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ABSTRACT
Online social networks o↵ering various services have become
ubiquitous in our daily life. Meanwhile, users nowadays are
usually involved in multiple online social networks simulta-
neously to enjoy specific services provided by di↵erent net-
works. Formally, social networks that share some common
users are named as partially aligned networks. In this paper,
we want to predict the formation of social links in multiple
partially aligned social networks at the same time, which is
formally defined as the multi-network link (formation) pre-
diction problem. In multiple partially aligned social net-
works, users can be extensively correlated with each other
by various connections. To categorize these diverse connec-
tions among users, 7 “intra-network social meta paths” and
4 categories of “inter-network social meta paths” are pro-
posed in this paper. These “social meta paths” can cover a
wide variety of connection information in the network, some
of which can be helpful for solving the multi-network link
prediction problem but some can be not. To utilize useful
connection information, a subset of the most informative“so-
cial meta paths” are picked, the process of which is formally
defined as “social meta path selection” in this paper. An
e↵ective general link formation prediction framework, Mli
(Multi-network Link Identifier), is proposed in this paper
to solve the multi-network link (formation) prediction prob-
lem. Built with heterogenous topological features extracted
based on the selected“social meta paths” in the multiple par-
tially aligned social networks, Mli can help refine and dis-
ambiguate the prediction results reciprocally in all aligned
networks. Extensive experiments conducted on real-world
partially aligned heterogeneous networks, Foursquare and
Twitter, demonstrate that Mli can solve the multi-network
link prediction problem very well.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining
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1. INTRODUCTION
Nowadays, online social networks with specific character-

istics have become an essential part in our daily life. Users
in online social networks can usually enjoy a wide variety of
social services, e.g., establish social connections with friends,
write online posts, check in at locations. Meanwhile, social
networks which provide these various services can usually
contain heterogeneous information, which include multiple
kinds of information entities, e.g., users, posts and locations,
and complex links among these entities, e.g., social links
among users [25, 26] and location checkin links between users
and locations [26].

Via these diverse links in online social networks, users can
be connected with each other closely. Consider, for example,
given two users, Alice and Bob, who both have checked in at
the“Lincoln Memorial” in Foursquare1, the location checkin
links “Alice�Lincoln Memorial�Bob” can form a path from
Alice to Bob in the network. Formally, the sequences of links
starting and ending with users in online social networks are
defined as the social paths. The length of social paths is
defined as the number of links that constitute them. For
instance, path “Alice� Lincoln Memorial� Bob” is a social
path of length 2 connecting Alice and Bob in Foursquare.

In all possible connections among users, social links, which
are one kind of social paths of length 1 as well, among users
have received lots of attention in recent years [21, 22, 23].
The problem of predicting social links to be formed in the
near future based on a snapshot of online social networks
is formally defined as the social link (formation) prediction
problem. Many concrete social services in social networks
can be cast as social link prediction problems, e.g., friend
recommendation. Meanwhile, as pointed out in [25], users’
“loyalty” to a social network is positively correlated to the
number of friends they have in the network. As a result,
social link formation prediction problem, which can help in-
troduce more social connections for users, can be very im-
portant for online social networks.

Traditional link prediction problems which aim at predict-
ing one single kind of links in one network [16, 20, 24, 3] have
been studied for many years. Dozens of di↵erent link pre-
diction methods have been proposed so far [1, 14, 19, 16, 20,
24, 3]. Conventional link prediction methods usually assume

1https://foursquare.com
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that there exists su�cient information within the network to
compute features (e.g., common neighborhoods [9]) for each
pair of nodes. However, as proposed in [25, 26], such as-
sumption can be violated seriously when dealing with social
networks containing little information because of the “new
network” problems.

The new network problem can be encountered when online
social networks branch into new geographic areas or social
groups [26] and information within the new networks can be
too sparse to build e↵ective link prediction models. Mean-
while, Zhang et al. [10, 25, 26] notice that users nowadays
can participate in multiple online social networks simulta-
neously. Users who are involved in a new network can have
been using other well-developed networks for a long time,
in which they can have plenty of heterogeneous information.
To address the new network problem, Zhang et al. [25, 26]
propose to transfer information from the well-developed net-
works to overcome the shortage of information problem in
the new network. Formally, networks that share some com-
mon users are defined as the “partially aligned networks”
and the common users shared across these “partially aligned
networks” are named as the “anchor users” [10, 25, 26]. In
this paper, we define the unshared users as the “non-anchor
users” between the aligned networks.

Social networks aligned by the “anchor users” can share
common information. Meanwhile, as proposed in [15, 23],
di↵erent online social networks constructed to provide dif-
ferent services usually have distinct characteristics. More-
over, information in various social networks may be of dif-
ferent distributions [15, 23], which is named as the “network
di↵erence problem” in this paper. The “network di↵erence
problem” will be a obstacle in link prediction across multi-
ple partially aligned networks, as it is likely that information
transferred from other aligned networks could deteriorate
the prediction performance in a given network.

In this paper, we want to predict the formation of social
links in multiple partially aligned networks simultaneously,
which is formally defined as themulti-network link prediction
problem in this paper. As introduced at the beginning of this
section, the multi-network link prediction problem can have
very extensive applications in real-world social networks. As
a result, the multi-network link prediction problem studied
in this paper is very important for multiple partially aligned
social networks.

The multi-network link prediction problem studied in this
paper is a novel problem and totally di↵erent from other
existing link prediction problems. Moreover, link predic-
tion methods proposed in [25, 26] cannot be applied to solve
the multi-network link prediction problem directly because
these existing methods: (1) are proposed to transfer use-
ful information for anchor users only; (2) fail to consider
the network di↵erence problem; (3) can only predict links in
each network independently. A more detailed comparison
of the multi-network link prediction problem with these cor-
related problems, e.g., social link prediction for new users
[25], transfer heterogeneous links across networks [26], an-
chor link prediction [10] and multi-transfer with multiple
views and sources [18], is available in Table 1.

Despite of its importance and novelty, the multi-network
link prediction problem studied in this paper is also very
challenging to solve due to the following reasons:

• lack of features: Networks studied in this paper can
contain di↵erent kinds of information. Proper defini-

tion of heterogeneous features extracted for social links
from the networks is a prerequisite for addressing link
formation prediction tasks.

• partial alignment : To overcome the“new network prob-
lem”, we propose to transfer information from other
aligned networks. Existing information transferring
methods proposed in [25, 26] can only work well for
anchor users. Method that can transferring informa-
tion for both anchor users and non-anchor users is
what we desire in this paper.

• network di↵erence problem: Di↵erent networks usually
have di↵erent characteristics and information trans-
ferred from other aligned networks can be di↵erent
from that of the given network, which could deteriorate
the link prediction performance in the given network.

• simultaneous link prediction in multiple networks: The
multi-network link prediction problem covers multiple
link prediction tasks in multiple partially aligned net-
works simultaneously. Analysis and utilization the cor-
relations among these tasks to enhance the prediction
performance in each network mutually is very challeng-
ing.

To solve all these above challenges in the multi-network
link prediction problem, a novel link prediction framework,
Mli, is proposed in this paper. Inspired by Sun’s [17] work
on meta path as a means to capture similarity of nodes,
which are not directly connected in heterogeneous infor-
mation networks, Mli explores the meta path concept to
generate useful features. Mli can generate not only intra-
network features via “intra-network meta paths”, but also
inter-network features via“inter-network meta paths”through
the anchor links. By judiciously selecting the “inter-network
meta paths”, Mli can take advantage of the commonality
among the multiple partially aligned networks, while contain
the potential negative transfers from network di↵erences.
These derived features can greatly improve the e↵ectiveness
of Mli in predicting links for each network. Furthermore,
Mli is a general link formation prediction framework that
solves themulti-network link prediction problem and the link
prediction tasks in di↵erent networks can help each other
mutually.

The rest of this paper is organized as follows. In Section 2,
we formulate the problem. Detailed description of the meth-
ods is available in Section 3. We show the experiment results
in Section 4. Related works are given in Section 5. Finally,
we conclude the paper in Section 6.

2. PROBLEM FORMULATION
In this section, we will give the formal definitions of many

important concepts used in this paper and the formulation
of the multi-network link prediction problem.

2.1 Terminology Definition
Definition 1 (Heterogeneous Social Network): A social net-
work is heterogeneous if it contains multiple kinds of nodes
and links. Heterogeneous social networks can be represented
asG = (V,E), where V =

S
i

V

i

is the union of di↵erent node
sets and E =

S
i

E

i

is the union of heterogeneous link sets.
Networks used in this paper are Twitter and Foursquare,

which are both heterogeneous social networks. Users in
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Table 1: Summary of related problems.
Mutual Social Link Transfer Heter- Multi-Transfer Social Link Inferring Anchor

Prediction in Multiple ogeneous Links with Multi-View & Prediction Links across
Property Aligned Networks across Networks [26] Multi-Domain [18] for New Users [25] Networks [10]

information sources multiple networks multiple networks multiple domains multiple networks multiple networks

source type heterogeneous heterogeneous multi-view heterogeneous heterogeneous

sources aligned? partially aligned partially aligned no fully aligned fully aligned

source differences solved not solved solved not solved not solved

predicted links social links in heterogeneous links n/a social links in anchor links

all aligned networks in the target network the target network across networks

settings semi-supervised learning supervised learning supervised learning supervised learning supervised learning

and transfer learning and transfer learning and transfer learning and transfer learning and transfer learning

knowledge network structure network structure domain information network structure network structure

to transfer via meta paths through anchor links via common feature space through anchor links through anchor links

both Twitter and Foursquare can make friends with other
users, write posts online, which can contain text content,
timestamps and attach location check-ins. Both Twitter
and Foursquare can be formulated as G = (V,E), where
V = U [P [L[T [W , and U , P , L, T and W are the sets
of user, post, location, timestamp and word nodes in the net-
work respectively, while E = E

u,u

[E
u,p

[E
p,l

[E
p,t

[E
p,w

are the sets of heterogeneous links in G, which include the
social links among users, write link between users and posts,
links between posts and locations, timestamps and words.
Definition 2 (Aligned Heterogeneous Social Networks): If
two di↵erent social networks share some common users, then
these two networks are called aligned networks. Multiple
aligned heterogeneous social networks can be formulated as
G = ((G1

, G

2
, · · · , Gn), (A1,2

, A

1,3
, · · · , A1,n

, A

2,3
, · · · ,

A

(n�1),n)), where G

i

, i 2 {1, 2, · · · , n} is a heterogeneous
social network and A

i,j 6= ;, i, j 2 {1, 2, · · · , n} is the set of
undirected anchor links between G

i and G

j .
Definition 3 (Anchor Links): Let U

i and U

j be the user
sets of Gi and G

j respectively. Link (ui

, v

j) is a undirected
anchor link between G

i and G

j i↵( u

i 2 U

i) ^ (vj 2 U

j) ^
(ui and v

j are the accounts of the same user in G

i and G

j

respectively).
Definition 4 (Anchor Users): User u

i 2 U

i is an anchor
user in G

i between G

i and G

j i↵ 9vj 2 U

j

, (ui

, v

j) 2 A

i,j .
The set of anchor users in G

i between G

i and G

j can be
represented as U

i

A

i,j = {ui|ui 2 U

i

, 9vj 2 U

j

, (ui

, v

j) 2
A

i,j}.
Definition 5 (Non-Anchor Users): User ui 2 U

i is an non-
anchor user between G

i and G

j i↵ u

i

/2 U

i

A

i,j . The set of
non-anchor users in G

i between G

i and G

j can be repre-
sented as U i

�A

i,j = U

i � U

i

A

i,j .

Definition 6 (Full Alignment): Networks G

i and G

j are
fully aligned if users in both G

i and G

j are all anchor users.
In other words, G

i and G

j are fully aligned i↵( U

i

A

i,j =

U

i) ^ (U j

A

i,j = U

j).

Definition 7 (Partial Alignment): Networks Gi and G

j are
partially aligned if there exist users in G

i or G

j who are
non-anchor users. In other words, Gi and G

j are partially
aligned i↵ ((U i

�A

i,j 6= ;) _ (U j

�A

i,j 6= ;)) ^ (Ai,j 6= ;).
Considering that fully aligned networks can hardly exist

in the real world, di↵erent from the strict full alignment
assumption of networks proposed in [10, 25], networks used
in this paper are partially aligned instead. In addition, there
exists no restriction about the constraint on anchor links,
which means that the anchor links can be either one-to-one
[10] or many-to-many.

2.2 Multi-PU Link Prediction
Let G

i

, i 2 {1, 2, · · · , n} be a heterogeneous online social
network in the multiple aligned networks. The user set and

Post

User

Location

Time!
stampWord

written atcontain

checkin at

write

follow/follow-1

write-1

checkin at-1

contain-1 written at-1

Figure 1: Schema of heterogeneous network.

existing social link set of Gi can be represented as U

i and
E

i

u,u

respectively. In network G

i, all the existing links are
the formed links and, as a result, the formed links of G

i

can be represented as Pi, where Pi = E

i

u,u

. Furthermore,
a large set of unconnected user pairs are referred to as the
unconnected links, U i, and can be extracted from network
G

i: U i = U

i ⇥ U

i � Pi. However, no information about
links that will never be formed can be obtained from the
network. In this paper, with Pi and U i, we formulate the
link formation prediction as a PU link prediction problem.

Similarly, let {P1
, · · · ,Pn}, {U1

, · · · ,Un} and {L1
, · · · ,Ln}

be the sets of formed links, unconnected links, and links
to be predicted of G

1
, G

2
, · · · , Gn respectively. With the

formed and unconnected links of G

1
, G

2
, · · · , Gn, we can

solve the multi-network link prediction problem as a multi-
PU link prediction problem.

3. PROPOSED METHODS
In this section, we will introduce Mli to solve the multi-

network link prediction problem. This section includes 3
parts: (1) social meta path based feature extraction and se-
lection; (2) PU link prediction; (3) multi-network link pre-
diction framework.

3.1 Social Meta Path Definition and Selection
Before talking about the link prediction methods, we will

introduce the features extracted from the partially aligned
networks in this subsection at first.

3.1.1 Intra-Network Social Meta Path

Users in heterogeneous online social network can be ex-
tensively connected to each other via di↵erent paths. In this
part, we will categorize the diverse paths connecting users in
one single network with the intra-network social meta paths
concept.
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For a given heterogeneous online social network, e.g., G, to
describe its structure more clearly, we define its schema to be
S

G

= (T,R), where T , R are the sets of node types and link
types in G. For example, if G = (V,E), where V = U[P [L
contains user, post and location nodes, E = E

u,u

[E
u,p

[E
p,l

contains the social links, write links and location links, then
S

G

= (T,R), T = {User, Post, Location} and R = {Social
Link, Write Link, Location Link}. A complete schema of
networks studied in this paper is shown in Figure 1. In
network G, nodes can be connected with each other via ex-
tensive paths consisting of various links. To categorize all
possible paths in heterogeneous networks G, we define the
concept of intra-network meta path based on schema S

G

as
follows:
Definition 8 (Intra-Network Meta Path): Based on the

given the network schema, S
G

= (T,R), �= T1
R

1��! T2
R

2��!
· · ·

Rk�1����! T

k

is defined to be a meta path in network G,
where T

i

2 T, i 2 {1, 2, · · · , k} and R

i

2 R, i 2 {1, 2, · · · , k�
1}.

Meanwhile, depending on types of nodes and links that
constitute it, � can be divided into two di↵erent categories.
Definition 9 (Homogeneous and Heterogeneous Intra-Network

Meta Path): For a given meta path �= T1
R

1��! T2
R

2��!
· · ·

Rk�1����! T

k

defined based on S

G

, if (T1, · · · , Tk

are all the
same )^ (R1, · · · , Rk�1 are all the same), then � is a ho-
mogeneous meta path; otherwise P is a heterogeneous meta
path.

In this paper, we are mainly concerned about meta paths
connecting user nodes, which can be defined as the intra-
network social meta path.
Definition 10 (Intra-Network Social Meta Path): For a

given meta path �= T1
R

1��! T2
R

2��! · · ·
Rk�1����! T

k

de-
fined based on S

G

, if T1 and T

k

are both the “User” node
type, then P is defined as a social meta path. Depending on
whether T1, · · · , Tk

and R1, · · · , Rk�1 are the same or not,
P can be divided into two categories: homogeneous intra-
network social meta path and heterogeneous intra-network
social meta path.

Based on the schema of networks studied in this paper,
shown in Figure 1, we can define many di↵erent kinds of
homogeneous and heterogeneous intra-network social meta
paths for network G, whose physical meanings and notations
are listed as follows:
Homogeneous Intra-Network Social Meta Path

• ID 0. Follow : User
follow����! User, whose notation is

“U ! U” or� 0(U,U).

• ID 1. Follower of Follower : User
follow����! User

follow����!
User, whose notation is “U ! U ! U” or� 1(U,U).

• ID 2. Common Out Neighbor : User
follow����!User

follow

�1

������!
User, whose notation is “U ! U  U” or� 2(U,U).

• ID 3. Common In Neighbor : User
follow

�1

������! User
follow����! User, whose notation is “U  U ! U” or
�3(U,U).

Heterogeneous Intra-Network Social Meta Path

• ID 4. Common Words: User
write���! Post

contain�����!

Word
contain

�1

�������! Post
write

�1

�����! User, whose notation
is “U ! P !W  P  U” or� 4(U,U).

• ID 5. Common Timestamps: User
write���! Post

contain�����!
Time

contain

�1

�������! Post
write

�1

�����! User, whose notation is
“U ! P ! T  P  U” or� 5(U,U).

• ID 6. Common Location Checkins: User
write���! Post

attach����! Location
attach

�1

������! Post
write

�1

�����! User, whose
notation is “U ! P ! L P  U” or� 6(U,U).

3.1.2 Social Meta Path based Features

Meta paths introduced in the previous part can actually
cover a large number of path instances connecting users in
the network. Formally, we denote that node n (or link l)
is an instance of node type T (or link type R) in the net-
work as n 2 T (or l 2 R). Identity function I(a,A) =(
1, if a 2 A

0, otherwise,

can check whether node/link a is an in-

stance of node/link type A in the network. To consider the
e↵ect of the unconnected links when extracting features for
social links in the network, we formally define the Intra-
Network Social Meta Path based Features to be:
Definition 11 (Intra-Network Social Meta Path based Fea-
tures): For a given link (u, v), the feature extracted for it

based on meta path �= T1
R

1��! T2
R

2��! · · ·
Rk�1����! T

k

from
the network is defined to be the expected number of formed
path instances between u and v in the network:

x(u, v) = I(u, T1)I(v, Tk

)

X

n

1

2{u},n
2

2T

2

,··· ,nk2{v}

k�1Y

i=1

p(n
i

, n

i+1)I((ni

, n

i+1), Ri

),

where p(n
i

, n

i+1) = 1.0 if (n
i

, n

i+1) 2 E

u,u

and other-
wise, p(n

i

, n

i+1) denotes the formation probability of link
(n

i

, n

i+1) to be introduced in Subsection 3.2.
Features extracted based on �= {�1, · · · ,�6} are named

as the intra-network social meta path based social features.
(�0 will be used in Subsection 3.1.4 only.)

3.1.3 Anchor Meta Path

When a network is very new, features extracted based
on intra-network social meta paths can be very sparse, as
there exist few connections in the network. Consider, for
example, in Figure 2, we want to predict whether social link
(A1

, B

1) in network G

1 will be formed or not. Merely based
on the intra-network social meta paths, the feature vector of
extracted for link (A1

, B

1) will be 0. However, we find that
A

1 and B

1 can be correlated actually with various inter-
network paths, e.g., B1 ! B

2 ! A

2 ! A

1, B1 ! B

2 !
F

2 ! A

2 ! A

1 and B

1 ! B

2 ! E

2 ! A

2 ! A

1.
By following this idea, we propose to transfer useful in-

formation from aligned networks with the following anchor
meta path and the inter-network social meta paths to be
introduced in Subsection 3.1.4.
Definition 12 (Anchor Meta Path): Let U

i, U

j be the
user nodes of Gi and G

j respectively and A

i,j be the anchor

links between G

i and G

j . Meta path ⌥= T1
R

1 �! T2 is an
anchor meta path between network G

i and G

j i↵ T1 = U

i

and T2 = U

j and R1 = A

i,j . The notation of anchor meta
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?
N

et
w

or
k 

1
N

et
w

or
k 

2

A1

A2

B1

B2

C1

D1

D2

?

E1

G2

F2

H2

Paths: A1B1 to C1 D1to C1 E1to

?

Links: anchor link social link potential social link?

Figure 2: Meta Path across Aligned Networks.

path from G

i to G

j is ⌥(U i

, U

j) and the length of ⌥(U i

, U

j)
is 1.

3.1.4 Inter-Network Social Meta Paths

Based on the definition of anchor meta path, we can de-
scribe the inter-network paths from B

1 to A

1 in Figure 2
with the following inter-network meta path.
Definition 13 (Inter-Network Meta Path): Meta path  =

T1
R

1��! T2
R

2��! · · ·
Rk�1����! T

k

is an inter-network meta path

acrossGi andG

j i↵ 9m 2 {1, 2, · · · , k�1}, T
m

Rm �! T

m+1 =
⌥(U i

, U

j).
In this paper, we are concerned about inter-network meta

path starting and ending with users, which are named as the
inter-network social meta path. The 4 specific inter-network
social meta paths used in this paper include:
Category 1: ⌥ (U i

, U

j)�(�(U j

, U

j)[�0(U
j

, U

j))�⌥(U j

, U

i),
whose notation is 1(U

i

, U

i);
Category 2.: (� (U i

, U

i)[�0(U
i

, U

i))�⌥(U i

, U

j)�(�(U j

, U

j)[
�0(U

j

, U

j)) �⌥(U j

, U

i), whose notation is 2(U
i

, U

i);
Category 3.: ⌥ (U i

, U

j)�(�(U j

, U

j)[�0(U
j

, U

j))�⌥(U j

, U

i)�
(�(U i

, U

i) [ �0(U
i

, U

i)), whose notation is 3(U
i

, U

i);
Category 4.: (� (U i

, U

i)[�0(U
i

, U

i))�⌥(U i

, U

j)�(�(U j

, U

j)[
�0(U

j

, U

j))�⌥(U j

, U

i)�(�(U i

, U

i)[�0(U
i

, U

i)), whose no-
tation is 4(U

i

, U

i);
where �(U i

, U

i)[�0(U
i

, U

i) = {�0(U
i

, U

i), · · · ,�6(U
i

, U

i)}
denote the 7 intra-network social meta paths of network G

i

introduced in Subsection 3.1.1.
Let  = { 1, 2, 3, 4}.  is a comprehensive inter-

network social meta path set and features extracted based
on can transfer information for both anchor users and non-
anchor users from other aligned networks. For example, in
Figure 2, by following path “B1 ! B

2 ! A

2 ! A

1”, we
can go from anchor user B

1 to anchor user A

1 and such
path is an instance of 1(U

1
, U

1); by following path C

1 !
A

1 ! A

2 ! D

2 ! D

1, we can go from non-anchor user C

1

to anchor user D

1, which is an instance of 2(U
1
, U

1); in
addition, by following path C

1 ! A

1 ! A

2 ! B

2 ! B

1 !
E

1, we can go from non-anchor user C

1 to non-anchor user
E

1, which is an instance of 4(U
1
, U

1).

3.1.5 Social Meta Path Selection

As introduced in Section 1, information transferred from
aligned networks is helpful for improving link prediction per-
formance in a given network but can be misleading as well,
which is called the network di↵erence problem. To solve
the network di↵erence problem, we propose to rank and se-
lect top K features from the feature vector extracted based

+
+ +

+

+
+
+

—
—

—
— —

—
—

+
+

+
+ +

+
+

Spy Positive Links Unlabeled Links

Reliable Negative Links

classification !
boundary

Feature Space

{P-Spy {U
{Spy

P N

P N

{RN
✏

{Spy
{U

training set

test set

classification results

Figure 3: PU Link Prediction.

on the intra-network and inter-network social meta paths,
[xT

�,x
T

 ]
T , from the multiple partially aligned heterogeneous

networks.
Let variable X

i

2 [xT

�,x
T

 ]
T be a feature extracted based

on a meta path in {�, } and variable Y be the label. P (Y =
y) denotes the prior probability that links in the training set
having label y and P (X

i

= x) represents the frequency that
feature X

i

has value x. Information theory related measure
mutual information (mi) is used as the ranking criteria:

mi(X
i

) =
X

x

X

y

P (X
i

= x, Y = y) log
P (X

i

= x, Y = y)
P (X

i

= x)P (Y = y)

Let [x̄T

�, x̄
T

 ]
T be the features of the top K mi score se-

lected from [xT

�,x
T

 ]
T . In the next subsection, we will use

the selected feature vector [x̄T

�, x̄
T

 ]
T to build a novel PU

link prediction model.

3.2 PU Link Prediction
In this subsection, we will propose a method to solve the

PU link prediction problem in one single network.
As introduced in Section 2, from a given network, e.g.,

G, we can get two disjoint sets of links: connected (i.e.,
formed) links P and unconnected links U . To di↵erentiate
these links, we define a new concept “connection state”, z, in
this paper to show whether a link is connected (i.e., formed)
or unconnected in network G. For a given link l, if l is
connected in the network, then z(l) = +1; otherwise, z(l) =
�1. As a result, we can have the “connection states” of links
in P and U to be: z(P) = +1 and z(U) = �1.

Besides the “connection state”, links in the network can
also have their own “labels”, y, which can represent whether
a link is to be formed or will never be formed in the network.
For a given link l, if l has been formed or to be formed, then
y(l) = +1; otherwise, y(l) = �1. Similarly, we can have the
“labels” of links in P and U to be: y(P) = +1 but y(U) can
be either +1 or �1, as U can contain both links to be formed
and links that will never be formed.

By using P and U as the positive and negative training
sets, we can build a link connection prediction model M

c

,
which can be applied to predict whether a link exists in the
original network, i.e., the connection state of a link. Let l

be a link to be predicted, by applying M
c

to classify l, we
can get the connection probability of l to be:
Definition 14: (Connection Probability): The probabil-
ity that link l’s connection states is predicted to be con-
nected (i.e., z(l) = +1) is formally defined as the connec-
tion probability of link l: p(z(l) = +1|x(l)), where x(l) =
[x̄�(l)

T

, x̄ (l)
T ]T .
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Meanwhile, if we can obtain a set of links that “will never
be formed”, i.e., “-1” links, from the network, which together
with P (“+1” links) can be used to build a link formation
prediction model, M

f

, which can be used to get the forma-
tion probability of l to be:
Definition 15: (Formation Probability): The probability
that link l’s label is predicted to be formed or will be formed
(i.e., y(l) = +1) is formally defined as the formation proba-
bility of link l: p(y(l) = +1|x(l)).

However, from the network, we have no information about
“links that will never be formed”(i.e., “-1” links). As a result,
the formation probabilities of potential links that we aim
to obtain as proposed in Section 2 can be very challenging
to calculate. Meanwhile, the correlation between link l’s
connection probability and formation probability has been
proved in existing works [5] to be:

p(y(l) = +1|x(l)) / p(z(l) = +1|x(l)).

In other words, for links whose connection probabilities
are low, their formation probabilities will be relatively low
as well. This rule can be utilized to extract links which can
be more likely to be the reliable “-1” links from the network.
We propose to apply the the link connection prediction model
M

c

built with P and U to classify links in U to extract the
reliable negative link set.
Definition 16: (Reliable Negative Link Set): The reliable
negative links in the unconnected link set U are those whose
connection probabilities predicted by the link connection pre-
diction model, M

c

, are lower than threshold ✏ 2 [0, 1]:

RN = {l|l 2 U , p(z(l) = +1|x(l)) < ✏}.

Some Heuristic methods have been proposed to set the
optimal threshold ✏, e.g., the spy technique proposed in [13].
As shown in Figure 3, we randomly selected a subset of links
in P as the spy, SP, whose proportion is controlled by s%.
s% = 15% is used as the default sample rate in this paper.
Sets (P�SP) and (U[SP) are used as positive and negative
training sets to the spy prediction model, M

s

. By applying
M

s

to classify links in (U[SP), we can get their connection
probabilities to be:

p(z(l) = +1|x(l)), l 2 (U [ SP),

and parameter ✏ is set as the minimal connection probability
of spy links in SP:

✏ = min
l2SP

p(z(l) = +1|x(l)).

With the extracted reliable negative link set RN , we can
solve the PU link prediction problem with classification based
link prediction methods, where P and RN are used as the
positive and negative training sets respectively. Meanwhile,
when applying the built model to predict links in Li, the op-
timal labels, Ŷi, of Li, should be those which can maximize
the following formation probabilities:

Ŷi = argmax
Yi

p(y(Li) = Yi|G1
, G

2
, · · · , Gk)

= argmax
Yi

p(y(Li) = Yi|
h
x̄�(Li)T , x̄ (Li)T

i
T

)

where y(Li) = Yi represents that links in Li have labels Yi.

Network 1

Network N

…

y(P1), y(U1)
y(L1)
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update network

update network
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build predict
P1,U1 L1

build predict
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Figure 4: Multi-PU Link Prediction Framework.

3.3 Multi-Network Link Prediction Framework
Method Mli proposed in this paper is a general link pre-

diction framework and can be applied to predict social links
in n partially aligned networks simultaneously. When it
comes to n partially aligned network formulated in Section 2,
the optimal labels of potential links {L1

,L2
, · · · ,Ln} of net-

works G1
, G

2
, · · · , Gn will be:

Ŷ1
, Ŷ2

, · · · , Ŷn = arg max
Y1

,Y2

,··· ,Yn
p(y(L1) = Y1

, y(L2) = Y2
,

· · · , y(Ln) = Yk|G1
, G

2
, · · · , Gn)

The above target function is very complex to solve and,
in this paper, we propose to obtain the solution by up-
dating one variable, e.g., Y1, and fix other variables, e.g.,
Y2

, · · · ,Yn, alternatively with the following equation [26]:

8
>>>>>>>>>><

>>>>>>>>>>:

(Ŷ1)(⌧) = argmaxY1

p(y(L1) = Y1|G1
, G

2
, · · · , Gn

,

(Ŷ2)(⌧�1)
, (Ŷ3)(⌧�1)

, · · · , (Ŷn)(⌧�1))

(Ŷ2)(⌧) = argmaxY2

p(y(L2) = Y2|G1
, G

2
, · · · , Gn

,

(Ŷ1)(⌧), (Ŷ3)(⌧�1)
, · · · , (Ŷn)(⌧�1))

· · · · · ·
(Ŷn)(⌧) = argmaxYn

p(y(Ln) = Yn|G1
, G

2
, · · · , Gn

,

(Ŷ1)(⌧), (Ŷ2)(⌧), · · · , (Ŷ(n�1))(⌧))

The structure of framework Mli is shown in Figure 4.
When predicting social links in network G

i, we can extract
features based on the intra-network social meta path, x�,
extracted from G

i and those extracted based on the inter-
network social meta path, x , across G

1, G

2, · · · , G

i�1,
G

i+1, · · · , Gn for links in Pi, U i and Li. Feature vectors
x�(P), x�(U) and x (P), x (U) as well as the labels, y(P),
y(U), of links in P and U are passed to the PU link prediction
modelMi and the meta path selection modelMSi. The for-
mation probabilities of links in Li predicted by model Mi

will be used to update the network by replace the weights
of Li with the newly predicted formation probabilities. The
initial weights of these potential links in Li are set as 0 (i.e.,
the formation probability of links mentioned in Definition
11). After finishing these steps on G

i, we will move to con-
duct similar operations on G

i+1. We iteratively predict links
in G

1 to G

n alternatively in a sequence until the results in
all of these networks converge.
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Table 2: Properties of the Heterogeneous Networks

network

property Twitter Foursquare

# node

user 5,223 5,392

tweet/tip 9,490,707 48,756

location 297,182 38,921

# link

friend/follow 164,920 76,972

write 9,490,707 48,756

locate 615,515 48,756

(a) Foursquare-AUC (b) Foursquare-Acc.

(c) Foursquare-F1 (d) Twitter-AUC

(e) Twitter-Acc. (f) Twitter-F1

Figure 5: E↵ects of anchor link ratio ⇢

A

on predic-
tion results in di↵erent networks evaluated by dif-
ferent metrics.

4. EXPERIMENTS
To demonstrate the e↵ectiveness of Mli in dealing with

real-world multiple partially aligned heterogeneous networks,
we will conduct extensive experiments in this section. This
section includes 3 parts: (1) dataset description; (2) experi-
ment setting; (3) experiment results.

4.1 Datasets
The datasets used in this paper are Foursquare and Twit-

ter, both of which are famous heterogeneous online social
networks. These two networks were crawled during Novem-
ber of 2012 [10, 25, 26]. The structures of both Foursquare
and Twitter have been introduced in Section 2. Statistical
information about these two datasets is available in Table 2:

• Foursquare: 5, 392 users, 48, 756 tips and 38, 921 lo-
cations are crawled from Foursquare. The social links
among the crawled users is 76, 972 and each user has
about 14 friends in Foursquare.

• Twitter: 5, 223 users together with their tweets are
crawled from Twitter, whose number is 9, 490, 707. Among
these 5, 223 users, there exist 164, 920 follow links.
Among all these tweets, about 615, 515 have location
checkins, accounting for about 6.48% of all the tweets.

(a) Foursquare-AUC (b) Foursquare-Acc.

(c) Foursquare-F1 (d) Twitter-AUC

(e) Twitter-Acc. (f) Twitter-F1

Figure 6: Convergence analysis in di↵erent networks
under the evaluation of di↵erent metrics.

4.2 Experiment Setting

4.2.1 Comparison Methods

To show the advantages of Mli, we compare Mli with
many other baseline methods, which include:

• Mli: Method Mli is the multi-network link prediction
framework proposed in this paper, which can predict
social links in multiple online social networks simul-
taneously. The features used by Mli are extracted
based on the meta paths selected from � and  across
aligned networks.

• LI: Method LI (Link Identifier) is identical to Mli ex-
cept that LI predict the formation of social links in
each network independently.

• SCAN: Method SCAN (Cross Aligned Network link
prediction) proposed in [25, 26] is similar toMli except
that (1) SCAN predicts social links in each network
independently; (2) features used by SCAN are those
extracted based on meta paths � and 1 without meta
path selection.

• SCAN-s: Method SCAN-s (SCAN with Source Net-
work) proposed in [25, 26] is identical to SCAN except
that the features used by SCAN-s are those extracted
based on 1 without meta path selection.

• SCAN-t: Method SCAN-t (SCAN with Target Net-
work) proposed in [25, 26]) is identical to SCAN except
that the features used by SCAN-s are those extracted
based on � without meta path selection.

4.2.2 Evaluation Metrics

The social links in both Foursquare and Twitter are used
as the ground truth to evaluate the prediction results. SVM
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Table 3: Performance comparison of di↵erent methods for inferring social and location links for Foursquare
of di↵erent remaining information rates. The anchor link sample rate ⇢

A

is set as 1.0.
Remaining information rates ⇢F of Foursquare.

network measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
o
u
r
s
q
u
a
r
e

A
U
C

Mli 0.677±0.023 0.776±0.011 0.844±0.008 0.887±0.005 0.906±0.003 0.912±0.005 0.912±0.003 0.916±0.004
LI 0.573±0.019 0.68±0.023 0.806±0.01 0.853±0.004 0.866±0.003 0.874±0.007 0.881±0.003 0.878±0.005

SCAN 0.549±0.009 0.56±0.009 0.662±0.03 0.745±0.009 0.786±0.014 0.804±0.01 0.812±0.005 0.82±0.004

SCANt 0.5±0.083 0.503±0.007 0.613±0.012 0.739±0.008 0.764±0.013 0.787±0.007 0.8±0.006 0.81±0.007

SCANs 0.524±0.013 0.524±0.017 0.524±0.012 0.524±0.005 0.524±0.002 0.524±0.01 0.524±0.003 0.524±0.005

A
c
c
u
r
a
c
y Mli 0.632±0.01 0.692±0.007 0.755±0.005 0.769±0.004 0.779±0.002 0.798±0.006 0.799±0.004 0.797±0.005

LI 0.568±0.013 0.624±0.053 0.699±0.004 0.722±0.006 0.761±0.01 0.782±0.01 0.789±0.005 0.791±0.006

SCAN 0.558±0.007 0.6±0.006 0.683±0.071 0.714±0.009 0.721±0.007 0.736±0.007 0.75±0.008 0.765±0.009

SCANt 0.491±0.019 0.568±0.004 0.65±0.008 0.685±0.007 0.714±0.007 0.727±0.009 0.736±0.012 0.747±0.003

SCANs 0.548±0.011 0.548±0.055 0.548±0.007 0.548±0.008 0.548±0.007 0.548±0.01 0.548±0.003 0.548±0.006

F
1

Mli 0.644±0.01 0.695±0.022 0.722±0.013 0.742±0.005 0.761±0.005 0.789±0.006 0.783±0.005 0.786±0.006
LI 0.63±0.017 0.635±0.015 0.66±0.007 0.684±0.01 0.715±0.016 0.753±0.014 0.764±0.007 0.766±0.009

SCAN 0.6±0.02 0.609±0.006 0.614±0.031 0.632±0.018 0.645±0.018 0.676±0.016 0.701±0.01 0.726±0.013

SCANt 0.534±0.196 0.559±0.004 0.565±0.016 0.584±0.011 0.645±0.011 0.674±0.016 0.696±0.019 0.712±0.01

SCANs 0.56±0.016 0.56±0.041 0.56±0.015 0.56±0.015 0.56±0.013 0.56±0.013 0.56±0.005 0.56±0.01

T
w
i
t
t
e
r

A
U
C

Mli 0.884±0.004 0.891±0.003 0.915±0.003 0.917±0.003 0.923±0.002 0.929±0.003 0.927±0.003 0.937±0.003
LI 0.841±0.003 0.847±0.002 0.852±0.003 0.862±0.002 0.873±0.002 0.884±0.003 0.894±0.003 0.904±0.003

SCAN 0.801±0.003 0.814±0.002 0.819±0.003 0.817±0.002 0.819±0.002 0.823±0.003 0.831±0.002 0.837±0.003

SCANt 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002

SCANs 0.508±0.002 0.543±0.002 0.584±0.003 0.631±0.001 0.653±0.002 0.666±0.003 0.673±0.003 0.686±0.003

A
c
c
u
r
a
c
y Mli 0.92±0.003 0.927±0.002 0.927±0.003 0.929±0.004 0.93±0.003 0.932±0.003 0.936±0.003 0.936±0.004

LI 0.899±0.004 0.904±0.004 0.908±0.004 0.913±0.002 0.916±0.003 0.918±0.003 0.918±0.003 0.92±0.004

SCAN 0.831±0.005 0.835±0.003 0.837±0.006 0.842±0.001 0.844±0.002 0.848±0.004 0.848±0.002 0.849±0.004

SCANt 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003

SCANs 0.568±0.004 0.577±0.003 0.585±0.002 0.587±0.002 0.591±0.003 0.594±0.003 0.596±0.003 0.598±0.004

F
1

Mli 0.804±0.002 0.808±0.002 0.809±0.003 0.811±0.003 0.812±0.003 0.818±0.003 0.826±0.003 0.826±0.004
LI 0.776±0.005 0.785±0.005 0.792±0.005 0.8±0.003 0.804±0.003 0.808±0.003 0.809±0.003 0.811±0.004

SCAN 0.682±0.006 0.686±0.004 0.69±0.006 0.699±0.001 0.703±0.003 0.707±0.004 0.709±0.002 0.711±0.005

SCANt 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003

SCANs 0.53±0.006 0.546±0.006 0.559±0.004 0.564±0.004 0.571±0.004 0.575±0.004 0.581±0.004 0.583±0.005

[2] with linear kernel and optimal parameters is used as the
base classifier of all comparison methods. Accuracy, AUC
and F1 score are used as the evaluation metrics in this paper.

4.2.3 Experiment Setups

All the existing links in Foursquare are used as the pos-
itive link set and a proportion of unconnected links among
users except the positive links are sampled as the negative
link set, which is of the same size as the positive link set.
Both the positive and negative link sets are divided into 5
folds: 4 folds as the training set and 1 fold as the test set.
To represent di↵erent degrees of newness (available informa-
tion users have in the networks), a fraction of information,
which include posts, location checkins, temporal records, is
randomly sampled from Foursquare as the available infor-
mation under the control of parameter ⇢

F 2 [0, 1] and the
remaining information are deleted. Meanwhile, ⇢F propor-
tion of the positive links are randomly sampled as the final
positive link set and the remaining (1 � ⇢

F ) proportion of
positive links are mixed with the negative links to form the
final unlabeled link set: UF . A subset of links in UF are
extracted as the reliable negative link set, RNF , with the
spy technique. In a similar way, we can obtain the positive
and reliable negative links in Twitter to be PT and RN T ,
controlled by the sampling parameter ⇢T 2 [0, 1].

Supervised models, MF , built with PF and RNF , are
applied to classify links in the test set, LF . Depending on
the specific methods, features used to build the models can
be di↵erent and social meta path selection model MSF is
applied to select the most useful social meta path based fea-
tures (K is set as 7 in the experiment) to build model MF .
The predicted formation probabilities of links in LF will be
used to update their link weights in Foursquare. Based on
the updated aligned networks, supervised models, MT , built

with PT and RN T , will be applied to classify links in the
test set, LT , in which social meta path selection model MST

is applied as well. And the predicted formation probabili-
ties of links in LT will also used to update their weights in
Twitter. Only the weights of potential social links in LF

and LT will be updated in each iteration and this process
continues until the predicted formation probabilities of links
in LT and LF converge.

4.3 Experiment Results
To denote di↵erent degrees of network newness, in Table 3,

we fix ⇢

T as 0.8 but changes ⇢

F within {0.1, 0.2, · · · , 0.8}.
Table 3 has two parts: the upper part is the link prediction
results in Foursquare and the lower part is that in Twitter,
as Mli is an integrated PU link prediction framework. The
link prediction results in each part are evaluated by di↵erent
metrics: AUC, Accuracy and F1. As shown in Table 3, Mli
can outperform all other comparison methods consistently
for ⇢F 2 {0.1, 0.2, · · · , 0.8} in both Foursquare network and
Twitter network. For example, in Foursquare when ⇢

F =
0.5, the AUC achieved by Mli is about 5% better than LI,
15% better than SCAN, 19% better than SCAN-t and 73%
better than SCAN-s; the Accuracy achieved by Mli is about
2.3% better than LI, 8% better than SCAN, 9.1% higher
than SCAN-t and over 40% higher than SCAN-s; the F1
of Mli is 6.4% higher than LI, 18% higher than SCAN and
SCAN-t and 36% higher than SCAN-s. When ⇢

F = 0.5,
the link prediction results of Mli in Twitter are also much
better than all other baseline methods. For instances, in
Twitter the AUC of Mli is 0.923 ± 0.002, which is about
6% better than LI, over 13% better than SCAN, SCAN-t
and over 40% better than SCAN-s. Similar results can be
obtained when evaluated by Accuracy and F1.

In Table 4, we fix ⇢

F = 0.8 but change ⇢

T with values in
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Table 4: Performance comparison of di↵erent methods for inferring social and location links for Foursquare
of di↵erent remaining information rates. The anchor link sample rate ⇢

A

is set as 1.0.
Remaining information rates ⇢T of Twitter

network measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
o
u
r
s
q
u
a
r
e

A
U
C

Mli 0.862±0.003 0.867±0.004 0.87±0.003 0.873±0.005 0.885±0.003 0.891±0.003 0.895±0.004 0.916±0.004
LI 0.831±0.005 0.834±0.004 0.846±0.004 0.853±0.005 0.855±0.005 0.867±0.004 0.868±0.005 0.87±0.005

SCAN 0.81±0.007 0.81±0.008 0.812±0.005 0.817±0.007 0.816±0.01 0.815±0.007 0.822±0.006 0.82±0.004

SCANt 0.81±0.007 0.81±0.007 0.81±0.007 0.81±0.007 0.809±0.007 0.809±0.007 0.81±0.007 0.81±0.007

SCANs 0.504±0.007 0.51±0.003 0.511±0.005 0.516±0.005 0.522±0.004 0.53±0.005 0.53±0.004 0.53±0.005

A
c
c
u
r
a
c
y Mli 0.78±0.003 0.786±0.005 0.789±0.004 0.794±0.005 0.793±0.004 0.789±0.004 0.796±0.005 0.797±0.005

LI 0.745±0.011 0.762±0.005 0.768±0.007 0.772±0.007 0.777±0.008 0.783±0.008 0.789±0.006 0.791±0.006

SCAN 0.749±0.007 0.754±0.006 0.754±0.007 0.757±0.006 0.758±0.007 0.761±0.008 0.763±0.009 0.765±0.009

SCANt 0.748±0.003 0.748±0.003 0.747±0.003 0.748±0.003 0.748±0.003 0.748±0.003 0.748±0.003 0.747±0.003

SCANs 0.692±0.011 0.717±0.008 0.725±0.008 0.746±0.008 0.741±0.006 0.746±0.004 0.75±0.007 0.758±0.006

F
1

Mli 0.768±0.004 0.774±0.005 0.778±0.006 0.784±0.006 0.785±0.005 0.777±0.004 0.785±0.006 0.786±0.006
LI 0.721±0.02 0.734±0.01 0.734±0.012 0.736±0.012 0.744±0.012 0.755±0.011 0.764±0.01 0.766±0.009

SCAN 0.717±0.01 0.718±0.007 0.714±0.009 0.715±0.009 0.718±0.011 0.72±0.012 0.721±0.013 0.726±0.013

SCANt 0.713±0.01 0.712±0.01 0.712±0.01 0.713±0.01 0.713±0.01 0.712±0.01 0.713±0.01 0.712±0.01

SCANs 0.509±0.02 0.514±0.014 0.524±0.014 0.529±0.013 0.54±0.009 0.542±0.007 0.559±0.012 0.559±0.01

T
w
i
t
t
e
r

A
U
C

Mli 0.837±0.004 0.858±0.004 0.905±0.005 0.926±0.003 0.924±0.002 0.932±0.003 0.934±0.002 0.937±0.003
LI 0.772±0.009 0.829±0.008 0.871±0.009 0.887±0.002 0.887±0.002 0.897±0.003 0.899±0.003 0.904±0.003

SCAN 0.706±0.008 0.771±0.012 0.799±0.009 0.817±0.002 0.819±0.002 0.829±0.003 0.83±0.003 0.834±0.003

SCANt 0.555±0.133 0.678±0.006 0.753±0.044 0.754±0.019 0.764±0.014 0.781±0.004 0.794±0.003 0.802±0.002

SCANs 0.687±0.008 0.687±0.002 0.687±0.005 0.687±0.002 0.687±0.002 0.687±0.004 0.687±0.003 0.687±0.003

A
c
c
u
r
a
c
y Mli 0.821±0.005 0.864±0.001 0.892±0.008 0.914±0.004 0.925±0.002 0.926±0.004 0.936±0.002 0.936±0.004

LI 0.706±0.002 0.834±0.011 0.877±0.003 0.898±0.005 0.912±0.001 0.92±0.004 0.924±0.002 0.92±0.004

SCAN 0.594±0.006 0.716±0.009 0.781±0.005 0.801±0.003 0.823±0.002 0.831±0.004 0.842±0.002 0.849±0.004

SCANt 0.547±0.062 0.645±0.038 0.723±0.048 0.786±0.004 0.8±0.002 0.815±0.005 0.824±0.002 0.827±0.003

SCANs 0.59±0.009 0.59±0.007 0.59±0.004 0.59±0.004 0.59±0.002 0.59±0.004 0.59±0.003 0.59±0.004

F
1

Mli 0.713±0.009 0.762±0.005 0.791±0.006 0.81±0.004 0.81±0.002 0.819±0.004 0.821±0.002 0.826±0.004
LI 0.651±0.006 0.671±0.023 0.749±0.014 0.779±0.007 0.801±0.003 0.813±0.005 0.818±0.003 0.811±0.004

SCAN 0.6±0.017 0.633±0.023 0.657±0.013 0.684±0.004 0.703±0.004 0.714±0.005 0.716±0.002 0.711±0.005

SCANt 0.552±0.113 0.574±0.016 0.604±0.031 0.618±0.003 0.63±0.001 0.641±0.004 0.67±0.002 0.686±0.003

SCANs 0.575±0.025 0.575±0.016 0.575±0.005 0.575±0.006 0.575±0.004 0.575±0.004 0.575±0.003 0.575±0.005

{0.1, 0.2, · · · , 0.8}. Similar to the results obtained in Table 3
where ⇢

F

varies, Mli can beat all other methods in both
Twitter and Foursquare when the degree of newness of the
Twitter network changes.

Mli can perform better than LI in both Foursquare and
Twitter, which shows that predicting social links in multi-
ple networks simultaneously in Mli framework can do en-
hance the results in both networks; the fact that LI can beat
SCAN shows that features extracted based on cross network
meta paths can do transfer useful information for both an-
chor and non-anchor users; SCAN works better than both
SCAN-t and SCAN-s denotes that link prediction with in-
formation in two networks simultaneously is better than that
with information in one single network.

4.4 Parameter Analysis
An important parameter that can a↵ect the performance

of all these methods is the rate of anchor links existing across
networks. In this part, we will analyze the e↵ects of the an-
chor link rate, ⇢

A

2 [0, 1.0]. To exclude other parameters’
interference, we fix ⇢

F and ⇢

T as 0.8 but change ⇢

A with
values in {0.1, 0.2, · · · , 1.0} and study the link prediction
results in both Foursquare and Twitter under the evalua-
tion of AUC, Accuracy and F1. The results are shown in
Figure 5.

As shown in Figure 5, where Figures 5(a)-5(c) are the
link prediction results in Foursquare and the Figures 5(d)-
5(f) are those in Twitter, almost all the methods can per-
form better as ⇢

A increases, except SCAN-t as it only uti-
lizes information in the target network only. It shows that
with more anchor links, Mli, LI, SCAN and SCAN-s can
transfer much more information from other aligned source
networks to the target network to enhance the results. In
addition, Mli can work better than LI consistently as ⇢

A

varies, which can show the e↵ectiveness of Mli in dealing
with networks with di↵erent ratios of anchor links

4.5 Convergence Analysis
Mli need to predict the links in all the aligned networks

alternatively and iteratively until convergence. In this part,
we will analyze whether Mli can converge as this process
continues. We show the link prediction results achieved by
Mli in both Foursquare and Twitter under the evaluation of
AUC, Accuracy and F1 when ⇢

F , ⇢T and ⇢

A are all set as 0.8
in Figure 6. Figures 6(a)-6(c) are the results in Foursquare
network from iteration 1 to iteration 30 and Figures 6(d)-
6(f) are those in Twitter network. As shown in these figures,
results achieved by Mli can converge in less than 10 itera-
tions in both Foursquare and Twitter evaluated by all these
three metrics.

5. RELATED WORK
Link prediction in online social networks first proposed

by D. Liben-Nowell et al. [12] has been a hot research topic
in recent years and many di↵erent methods have been pro-
posed. D. Liben-Nowell et al. [12] propose many unsu-
pervised link predicators to predict the social connections
among users. M. Hasan et al. [8] propose to predict links
by using supervised learning methods. An extensive survey
of other link prediction methods is available in [9, 7].

Meanwhile, some works have also been done on predicting
multiple kinds of links simultaneously. I. Konstas et al. [11]
propose to recommend multiple kinds of links with collabo-
rative filtering methods. F. Fouss et al. [6] propose to use
a traditional model, random walk, to predict multiple kinds
of links simultaneously in networks. M. Bilgic et al. [1] pro-
pose an approach to address two problems by interleaving
object classification and link prediction in a collective algo-
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rithm. P. Domingos et al. [4] propose a unifying framework,
Markov Logic, for collective classification problems in social
networks.

PU learning techniques have been proposed for many years
and have been widely used in many di↵erent areas. B. Liu et
al. [13] propose many di↵erent settings to obtain the reliable
negative instance set from unlabeled instances in text min-
ing tasks. Y. Zhao et al. [28] propose to apply PU learning
techniques to graph mining area.

Nowadays, the researchers’ focus start shifting to study
multiple aligned heterogeneous online social networks simul-
taneously. X. Kong et al. [10] are the first to propose the
concept of “multiple aligned heterogeneous social networks”
and “anchor links” . They propose a two-phase method to
predict the anchor links across networks. J. Zhang et al.
[25] propose to transfer useful information across aligned
networks to help predict social links for new users and they
are the first to study social link prediction across aligned
networks. J. Zhang et al. [26] propose to predict multiple
kinds of links for new networks with information transferred
across partially aligned networks and they are the first to
study collective link prediction across partially aligned net-
works. J. Zhang et al. also gives a survey about link predic-
tion problems and methods across social networks in [27].

6. CONCLUSION
In this paper, we have studied the multi-network link pre-

diction problems across partially aligned networks. An e↵ec-
tive general link prediction framework, Mli, has been pro-
posed to solve the problem. Heterogeneous features can be
extracted from the network based on both intra-network and
inter-network social meta paths. Useful features are selected
and transferred to aligned networks to enhance the predic-
tion results mutually. Extensive experiments conducted on
two real-world aligned networks demonstrate that Mli can
work very well in predicting social links in multiple partially
aligned networks simultaneously.
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