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ABSTRACT
Network embedding is increasingly employed to assist net-
work analysis as it is effective to learn latent features that en-
code linkage information. Various network embedding meth-
ods have been proposed, but they are only designed for a sin-
gle network scenario. In the era of big data, different types
of related information can be fused together to form a cou-
pled heterogeneous network, which consists of two different
but related sub-networks connected by inter-network edges.
In this scenario, the inter-network edges can act as comple-
mentary information in the presence of intra-network ones.
This complementary information is important because it can
make latent features more comprehensive and accurate. And
it is more important when the intra-network edges are ab-
sent, which can be referred to as the cold-start problem. In
this paper, we thus propose a method named embedding
of embedding (EOE) for coupled heterogeneous networks.
In the EOE, latent features encode not only intra-network
edges, but also inter-network ones. To tackle the challenge
of heterogeneities of two networks, the EOE incorporates
a harmonious embedding matrix to further embed the em-
beddings that only encode intra-network edges. Empirical
experiments on a variety of real-world datasets demonstrate
the EOE outperforms consistently single network embedding
methods in applications including visualization, link predic-
tion multi-class classification, and multi-label classification.
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1. INTRODUCTION
Various explicit and implicit interactions, such as friend-

ship, co-authorship and co-concurrence, between data points
make the network ubiquitous. As a result, the network rep-
resentation is inevitable in many data mining applications.
On the one hand, many data mining applications are de-
signed for networks, such as community detection [24, 9]
and link prediction [12]. On the other hand, other data min-
ing applications can benefit from the analysis of networks,
such as collective classification [16] and dimension reduction
[25, 26, 11]. All of above applications rely on the analysis
of network interactions or edges. Nowadays, network em-
bedding is increasingly employed to assist network analysis
as it is effective to learn latent features that encode linkage
information [19, 20, 1, 13, 17]. The basic idea of network em-
bedding is to preserve the network structure by presenting
pairs of vertices with edges to be close in the latent space.
The latent features are beneficial as they are more expres-
sive than edges and can be directly employed by off-the-shelf
machine learning techniques. Although various network em-
bedding methods [13, 17] have been proposed before, they
are designed only for learning representations on a single
network.

Furthermore, in the era of big data, different types of re-
lated information are often available and can be fused to-
gether to form a coupled heterogeneous network, where each
type of information can be represented as a separate homo-
geneous network. We define a coupled heterogeneous net-
work as a network consisting of two different but related
sub-networks connected by inter-network links, such as (1)
author and word networks (authors can be linked by interac-
tions between authors, such as co-authorship, words can be
linked by co-concurrence relationships, and authors can be
linked to words they use in their papers); (2) social network
user and word networks (links can be similar to those in au-
thor and word networks); (3) customer and movie networks
(links between movies can result from having common ac-
tors or directors); (4) gene and chemical compound networks
[5] (genes can be linked by gene-gene interaction, chemical
compounds can be linked by having the same ontology, and
genes can be linked to chemical compounds through binding
relationships).

To visually illustrate this concept, an example of author
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Figure 1: A co-authorship network and a word co-concurrence network, where black straight lines between authors and words
are the edges connecting them. The edges among authors and among words are left out for the sake of clear appearance. The
size of a vertex is proportional to its degree.

and word network is presented in Fig. 1, where authors
are linked by co-authorships, and the concurrent appearance
in the same title is defined as the co-concurrence relation-
ship between words. We sample the network from a DBLP
dataset [18]. The sampled co-authorship network consists of
authors who have published papers in two data mining con-
ferences, KDD and ICDM, and two database conferences,
SIGMOD and VLDB from 2000 to 2003. It is shown that
authors form two clusters, and so do words, which can be
generated by community detection methods. Moreover, ex-
perts of data mining have more edges to words from data
mining domain than those from database domain, and the
case with experts of database is similar.
To learn latent features for authors, it is expected that

authors of the same domain should be close to each other
in the latent space. One can see that the edges between au-
thors and words can act as complementary information in
the presence of the author edges. This is because authors of
the same domain are more likely to have edges to words of
their domain, which can be utilized to make latent features
which are learned from only author edges more comprehen-
sive and accurate. And the complementary information is
more important when the author edges are absent, which
can be referred to as the cold-start problem. The case with
learning latent features for words is similar. There are em-
bedding methods available for either the author network or
the word network. However, it is not straightforward to ex-
tend from existing embedding methods for a single network
to one for coupled heterogeneous networks.
The major challenge is imposed by heterogeneous char-

acteristics of two different networks, which would result in
two heterogeneous latent spaces. As a result, latent fea-
tures of different networks cannot be directly matched. To
tackle this challenge, we propose a method named embed-
ding of embedding (EOE) to further embed the embeddings
from one latent space to the other latent space by intro-
ducing a harmonious embedding matrix. Specifically, the
proposed EOE can transform the latent features from one
space into another space by multiplying the appropriately
designed harmonious embedding matrix. With this harmo-

nious embedding matrix, there are no barriers for computa-
tions between latent features of different networks. As an
embedding method, the proposed EOE also presents vertices
connected by edges to be close in the latent space. The key
difference from existing embedding methods for a single net-
work is that there are three kind of edges and two type of
latent spaces corresponding to two networks. Moreover, the
latent features of both networks have to be leaned simultane-
ously as either side can provide complementary information
to the other side through the inter-network edges.

It is directly followed that there are three types of vari-
ables to be optimized in the learning objective of the EOE,
which are two types of latent features corresponding to two
networks, and the embedding matrix. We thus propose an
alternating optimization algorithm in which the learning ob-
jective is optimized with respect to one type of variable at
a time until convergence. This alternating optimization al-
gorithm can replace the difficult joint optimization over the
three variables with a sequence of easier optimizations [4].
The EOE model and the optimization algorithm are pre-
sented in great details in the following sections.

The contributions of this paper are summarized as follows:

1. To the best of our knowledge, we are the first to in-
vestigate the problem of joint embedding for coupled
networks. We propose a joint embedding model, EOE,
which incorporates a harmonious embedding matrix to
further embed the embeddings that only encode intra-
network edges.

2. We propose an alternating optimization algorithm to
solve the learning objective of the EOE in which the
learning objective is optimized with respect to one type
of variable at a time until convergence.

3. We conduct comprehensive empirical evaluation on a
variety of real-world coupled heterogeneous networks
to demonstrate the advantages of joint learning on cou-
pled networks. The proposed EOE outperforms the
baselines in four applications including visualization,
link prediction, multi-class classification, and multi-
label classification.
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4. This work shows the coupled heterogeneous network as
an effective representation of fusing information from
different information sources, where each information
source is represented as a separate homogeneous net-
work and the inter-network link captures the relation-
ship between the heterogeneous network nodes.

The rest of the paper is organized as follows. Section 2
presents the related work. The problem description, the
model formulation, and the optimization algorithm are pre-
sented in Section 3, 4, 5, respectively. Section 6 presents
comprehensive empirical evaluation. In section 7, we con-
clude and introduce our future work.

2. RELATED WORK
The proposed EOE model is related to general graph em-

bedding or network embedding methods to learn latent rep-
resentations for graph or network vertices. A couple of graph
or network embedding methods have been proposed previ-
ously [15, 21, 8, 3], but they are originally designed for di-
mension reduction of existing features. Specifically, their ob-
jectives are to learn low-dimensional latent representations
of existing features so that learning complexity brought by
feature dimension would be significantly reduced. In our
scenarios, there exist no features of network vertices but the
network edge information.
Another graph embedding method called graph factoriza-

tion [1] learns latent features by utilizing network edges. It
presents graphs as matrices where matrix elements corre-
spond to edges between vertices, and then learns latent fea-
tures by matrix factorization. But the method graph fac-
torization only presents pairs of vertices with interactions
to be close in the latent space. The proposed EOE model
not only presents vertices with edges to be close, but also
presents vertices without edges to be away from each other.
The latter regulation is important because it would preserve
the information that certain vertices are not likely to inter-
act, which is a part of network structure information as well.
A recent network embedding model called DeepWalk [13]

embeds local link information obtained from random walks.
It is motivated by the connection between degree distribu-
tion of networks and word frequency distribution of natural
languages. Based on this observation, the model for natu-
ral languages is re-purposed to model network community
structures. However, random walks may cross multiple com-
munities, which is not desired for the purpose of network
structure preserving. Moreover, DeepWalk can only handle
unweighted networks, while the proposed EOE model is ap-
plicable to both weighted and unweighted networks.
The state-of-the-art related model is LINE [17] for large-

scale information network embedding. LINE preserves both
interaction information and non-interaction information, which
is similar to the proposed EOE. But the proposed EOE
model differs from LINE in the formulation of cost function.
Moreover, the proposed EOE is designed for embedding of
couple heterogeneous networks. None of existing methods
including LINE can handle coupled heterogeneous networks,
which are common in real world and beneficial to embed-
dings of each of the coupled networks.

3. PRELIMINARIES
We formally define the concept of the coupled heteroge-

neous network as follows:

DEFINITION 1. A coupled heterogeneous network
is comprised of two different but related sub-networks that
are connected by inter-network edges. The term ”differ-
ent” means that vertices of two sub-networks are of differ-
ent types. And the terms ”related” means that vertices of
two sub-networks have a particular type of interaction or
relationship. With a sub-network defined as Gu(U,Eu,Wu),
and another as Gv(V,Ev,Wv), the coupled heterogeneous
network is denoted as Guv(Gu, Euv,Wuv, Gv), where U and
V are set of vertices, Eu and Ev are sets of edges within Gu

and Gv, respectively, Euv is the set of edges connecting ver-
tices of Gu and those of Gv, and W with different subscrip-
tions are corresponding sets of edge weights. All the edges
can be weighted, unweighted, directed, and undirected.

To learn latent features for U and V , the EOE utilizes
network edges as an embedding method. Specifically, pairs
of vertices with edges are presented to be close in the latent
space. The closeness of two vertices is defined as follows:

DEFINITION 2. A pair of vertices is close in a certain
latent space if the probability that there exists an edge be-
tween them is considerably high, ideally 100%. The proba-
bility is quantified by the following equation:

p(ui,uj) =
1

1 + exp{−u⊤
i uj}

, (1)

where ui and uj are column vectors of embeddings for ver-
tices indexed by i and j in the network Gu, respectively.

The Eq. (1) is measured in the latent space for Gu, and
the formulation for probability measured in the latent space
for Gv is the same. However, the formulation for proba-
bility of existence of edges between vertices from Gu and
those from Gv cannot be the same as it involves two differ-
ent latent spaces. To reconcile the heterogeneities of the two
latent spaces, we introduce a harmonious embedding matrix
to further embed the embeddings from one latent space to
another latent space, which is defined as follows:

DEFINITION 3. A harmonious embedding matrix
is a du × dv real-valued matrix M , where du and dv are the
dimensions of latent features of U and V , respectively.

With the harmonious embedding matrix M , the probabil-
ity for measuring the closeness between vertices of different
networks can be quantified as follows:

p(ui,vj) =
1

1 + exp{−u⊤
i Mvj}

, (2)

4. THE EOE MODEL
Based on the preliminaries, we now present the proposed

EOE model. The EOE model not only presents vertices
with edges to be close, but also presents vertices without
edges to be away from each other. The latter regulation is
important because it would preserve the information that
certain vertices are not likely to interact, which is a part of
network structure information as well. To cast both these
two regulations to an optimization problem, small probabil-
ities of pairs of vertices with edges and large probabilities
of pairs of vertices without edges should be penalized. The
loss function to penalize the former is formulated as follows:

L(U) =
∑

(i,j)∈Eu

(wu)ij × f(p(ui,uj)), (3)
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where (wu)ij is the weight of the edge between vertex ui and
uj , f(x) is the penalty function and remains to be defined.
The multiplication of (wu)ij is to reflect the relationship
strength indicated by the weight. If an unweighted network
is given, (wu)ij is set to a constant, such as 1.
As an appropriate penalty function, f(x) must be mono-

tonically decreasing, and decreasing to zero when the proba-
bility approaches one. Monotonically decreasing guarantees
that smaller penalties are given to larger probabilities of
links. This property is necessary as we only expect to pe-
nalize small probabilities of links required by the network
structure preserving. Besides, for the sake of simple opti-
mization, f(x) should be convex and continuously differen-
tiable. This property makes the loss function (3) solvable
by commonly used gradient descent algorithms, and ensures
a global optimal solution. A simple function bearing these
two properties is the negative natural logarithmic function,
and hence Eq. (3) is reformulated as follows:

L(U) = −
∑

(i,j)∈Eu

(wu)ij × log(p(ui,uj)) (4)

Similarly, the penalty function f(x) for pairs of vertices
without an edge is also defined in this way except that the
necessary property is adjusted to be monotonically increas-
ing, and approaching zero when the probability approaches
zero. Accordingly, the loss function to penalize large proba-
bilities of non-existing edges can be formulated as follows:

L(U) = −
∑

(h,k)/∈Eu

log(1− p(uh,uk)), (5)

where uh and uk is a pair of vertices without an edge com-
pared with a pair of vertices ui and uj with an edge. In
the rest of paper, pairs of vertices with an edge and pairs of
vertices without an edge are denoted in this way. It is not
practical for this loss function to be summarized on total
pairs of vertices without edges when dealing with a large-
scale network. To compromise, the number of pairs of ver-
tices without edges is sampled to several times larger than
that of pairs with an edge.
The loss functions for Gv and pairs of vertices from dif-

ferent networks are all quantified in this way. All these loss
functions should be jointly optimized as each sub-network
can provide complementary information to the other one
through the inter-network edges. A straightforward way to
combine all these loss functions is to directly add them to-
gether. We leave more sophisticated ways for the combina-
tion as future work. Hence, adding ℓ2-norm and ℓ1-norm
regularization terms to avoid overfitting, the overall loss
function for embedding the coupled heterogeneous network
Guv(Gu, Euv,Wuv, Gv) is quantified as follows: L(U,M, V ) =

−
[ ∑
(i,j)∈Eu

(wu)ij log(p(ui,uj)) +
∑

(i,j)∈Euv

(wuv)ij log(p(ui,vj))

+
∑

(i,j)∈Ev

(wv)ij log(p(vi,vj))

]
−

[ ∑
(h,k)/∈Eu

log(1− p(uh,uk))

+
∑

(h,k)/∈Euv

log(1− p(uh,vk)) +
∑

(h,k)/∈Ev

log(1− p(vh,vk))

]

+ λ

Nu∑
n=1

||un||2 + β||M ||+ η

Nv∑
n=1

||vn||2,

(6)

where λ, β, and γ ∈ R are regularization coefficients, Nu

and Nv are the number of the vertices in Gu and Gv, respec-
tively. The ℓ1-norm for the harmonious embedding matrix
is to perform feature selection for reconciling the two latent
spaces at it would introduce sparsity.

5. THE OPTIMIZATION ALGORITHM
Minimizing the loss function L(U,M, V ) is a convex opti-

mization problem. We thus can employ gradient-based al-
gorithms to perform the optimization. The gradient for ui

can be obtained by differentiating L(U,M, V ) with respect

to ui as follows:
∂L(U,M,V )

∂ui
=

−
∑[

(wu)ijexp{−u⊤
i uj}

1 + exp{−u⊤
i uj}

uj +
(wuv)ijexp{−u⊤

i Mvj}
1 + exp{−u⊤

i Mvj}
Mvj

]

+
∑[

uk

1 + exp{−u⊤
i uk}

+
(wuv)ikexp{−u⊤

i Mvk}
p(ui,vk)− 1

p2(ui,vk)

×Mvk

]
+ λ

Du∑
d=1

2(ud
i ),

(7)

where Du is the dimension of latent features. All the summa-
rization subscripts are left out due to space consideration.

The gradient for vi can be obtained by differentiating

L(U,M, V ) with respect to vi as follows:
∂L(U,M,V )

∂vi
=

−
∑[

(wv)ijexp{−v⊤
i vj}

1 + exp{−v⊤
i vj}

vj +
(wuv)jiexp{−u⊤

j Mvi}
1 + exp{−u⊤

j Mvi}
Mui

]

+
∑[

vk

1 + exp{−v⊤
i vk}

+
(wuv)kiexp{−u⊤

k Mvi}
p(uk,vi)− 1

p2(uk,vi)

×Muk

]
+ η

Dv∑
d=1

2(vd
i ),

(8)

where Dv is the dimension of latent features of V .
The loss function L(U,M, V ) is not differentiable with re-

spect to zero elements of M . We thus employ sub-gradient
gradients for M , which can be obtained by differentiating

L(U,M, V ) with respect to M as follows: ∂L(U,M,V )
∂M

=

−
∑[

(wuv)ijexp{−u⊤
i Mvj}

1 + exp{−u⊤
i Mvj}

uiv
⊤
j

]
+

∑[
exp{−u⊤

h Mvk}
p(uh,vk)− 1

× p2(uh,vk)uiv
⊤
j

]
+ β

Du∑
i=1

Dv∑
i=1

sign(mij),

(9)

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and
sign(x) = 0 if x = 0, mij is the ith row and jth column
element of M . Considering that mij falling on zero is a rare
case in practice, we manipulate the value of mij to zero if
it crosses zero in the descent process. This mechanism is
called lazy update [6] to encourage sparsity.

With these gradients, we propose a gradient-based alter-
nating optimization algorithm in which the loss function is
minimized with respect to one type of variable at a time until
convergence. This alternating optimization algorithm can re-
place the difficult joint optimization over the three variables
with a sequence of easier optimizations [4]. With respect
to the alternation of variables, it is not performed until the
current variable-specific minimization converges. This is be-
cause each type of variable would influence the other two
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Input :Guv(Gu, Euv,Wuv, Gv), du, dv, λ, β, and η
Output :Embeddings of U and V

1 Initializing U , M ,V by assigning zeors;
2 while (not converge) do

3 compute gradient ∂L(U)
∂ui

for all U ;

4 step size ηu ← backtracking line search;

5 Update up+1
i = up

i − ηu
∂L(U)
∂ui

for all U

simultaneously, where p is the iteration index;

6 perform gradient descent for pre-training V by
procedures similar to lines from 2th to 5th line;

7 while (not converge) do
8 Fixing U and V, find the optimal M with

gradient descent;
9 Fixing V and M, find the optimal U with

gradient descent;
10 Fixing U and M, find the optimal V with

gradient descent;

11 return Embeddings of U and V

Algorithm 1: Optimization Algorithm for the EOE

types of variables, and if the current variable is not opti-
mized, it may propagate negative influences. An intuitive
example is that if two similar words with edges are not close
in the latent space before the alternation to authors, two
authors that should be close due to co-authorships may be
put away from each other in the case that they have edges
to different aforementioned words. The pseudo-codes of the
proposed algorithm are presented in Algorithm 1.
In Algorithm 1, pre-training is performed on Gu and Gv

to learn latent features for U and V separately, which is
again for not propagating negative influences to other vari-

ables. The gradient ∂L(U)
∂ua

i
is not presented before, but can

be easily obtained by removing polynomials including M

from the gradient ∂L(U,M,V )
∂ua

i
. For the learning rate, we em-

ploy the backtracking line search [2] to learn an appropriate
one for each of the iteration. The condition to determine
whether all minimizations converge is that the relative loss
between current iteration and last iteration is smaller than
a considerably small value, such as 0.001.
The complexity of the Algorithm 1 is proportional to the

complexity of the gradients of vertex embeddings and the
harmonious embedding matrix. The complexities of these
gradients are at the same level, which is O(ndu×dv), where
n is number of pairs of vertices with edges, du and dv are
the dimensions of embeddings of vertices of U and V , re-
spectively. As a result, the complexity of Algorithm 1 is
O(ndu × dvi), where i is the iteration times. Accordingly,
the proposed EOE can be solved in polynomial time.

6. EVALUATION

6.1 Experiment settings
The experiment is to evaluate the effectiveness of the la-

tent features learned by the proposed EOE model on com-
mon data mining tasks including visualization, link predic-
tion, multi-class classification, and multi-label classification.
And we compare the proposed EOE against the following
three latent feature learning methods:

1. Spectral clustering (SC) [20]: This method proposes to
use spectral clustering to learn latent features. Specif-
ically, the top d eigenvectors of the normalized Lapla-
cian matrix are used as the feature vectors.

2. DeepWalk [13]: DeepWalk learns latent features for
vertices by modeling random walks as sentences of a
natural language, and then re-formulating language
modeling as its learning objective. Since DeepWalk
is only applicable to unweighted edges, all weights are
set to 1 as inputs to DeepWalk.

3. LINE [17]: LINE is proposed to embed large-scale
information networks, and is applicable to directed,
undirected, weighted and unweighted networks. The
proposed EOE is applicable to large-scale network as
well since it can be solved in polynomial time. More-
over, the EOE model is applicable to all type networks
in terms of edge direction and weight as it puts no
requirements on directions of edges and can handle
edge weights. LINE has two variants, LINE(1st) and
LINE(2nd), which preserve the first-order interaction
and the second-order interaction, respectively. Cor-
respondingly, the proposed EOE model preserves the
first-order interaction. Since the re-weighting and re-
balancing mechanisms are unknown to combine embed-
dings learned by LINE(1st) and LINE(2nd), we do not
make the comparison with LINE (1st+2nd).

For the implementation of the EOE, we set the embedding
length as 128, which is used in DeepWalk and LINE, ratio of
pairs of vertices without an edge to pairs of vertices with an
edge as 5, which is used in LINE, commonly used settings
for backtracking line search, all the coefficients for regular-
ization terms as 1, and 0.001 as the relative loss difference to
determine whether the gradient decent algorithm converges.

6.2 Embedding Visualization
Visualization of embeddings on a two dimensional space is

an important application of network embedding [17]. If the
learned embeddings preserve the network structure well, vi-
sualization provides an easy way to generate the layout of a
network. The author and word network is visualized to illus-
trate this point. We sample a larger network from the DBLP
dataset than the one used in the introduction. Specifically,
popular conferences from four research fields are selected,
which are SIGMOD, VLDB, ICDE, EDBT, and PODS for
Database, KDD, ICDM, SDM, and PAKDD for Data Min-
ing, ICML, NIPS, AAAI, IJCAI and ECML for Machine
Learning, and SIGIR, WSDM, WWW, CIKM, and ECIR
for Information Retrieval. Moreover, the papers published
from 2000 to 2009 are selected. Authors with papers less
than 3 are filtered out, and stop words, such as ”where” and
”how”, are filtered out. The sampled author network consists
of 4941 authors, which have total 17372 co-authorships. Cor-
respondingly, the statistics of word networks are 6615 and
78217, respectively. The number of links between authors
and words is 92899. All baselines learn embeddings for au-
thors and words separately. The EOE learns these embed-
dings via joint inference instead. The embeddings generated
by all the methods are of 128 lengths. We thus employ the
t-SNE [22] tool to map them into a two-dimension space,
which are all presented in Fig. 2.

The visualization of both author sub-network and word
sub-network should display a mixture of four clusters as the
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SpectralClustering Author Network
 

 

DeepWalk Author Network
 

 

LINE(1st) Author Network
 

 

LINE(2nd) Author Network
 

 

EOE Author Network
 

 

SpectralClustering Author Network
 

 

DeepWalk Word Network
 

 

LINE(1st) Word Network
 

 

LINE(2nd) Word Network
 

 

EOE Word Network
 

 

Figure 2: Visualization of embeddings for DBLP coauthorship network and word co-concurrence network, where green points
are for authors (words) from DB, light blue for IR, dark blue for DM, and red for ML.

selected four research fields are closely related. The network
layouts by Spectral Clustering do not meet the expectation.
This is because the learning objective of Spectral Clustering
is not to preserve the network structure. Although Deep-
Walk and LINE work better to some extent, they fail to dis-
play a mixture of four distinct clusters as well. The problem
with DeepWalk may be that random walks may cross mul-
tiple research fields. As a result, data points from different
fields may be distributed together. The problem with LINE
is similar as authors may have links to others from multi-
ple domains. The network layout by the proposed EOE is
the closest to the expectation. This is because the EOE
can overcome the aforementioned problem by utilizing the
complementary information. More specifically, even though
some authors have edges to others from multiple fields, the
words from their papers can provide complementary infor-
mation about their major fields. The case with words is
similar.

6.3 Link Prediction
The link prediction problem [12] refers to inferring new

interactions between network vertices by measuring the sim-
ilarity between them. We deploy two scenarios of link pre-
diction for evaluation of the latent features, which are future
link prediction and missing link prediction. The future link
prediction problem is to infer interactions that would hap-
pen in the future while the missing link prediction problem
is to infer existing interactions that are not observed.
In the future link prediction, we employ the DBLP co-

authorship network used in visualization as the training net-
work, and then perform predictions of co-authorships that
occur during 2010, 2010 and 2011, 2011 and 2012, and the
three-year interval from 2010 to 2012. Besides the future co-
authorships (positive) during these four periods, the same
number of pairs of vertices without co-authorship (negative)
are randomly generated for measuring the capability of de-
tecting negative co-authorships. The similarity used to infer
new co-authorships is the probability quantified by the fol-
lowing equation:

p(vi,vj) =
1

1 + exp{−v⊤
i vj}

, (10)

where vi and vj are embeddings of two vertices.

AUC During 2010 2010-2011 2011-2012 2010-2012
SC 63.56 62.02 62.21 62.03

DeepWalk 77.61 77.33 75.88 75.09
LINE(1st) 70.55 71.96 70.18 72.14
LINE(2nd) 77.18 76.48 75.47 75.26

EOE 79.37 77.92 77.10 77.86

Table 1: AUC scores on future link prediction for the DBLP
coauthorship network. Scores have been multiplied by 100%.

The commonly used AUC (area under the curve) score,
which measures the general predictive power of binary clas-
sifiers, is employed to evaluate the performance as presented
in Table 1. Table 1 shows that the proposed EOE outper-
forms consistently three baselines in all four link prediction
tasks. Also, all the network embedding methods significantly
outperform Spectral Clustering, which demonstrates the ef-
fectiveness of the network embedding to learn latent features
for network vertices.

To explore the reason behind the superior performance of
the EOE from the experiment perspective, we examine how
all these methods make predictions on test instances, and
present two representatives in Table 2. The ground truth
is that these two co-authorships occur in CVPR’10 and SI-
GIR’10, respectively. All the baselines give low estimates of
probabilities that they would co-author in the future. By
contrast, the EOE can give the closest prediction by lever-
aging the information that they share similar research inter-
ests, which are demonstrated by the common words. The
probabilities given by LINE(2nd) are left out because it pro-
duces probabilities close to 100% for all test instances in-
cluding non-existing co-authorships. We thus do not know
how to interpret it. The reason behind the performance of
LINE(2nd) is beyond the scope of this paper. Nevertheless,
we know that the learning objective of LINE(2nd), which
is to preserve second-order similarity, does not match the
first-order similarity used to infer new interactions.

For the missing link prediction, we deploy other three
tasks, which are paper citation prediction, friendship predic-
tion for social network users, and gene interaction prediction.
For the paper citation prediction, we construct a paper and
word network, where the word sub-network is constructed
in the same way as used in the previous author and word
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Coauthorship SC DeepWalk LINE(1st) EOE Common words Coauthored paper

Michael I. Jordan,
Raquel Urtasun

0.42 0.65 0.51 0.84
factorization gaussian
discriminative matrix

Sufficient dimension reduction for
visual sequence classification

(CVPR’10)
Nick Craswell,
Filip Radlinski

0.41 0.58 0.48 0.80
search query web

relevance
Metrics for assessing sets of subtopics

(SIGIR’10)

Table 2: Comparison on detailed predictions, where numbers are probabilities of positive links.

Link Prediction Algorithm 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Paper citation

SC – 48.29 51.33 56.88 63.85 68.45 71.38 73.73 76.58 78.07
DeepWalk – 55.12 71.27 80.74 85.26 88.51 89.86 91.81 92.75 93.06
LINE(1st) – 50.35 58.83 65.64 72.19 76.47 80.07 83.08 85.07 86.78
LINE(2nd) – 55.78 71.40 78.79 83.07 86.14 88.44 89.81 91.76 91.75

EOE 51.96 57.87 78.30 82.30 87.52 91.49 92.02 92.60 93.67 94.85

Gene interaction

SC – 43.19 44.31 48.23 51.56 53.51 55.17 57.13 58.52 59.38
DeepWalk – 53.08 57.60 63.85 69.13 71.07 74.77 74.11 74.65 77.14
LINE(1st) – 40.84 36.93 36.12 35.54 37.73 35.70 35.43 35.41 36.23
LINE(2nd) – 39.52 41.71 42.91 46.00 46.67 49.30 50.92 52.88 54.02

EOE 43.17 58.00 62.03 63.35 69.85 72.13 76.96 75.04 79.80 81.71

Blog user friendship

SC – 44.66 46.14 47.88 49.35 51.78 53.12 54.16 55.89 57.05
DeepWalk – 55.67 60.46 63.36 65.02 67.42 69.15 70.66 72.14 73.63
LINE(1st) – 38.31 39.84 41.39 41.61 42.09 42.95 44.15 43.99 44.03
LINE(2nd) – 42.73 48.62 53.08 55.32 57.05 58.50 61.14 62.35 62.42

EOE 52.42 55.99 61.32 65.44 67.31 72.68 71.39 75.93 80.50 84.43

Table 3: AUC scores on link prediction when different ratios of links are used in the training phase.

Multi-class
classification

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Paper classification

SC 45.12 46.69 50.22 52.65 54.26 55.32 56.13 57.09 57.59 58.32
DeepWalk 47.90 56.39 62.20 64.80 66.55 67.46 68.75 69.28 70.06 70.32
LINE(1st) 53.78 57.58 59.48 61.72 63.39 64.38 66.25 67.49 68.05 68.59
LINE(2nd) 44.10 48.42 54.25 58.36 61.28 61.96 63.28 63.89 64.85 64.99

EOE 64.53 66.05 67.16 68.01 68.73 69.26 69.45 70.01 70.39 70.58

Table 4: Accuracy on prediction of research field of papers when different ratios of links are used in the training phase.

Micro-F1 Macro-F1
Multi-label classification Algorithm 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

Author classification

SC 59.32 61.51 62.85 64.95 66.63 59.10 61.47 62.31 64.12 66.20
DeepWalk 71.16 74.72 77.05 78.23 78.91 71.85 74.55 76.92 77.30 78.12
LINE(1st) 70.55 73.56 76.44 78.21 78.43 70.21 73.03 76.15 76.38 78.27
LINE(2nd) 65.66 70.27 72.69 75.25 75.84 64.62 69.60 71.82 74.96 75.31

EOE 77.63 78.19 78.57 79.16 79.52 76.96 77.16 77.38 77.88 78.51

User classification

SC 52.02 55.57 55.78 58.15 61.01 50.01 51.56 52.53 54.32 55.12
DeepWalk 63.45 67.73 71.42 71.56 73.77 36.58 47.76 55.73 55.97 60.25
LINE(1st) 64.42 67.64 70.98 72.45 73.52 39.03 45.90 54.16 57.92 60.33
LINE(2nd) 62.66 65.26 70.24 72.01 73.51 33.09 36.58 51.57 57.56 60.62

EOE 72.41 73.77 77.15 78.19 80.53 62.35 65.59 68.71 70.88 75.81

Table 5: Micro-F1 and Macro-F1 scores on author domain classification and BlogCatalog user category classification when
different ratios of links are used in the training phase.
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network. And the network is sampled from the same confer-
ences from 2000 to 2009 as well. Moreover, the references
that are not published during the time span are filtered out,
and words with frequency less than 5 are filter out. As a re-
sult, the paper citation sub-network consists of 6904 papers
and 19801 citations, the word sub-network consists of 8992
words and 118518 edges, and the number of edges between
papers and words is 59471.
For gene interaction prediction, we construct a gene and

chemical compound network from a SLAP [7] dataset, which
consists of multiple types of nodes, such as genes, chemi-
cal compounds, and drugs, and edges between them. Links
between chemical compounds are established if they share
the same chemical ontology, which results in 883 chemical
compounds and 70746 edges between them. We then se-
lect genes with edges to the selected chemical compounds,
which results in 2472 genes and 4369 edges between genes.
The number of edges between genes and compounds is 1134.

For social network user friendship prediction, we construct
a BlogCatalog user and word network, where BlogCatalog
[23] is social blog directory where its users can register blogs
under multiple categories, and can make friends. We select
users with major categories of four popular types including
Art, Computers, Music, and Photography, which results in
5009 users and 28406 edges. And their blogs related to the
four categories are used to construct the word sub-network,
which consists of 9247 words and 915655 edges. Words with
frequency less than 8 are filtered out. Size of the sliding
window is set as 5 for the generation of co-concurrence rela-
tionship between words. The number of edges between users
and words is 350434.
We deploy 10 experiments in which the training edges

range from 0% to 90% of all the edges. The results are
presented in Table 3. 0% of edges imposes the cold-start
problem, which cannot be solved by any of the baselines as
all of them rely on the edges to learn latent features. By
contrast, the EOE can leverage the complementary infor-
mation so as to tackle the problem. When more edges are
used for training, EOE still outperforms the baseline meth-
ods consistently. This illustrates the advantages of learning
embedding jointly for coupled networks.

6.4 Multi-class Classification
In multi-class classification, it is to predict the class label

of each instance and the class can take multiple values. For
the demonstration of this application, the paper and word
network used in the paper citation prediction task is em-
ployed here. Specifically, the classification task is to predict
the research field of each paper, which can be one of the
four fields, namely Database, Data Mining, Machine Learn-
ing and Information Retrieval.
Similarly to the experiment settings in the missing link

prediction, we deploy 10 experiments where the training
links range from 10% to 100% of the total links. After learn-
ing the latent features, we employ the SVM with linear ker-
nel implemented in Weka [10] to perform the classification
task. Results of averaged accuracy of 10-fold cross validation
are presented in Table 4. The proposed EOE outperforms
the three baselines in all the ten tasks, especially those with
a small proportion of links, such as 10% and 20%. More-
over, the EOE performs pretty well in tasks with a few links
as compared with baselines. This is expected because the
abstract of a paper has rich information about the research
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Figure 3: Parameter sensitivity

filed of the paper. And the EOE can elegantly take advan-
tage of this information.

6.5 Multi-label Classification
In multi-label classification, more than one labels are as-

signed to an instance. The author and word network used in
visualization is used to learn the representations of authors.
Some authors may be multi-domain experts as they pub-
lish papers in conferences of multiple fields. We employ the
binary-relevance based SVM implemented in MEKA [14] to
perform the multi-domain prediction task. Also, the Blog-
Catalog user and word network used in link prediction task
is also used in this demonstration as users may register blogs
under multiple categories.

The experiment settings are similar to those in the multi-
class classification except that only five runs of experiment
are conducted due to limited space, and the results on Micro-
F1 and Macro-F1 are presented in Table 5. Similar findings
can be observed that the proposed EOE outperforms all the
baselines in all tasks, and the advantage is more visible when
there are few links available in the training phase. Combin-
ing the results from the visualization, the link prediction
tasks, the multi-class classification, it shows that comple-
mentary information provided by the inter-networks edges
is beneficial as it can make latent features learned from
intra-network edges more comprehensive and accurate, and
is more important when suffering the cold-start problem.

6.6 Parameter Sensitivity
There are two major types of hyper-parameters in the

proposed optimization algorithm, which are the coefficients
of regularization terms and the dimension of latent features.
In all the previous experiments, coefficients and dimension
are set as constants, which are 1.0 and 128, respectively. We
thus in this section study how these parameters influence the
performance of the EOE by setting values of the dimension
as 32, 64, 128, 256, and 512, and values of coefficients as 0.1,
0.5, 1.0, 2.0, 50.0 and 10.0, respectively. Please be noted
that the value of coefficient remains as 1.0 while studying
the dimension, and the value of dimension remains as 128
while studying the coefficient.

Due to limited space, we only present results on future link
prediction of co-authorships in Fig. 3. From the left-hand
figure in Fig.3, we see that the performance of the EOE is
not very sensitive to the dimension of latent features as long
as it is not too small (eg., less than 32). And the optimal
performance is obtained at the dimension of 128, which is
used in the previous experiments as well. Form the right-
hand figure, the observation is that the performance of the
EOE is relatively more sensitive to the regularization coeffi-
cients. Nevertheless, the performance around the coefficient
of 1.0 is relatively stable and is at the optimal.
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7. CONCLUSION AND FUTURE WORK
This paper proposes the embedding of embedding (EOE)

for joint embedding of coupled heterogeneous networks, which
are two different but related networks connected by inter-
network edges. In this case, each of the networks can provide
complementary information to the other. The complemen-
tary information can make latent features learned only from
intra-network edges more comprehensive and accurate, espe-
cially in the cold-start scenario in which intra-network edges
are limited or unavailable. To reconcile the heterogeneities
between two different networks, the proposed EOE incor-
porates a harmonious embedding matrix to further embed
embeddings from one latent space to another latent space.
Empirical evaluation on a variety of coupled heterogeneous
networks demonstrates that the EOE outperforms state-of-
the-art embedding models for a single network in four appli-
cations including visualization, link prediction, multi-class
classification, and multi-label classification. In the future,
we plan to extend the proposed model for more than two
networks so as to fuse multiple sources of information.
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