and constrained by the function of h′ + r = t′.

Lin et al. extended the idea of TransH and proposed TransR
[Lin et al., 2015b] to project the entities and relations on-
to different vector spaces respectively to further increase the
degrees of freedom for the representations. In [Lin et al.,
2015a], the authors argued that multiple-step relation paths
also contain rich inference patterns between entities, and pro-
posed a path-based representation learning model by consid-
ering relation paths as translations between entities. Wang et
al. proposed a probabilistic TransE to encode the knowledge
graph by maximizing the conditional probability of (h, r, t),
in which the conventional scoring function of ||h+ r − t|| is
still being utilized.

These translation-based approaches inherit the efficiency
from TransE but also the underlying flaws when using the
scoring function in one way or another. As illustrated in Sec-
tion I, the use of the constraint of h+ r = t cannot handle the
triangular structures of multi-relational networks. In this pa-
per, we propose a novel multi-relational network embedding
approach to overcome the flaws of the trans-family where the
observed local structures are incorporated into the objective
function to infer a more robust network representation.

3 Model Framework
Let G = (V,E,R) be the graph representation of a directed
multi-relational network where V = {v1, v2, . . . , v|V |} cor-
responds to the set of nodes, R = {r1, r2, . . . , r|R|} corre-
sponds to the set of relation labels, and E corresponds to the
set of typed edges. Each typed edge in E is denoted as a
triplet (vi, rm, vj) with vi being the source node, rm being
the associated relation label, and vj being the target node.

3.1 Model Description
We propose a novel probabilistic embedding model for rep-
resenting multi-relational networks. Similar to most of exist-
ing representation learning methods, we represent each node
vi ∈ V as a d-dimensional vector in an embedded space via a
projection function f : V → <d. For directed networks, since
each node can take the role of either a source node or a target
node in a relation-specific edge, we represent each node vi
using two vector representations: a source vector ~ui ∈ <d, a
target vector ~u′i ∈ <d. Also, we introduce ~uri as the vector
representation of relation ri.

Given a node vi, we first define the probability that the
node links to vj via a relation rs, when compared with how
vi is related to other nodes via its outgoing edges, denoted as

p(vj , rs|vi) =
exp(~u

′

j

T
(~ui + ~urs))∑

(vi,rp,vx)∈E′
exp(~u′

x
T
(~ui + ~urp))

(1)

E′ = {(vi, rx, vp)|vp ∈ V, rx ∈ R} (2)

where the source vector ~ui, the target vector ~u
′

j and the rela-
tion vector ~urs for the directed edge (vi, rs, vj) are related by
adding ~urs to the source vector ~ui. Note that such addition
adopted in Eq.(1) is merely to include the relation to obtain
the probability compared with LINE, instead of enforcing the
hard constraint as in trans-family.
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Figure 4: Local connectivity structures of parallelogram

Furthermore, to characterize the parallelogram structures,
we take into account different possible directions of the rela-
tion edges so that three distinct non-isomorphic local connec-
tivity structures are considered for each node in a parallelo-
gram, as shown in Fig.4. For the three cases, we define the
corresponding probability distributions as follow:

Case 1 (Fig.4(a)): As the out-degree of vi is 2 and the in-
degree of vi is 0, p1 is defined as the probability that vi will
“contribute” to such a situation, given as

p1(v
rs
j , v

rt
k |vi)=

exp(~u
′

j

T
(~ui + ~urs) + ~u

′

k

T
(~ui + ~urt))∑

(vi,rp,vx)∈E
′

∧(vi,rq,vy)∈E
′

exp(~u′
x
T
(~ui + ~urp) + ~u′

y
T
(~ui + ~urq ))

(3)

We utilize vrsi as a neater representation of the pair of (vi, rs)
in the sequel.

Case 2 (Fig.4(b)): As the out-degree of vi is 1 and the in-
degree of vi is 1, p2 is defined as:

p2(v
rs
j , v

rt
k |vi)=

exp(~u
′

i

T
(~uj + ~urs) + ~u

′

k

T
(~ui + ~urt))∑

(vx,rp,vi)∈E
′

∧(vi,rq,vy)∈E
′

exp(~u
′
i
T
(~ux + ~urp) + ~u′

y
T
(~ui + ~urq ))

(4)

Case 3 (Fig.4(c)): As the out-degree of vi is 0 and the in-
degree of vi is 2, p3 is defined as:

p3(v
rs
j , v

rt
k |vi)=

exp(~u
′

i

T
(~uj + ~urs) + ~u

′

i

T
(~uk + ~urt))∑

(vx,rp,vi)∈E
′

∧(vy,rq,vi)∈E
′

exp(~u
′
i
T
(~ux + ~urp) + ~u

′
i
T
(~uy + ~urq ))

(5)

To preserve the three parallelogram structures, we mini-
mize the KL-divergence of p1, p2, p3 and their empirical
distributions over all the nodes. The empirical distribu-
tions p̂1, p̂2 and p̂3 are defined as ωij ∗ ωik/(d

i
out ∗ diout),

ωji ∗ ωik/(d
i
in ∗ diout) and ωji ∗ ωki/(d

i
in ∗ diin) respective-

ly, where ωij denotes the weight3 of edge (vi, vj), diout =∑
k∈Nout(vi)

wik and diin =
∑

k∈Nin(vi)
wki, Nout(vi) and

Nin(vi) are the sets of out-neighbors and in-neighbors of vi
respectively. As the importance of the nodes in the network
may be different, we introduce λi to represent the importance
of vi in the network. In this paper, we set λi according to its
degree. Therefore, the objective function is defined as:

O =
∑
i∈V

λiKL (p̂ (·|vi) ||p (·|vi)) (6)

Then we set λi to be diout ∗ diout, diin ∗ diout and diin ∗ diin
respectively, the corresponding objective function becomes:

O1 = −
∑

(vi,rs,vj)∈E
∧(vi,rt,vk)∈E

ωij ∗ ωik∗ log p1(vrsj
, vrtk |vi)

(7)

O2 = −
∑

(vj ,rs,vi)∈E
∧(vi,rt,vk)∈E

ωji ∗ ωik ∗ log p2(vrsj
, vrtk |vi)

(8)

O3 = −
∑

(vj ,rs,vi)∈E
∧(vk,rt,vi)∈E

ωji ∗ ωki ∗ log p3(vrsj
, vrtk |vi)

(9)

Then, the source and target vector representations for each
node, i.e., {~ui}i=1...|V |, {~u

′

i}i=1...|V | and the relation repre-
sentation for each relation type, i.e., {~uri}i=1...|R| can be ob-
tained by minimizing the combined objective function O =
O1 +O2 +O3 where O1, O2 and O3 collaboratively help re-
tain parallelogram structures as much as possible. In fact, the
triangular structures are also implicitly preserved at the same
time under such design.

3.2 Model Inference
The stochastic gradient descent is adopted to learn the vector
representations of the multi-relational network. For example,
to update the source vector of node vi, the gradient w.r.t. ~ui
is computed as:

∂O

∂~ui
= ωij ∗ ωik ∗

∂ log p1(v
rs
j
, vrtk |vi)

∂~ui
+

ωji(ωik ∗
∂ log p2(v

rs
j
, vrtk |vi)

∂~ui
+ ωki ∗

∂ log p3(v
rs
j
, vrtk |vi)

∂~ui
)

(10)

To reduce the computational cost of calculating the summa-
tion over the entire set of nodes when addressing the condi-
tional probability p1, p2 and p3, we utilize the negative sam-
pling approach [Mikolov et al., 2013] which has been widely

3The weight indicates the strength of a labeled edge. In multi-
relational social networks, the weight of a friendship relation be-
tween two users can be defined using the retweet frequency.
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adopted, e.g., [Tang et al., 2015], [Goldberg and Levy, 2014].
Negative sampling basically transforms the computationally
expensive learning problem into a binary classification proxy
problem that uses the same parameters but requires the statis-
tics much easier to compute. The equivalent counterparts of
the objective function Eq.(10) can then be derived, given as:

log p1(v
rs
j
, vrtk |vi) ∝ log σ(~u

′
j

T
(~ui + ~urs) + ~u

′
k

T
(~ui + ~urt))

+

K∑
m=1

Evn∼Pn(v)
rl∼Pl(r)

log σ(−~u
′
j

T
(~ui + ~urs)− ~u

′
n

T
(~ui + ~url))

(11)

log p2(v
rs
j
, vrtk |vi) ∝ log σ(~u

′
i

T
(~uj + ~urs) + ~u

′
k

T
(~ui + ~urt))

+

K∑
m=1

Evn∼Pn(v)
rl∼Pl(r)

log σ(−~u
′
i

T
(~uj + ~urs)− ~u

′
n

T
(~ui + ~url))

(12)

log p3(v
rs
j
, vrtk |vi) ∝ log σ(~u

′
i

T
(~uj + ~urs) + ~u

′
i

T
(~uk + ~urt))

+

K∑
m=1

Evn∼Pn(v)
rl∼Pl(r)

log σ(−~u
′
i

T
(~uj + ~urs)− ~u

′
i

T
(~un + ~url))

(13)

Each of the first terms of Eqs.(11-13) models the observed
local structures (positive samples), while each of the second
terms models the way the negative samples drawn from the
noise distribution (we adopt uniform distribution in this pa-
per). σ(x) = 1/(1+exp(−x)) denotes the sigmoid function.
vn and rl denote the negative samples for nodes and relation
edges drawn from a uniform distribution where vi, rl and vn
cannot constitute the fact triplet, and K is the number of the
negative samples. Then the partial derivative of Eq.(11) w.r.t.
~ui can be rewritten as:

∂O

∂~ui
= {[1− σ(~u

′
j

T
(~ui + ~urs) + ~u

′
k

T
(~ui + ~urt))](~u

′
j + ~u

′
k)

− σ(~u
′
j

T
(~ui + ~urs) + ~u

′
n

T
(~ui + ~url))(~u

′
j + ~u

′
n)} ∗ ωij ∗ ωik

+ {[1− σ(~u
′
i

T
(~uj + ~urs) + ~u

′
k

T
(~ui + ~urt))]~u

′
k

− σ(~u
′
i

T
(~uj + ~urs) + ~u

′
n

T
(~ui + ~url))~u

′
n} ∗ ωji ∗ ωik

(14)

With reference to Eq.(14), the updating rule for the embed-
ding vector ~ui can be obtained. The target vectors ~u

′

i and
relation vectors ~url can be obtained similarly. They are not
listed due to the page limit.

4 Experiment
To evaluate the performance of the proposed multi-relational
network embedding (MNE), we employ two well-known
benchmark datasets, namely, WN18 and FB15K which
are extracted from the real-world multi-relational networks
WordNet [Miller, 1995] and Freebase [Bollacker et al., 2008]

Table 1: Statistics of the datasets used for evaluation

dataset #Entity #Relation #Triplet #Tri-nodes

WN18 40943 18 151442 895
(2.19%)

FB15K 14951 1345 592213 6198
(41.46%)

respectively. Table 1 tabulates their statistics where tri-nodes
refers to the nodes conforming a triangular structure in net-
works. We compare our proposed MNE with several existing
methods in trans-family, including TransE, TransH and Tran-
sR where the two settings “unif” and “bern” to sample nega-
tive instances are used for the embedding learning [Lin et al.,
2015b]. We also compare our proposed approach with the
state-of-the-art approaches for network embedding, includ-
ing DeepWalk and LINE. 4 For LINE, both first-order prox-
imity and second-order proximity terms are investigated for
comparison, denoted as LINE-1st-order and LINE-2nd-order
respectively. The experiments are evaluated using 80/20 rule
for the train-test split.

4.1 Triplet Classification
The triplet classification task has been widely investigated
for the performance evaluation of representation learning ap-
proaches, which is usually translated into a binary classifica-
tion task to judge whether a given triplet is a fact or not in a
given knowledge base.
Evaluation Protocol In this task, we perform binary classi-
fication as in [Grover and Leskovec, 2016]. The triplet facts
(h, r, t) appeared in the dataset are taken as the positive sam-
ples. And we randomly sampled the same number of triplets
that have not appeared in the dataset as the negative triplet-
s. We concatenate the obtained low-dimensional vectors of
the head entity, relation and tail entity as the input of a clas-
sifier. Both logistic regression (LR) and support vector ma-
chine (SVM) are adopted for the classifier with similar results
achieved. We adopt LR for its efficiency in this paper. And
we use the classification accuracy as the evaluation criterion.
Results Table 2 shows the performance comparison among
the existing approaches for triplet classification. We observe
that: (1) The proposed MNE and the trans-family perform
consistently better than the network embedding methods (i.e.
DeepWalk and LINE) which treat the relations semantically
indistinguishable; (2) For both benchmark datasets, our pro-
posed approach MNE outperforms all the baseline methods;
(3) The trans-family does not work well on FB15K while our
proposed MNE can still achieve high accuracy. As report-
ed in Table 1, FB15K is a far more dense multi-relational
network with more relation types than WN18. The relation-
specific local structures are intuitively more complex. And
in FB15K dataset, there are more nodes with the triangular
structures compared to WN18. That accounts for the perfor-
mance degradation of trans-family enforcing the constraints
of h+ r = t.

4As LINE and Deepwalk can only deal with single relational net-
works, we treat the linkages of various types between two nodes in
multi-relational networks as a weighted single relation.
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Table 2: Performance comparison on triplet classification

WN18

Methods MNE LINE-1st-order LINE-2nd-order DeepWalk TransE(bern)
Acc. 86.74% 50.47% 54.34% 53.28% 81.31%

Methods TransE(unif) TransH(bern) TransH(unif) TransR(bern) TransR(unif)
Acc. 80.42% 81.44% 80.83% 80.43% 80.73%

FB15K

Methods MNE LINE-1st-order LINE-2nd-order DeepWalk TransE(bern)
Acc. 90.08% 58.67% 70.52% 69.31% 70.46%

Methods TransE(unif) TransH(bern) TransH(unif) TransR(bern) TransR(unif)
Acc. 71.40% 71.72% 70.98% 70.49% 71.48%

Table 3: Performance comparison on link prediction

WN18

Methods MNE LINE-1st-order LINE-2nd-order DeepWalk TransE(bern)
Acc. 85.04% 50.94% 54.12% 54.54% 82.76%

Methods TransE(unif) TransH(bern) TransH(unif) TransR(bern) TransR(unif)
Acc. 82.46% 83.48% 82.22% 82.36% 82.38%

FB15K

Methods MNE LINE-1st-order LINE-2nd-order DeepWalk TransE(bern)
Acc. 91.81% 59.27% 64.13% 69.55% 69.40%

Methods TransE(unif) TransH(bern) TransH(unif) TransR(bern) TransR(unif)
Acc. 71.23% 69.77% 72.46% 71.35% 71.77%

0 100 200 300

Dimension

50

60

70

80

90

A
c
c
(%
)

MNE

TransH

TransE

TransR

Figure 5: Acc. vs. Dimension

4.2 Link Prediction
Link prediction is to predict the missing h or t for a triplet fact
(h, r, t) in a given KG. That is to obtain the best answer of t
given (h, r) or to obtain the best answer of h given (r, t).
Evaluation Protocol Again, the link prediction problem can
be posed as a binary classification problem by employing the
low-dimensional vectors obtained from our proposed model.
While the triplets in a KG can form the positive samples, the
negative samples can be generated by corrupting each triplet
of fact (h, r, t) with the head (h) or tail (t) replaced. Com-
pared to triplet classification, the testing set will no longer
included in the dataset for representation learning. Again, a
LR classifier is trained by using the obtained low-dimensional
vectors and tested on the corrupted edges. Again, we use the
classification accuracy as the evaluation criterion.
Results The evaluation results are shown in Table 3. We
made similar observations as those for triplet classification.
In particular, the proposed MNE and the trans-family are per-
forming obviously better than the network embedding meth-
ods on WN18. The trans-family methods do not perform well
on FB15K. The phenomenon further confirms that the trian-
gular structures in multi-relational networks will degrade the

performance of the trans-family. MNE outperforms all the
other methods on both WN18 and FB15K consistently.

Among the methods proposed for multi-relational net-
works, we also compare their performances on the triplet
classification (WN18) under the settings using representa-
tions of different dimensions. The results are shown in Fig.5.
We observe that: 1) There is a positive correlation between
the classification accuracy and the dimension. After reaching
a specific dimension, the classification accuracy converges;
2) MNE outperforms other state-of-the-art methods for al-
l the dimensionality settings. In particular, MNE can work
very well even at a very low dimension (2 to 5); 3) MNE
converges when the dimension reaches 20, while the other
methods reach the good performance when the dimension is
around 100. We conclude that MNE could obtain a more
compact representation compared with other approaches. Be-
sides, similar to LINE, we adopt the negative sampling to sub-
stantially reduce the computational cost of learning, which
allows MNE to scale up to the network of large size.

5 Conclusion

In this paper, we propose a novel multi-relational network
embedding model. Many existing knowledge graph embed-
ding methods share an intrinsic limitation of adopting a hard
constraint on the inferred embedding. By defining an ob-
jective function which can implicitly preserve triangular and
parallelogram structures, the proposed model can give more
flexible embedding results. Negative sampling are used to
reduce the computational cost for the learning process. The
extensive experiments conducted on two real world datasets
demonstrate that our proposed model outperforms a number
of state-of-the-art embedding methods. This paper only ex-
plores the local structures to obtain embedding without con-
sidering other information carried in the network. We would
like to explore the idea of incorporating semantic information
in our framework for the future work.
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