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Abstract
Distance metric learning (DML) is critical for a
wide variety of machine learning algorithms and
pattern recognition applications. Transfer met-
ric learning (TML) leverages the side information
(e.g., similar/dissimilar constraints over pairs of
samples) from related domains to help the target
metric learning (with limited information). Cur-
rent TML tools usually assume that different do-
mains exploit the same feature representation, and
thus are not applicable to tasks where data are
drawn from heterogeneous domains. Heteroge-
neous transfer learning approaches handle hetero-
geneous domains by usually learning feature trans-
formations across different domains. The learned
transformation can be used to derive a metric, but
these approaches are mostly limited by their capa-
bility of only handling two domains. This moti-
vates the proposed heterogeneous multi-task metric
learning (HMTML) framework for handling mul-
tiple domains by combining side information and
unlabeled data. Specifically, HMTML learns the
metrics for all different domains simultaneously by
maximizing their high-order correlation (parame-
terized by feature covariance of unlabeled data)
in a common subspace, which is induced by the
transformations derived from the metrics. Exten-
sive experiments on both multi-language text cat-
egorization and multi-view social image annota-
tion demonstrate the effectiveness of the proposed
method.

1 Introduction
Distance metric learning (DML) aims to find an appropriate
distance or similarity measure between data. It plays a cru-
cial role in diverse research areas, ranging from the simple
k-nearest neighbor (kNN) classification, k-means clustering,
to the sophisticated kernel machines (such as support vector
machine, or SVM for brief) [Xu et al., 2013] and learning to
rank [McFee and Lanckriet, 2010]. It is therefore essential to
learn a robust distance metric to reveal the data relationships.
To achieve this goal, we need a large amount of side informa-

tion [Xing et al., 2002] such as the constraints that indicate
whether a pair of samples is similar or not.

Recently, some transfer metric learning (TML) [Zha et
al., 2009; Zhang and Yeung, 2012] methods were proposed
for DML when the side information is scarce in the do-
main of interest (target domain), while we have abundant
side information in certain related, but different source do-
mains [Ammar et al., 2015; Luo et al., 2014]. Traditional
DML algorithms usually fail in this scenario because the
data distributions between the source and target domain may
be quite different, and TML [Zha et al., 2009; Zhang and
Yeung, 2012] tries to reduce the impact of such difference
and utilize the labeled information from the source domains
to help the target metric learning. Specifically, multi-task
metric learning (MTML) [Zhang and Yeung, 2012] assume
the side information for each of the source and target do-
mains is limited [Goetschalckx et al., 2015; Luo et al., 2013;
2016], and the objective is to improve the metric learning of
all domains simultaneously.

One major limitation of most existing TML algorithms is
that they assume samples of the related domains are of the
same feature dimensionality or lie in the same feature space.
This assumption may be not valid for many applications. A
typical example is the cross-lingual document classification,
where the feature representations of the documents written
in different languages vary since the utilized vocabularies
are different. Moreover, in multi-view natural image clas-
sification and multimedia retrieval, the instances in different
domains are often represented in different types of features
(such as local SIFT [Lowe, 2004] and global wavelet texture)
or have different modalities (such as image, audio and text).

To manage heterogeneous representations, many heteroge-
neous transfer learning [Shi et al., 2010; Wang and Mahade-
van, 2011; Zhou et al., 2014] approaches have been proposed
in the literature. A frequently utilized strategy in these meth-
ods is to transform the heterogeneous features into a com-
mon subspace, where the difference between heterogeneous
domains is reduced [Zhou et al., 2014]. The learned trans-
formation for each domain can be used to derive a metric.
Although effective in some cases, most of them are limited
for only two domains (one source domain and one target do-
main). However, we usually have more than two domains in
many real-world applications. For example, five languages
are used in the news articles of the Reuters multilingual col-
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lection, and different kinds of local, global, as well as biolog-
ically inspired features are popular utilized in visual analysis-
based tasks such as image annotation.

To this end, we develop a novel heterogeneous multi-task
metric learning (HMTML) framework that handles an arbi-
trary number of domains by combining side information and
unlabeled data. In this paper, we assume there are abundant
unlabeled samples that have feature representations in all do-
mains. In particular, HMTML learns the metrics for all dif-
ferent domains in a single optimization problem by minimiz-
ing empirical losses w.r.t. the metric for each domain. At the
same time, we transform different representations of the given
unlabeled samples into a common subspace using the feature
transformations derived from the metrics. Because the dif-
ferent representations are modelling the same instance, they
should be close to each other in the subspace. By maximiz-
ing the high-order covariance between the transformed data
representations, we find a shared subspace for all domains
and thus all of their side information can be further incor-
porated to learn this shared subspace of maximum reliabil-
ity. Hence a more reliable metric is obtained for each domain
since the (Mahanobias) metric learning is equivalent to learn
a subspace under certain optimization criterion [Kulis, 2012].
Intuitively, the common subspace provides a bridge for side
information transfer. In this way, different domains help each
other in metric learning, so the learned metrics are more re-
liable than the results of learning them separately, especially
for those domains that have limited side information.

There exist a few approaches [Wang and Mahadevan, 2011;
Zhang and Yeung, 2011] that could learn transformations
and derive metrics for more than two domains. However,
in these approaches, only the statistics (correlation informa-
tion) between each representation and the shared represen-
tation [Zhang and Yeung, 2011], or pairs of representations
[Wang and Mahadevan, 2011] is explored, while high-order
statistics that can only be obtained by simultaneously examin-
ing all domains is ignored. Besides, these approaches mainly
focus on utilizing the side information and thus may fail given
insufficient side information. Our method is superior to these
methods in that we aim to directly maximize the correlation
between all domains by analyzing their high-order feature
covariance tensor, which is calculated using large amounts
of unlabeled data. Much more correlation information can
thus be encoded in the learned transformations and also met-
rics, and hopefully better performance can be achieved. We
perform experiments on two popular applications: multi-
language text categorization and multi-view social image an-
notation. In addition to the Euclidean (EU) and single domain
regularized DML (RDML) baselines, we further compare
the proposed method with two representative heterogeneous
transfer learning approaches [Wang and Mahadevan, 2011;
Zhang and Yeung, 2011] for multiple domains. The results
validate the effectiveness of the proposed HMTML.

2 Heterogeneous Multi-task Metric Learning
In contrast to DAMA [Wang and Mahadevan, 2011] and
MTDA [Zhang and Yeung, 2011], which learn linear trans-
formation for each domain by only considering the pairwise
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Figure 1: System diagram of the proposed heterogeneous
multi-task metric learning (see text for details).

domain correlations, we propose tensor based heterogeneous
MTML (HMTML) to learn transformations for metric learn-
ing by exploiting the high order tensor correlation between all
domains. The diagram of the proposed HMTML is shown in
Figure 1. Taking the multilingual text classification as an ex-
ample, we assume that limited side information (in the form
of paired sample similarity) is provided for each of the M het-
erogeneous domains, such as “English”, “Italian”, and “Ger-
many”. For the m’th domain, we minimize the empirical
losses w.r.t. the metric Am on the labeled data DL

m. Since
the side information is scarce for each domain, learning the
different metrics independently may be unreliable. To enable
information being shared across all domains so that they can
help each other in metric learning, we assume that we are also
given abundant unlabeled samples that are represented in all
M domains, i.e., {xU

mn}N
U

n=1,m = 1, 2, . . . ,M . Then we
decompose the metric Am as Am = UmUT

m, and using Um

to transform the original heterogeneous representations into
a common space as {zUmn}N

U

n=1,m = 1, 2, . . . ,M . Finally,
by maximizing tensor based high-order covariance between
all transformed representations, we learn improved U⇤

m by
utilizing additional information from other domains, and so
more reliable metric A⇤

m = U⇤
m(U⇤

m)

T is obtained. The tech-
nical details are given below, and we start by briefing the used
notations and concepts of multilinear algebra in this paper.

2.1 Notations
Let A be an M -order tensor of size I1 ⇥ I2 ⇥ . . .⇥ IM , and
U be a Jm ⇥ Im matrix. The m-mode product of A and U is
then denoted as B = A⇥mU , which is an I1⇥ . . .⇥ Im�1⇥
Jm ⇥ Im+1 . . .⇥ IM tensor with the element

B(i1, . . . , im�1, jm, im+1, . . . , iM )

=

ImX

im=1

A(i1, i2, . . . , iM )U(jm, im).
(1)

The product of A and a sequence of matrices {Um 2
RJm⇥Im}Mm=1 is a J1 ⇥ J2 ⇥ . . .⇥ JM tensor denoted by

B = A⇥1 U1 ⇥2 U2 . . .⇥M UM . (2)
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The mode-m matricization of A is denoted as an Im ⇥
(I1 . . . Im�1Im+1 . . . IM ) matrix A(m), which is obtained
by mapping the fibers associated with the m’th dimension
of A as the rows of A(m), and aligning the corresponding
fibers of all the other dimensions as the columns. Here, the
columns can be ordered in any way. The m-mode multipli-
cation B = A ⇥m U can be manipulated as matrix mul-
tiplication by storing the tensors in metricized form, i.e.,
B(p) = UA(p). Let u be an Im-vector, the contracted m-
mode product of A and u is denoted as B = A¯⇥mu, which
is an I1⇥ . . .⇥Im�1⇥Im+1 . . .⇥IM tensor of order M�1,
and the entries are calculated by:

B(i1, . . . , im�1, im+1, . . . , iM )

=

ImX

im=1

A(i1, i2, . . . , iM )u(im).
(3)

Finally, the Frobenius norm of the tensor A is given by

kAk2F = hA,Ai =
I1X

i1=1

I2X

i2=1

. . .

IMX

iM=1

A(i1, i2, . . . , iM )

2.

(4)

2.2 Problem Formulation
Given M heterogeneous domains, we suppose the training
set with side information for the m’th domain is given by
DL

m = {(xmi,xmj , ymij)}Nm
i,j=1, where xmi,xmj 2 Rdm

and ymij = ±1 indicates xmi and xmj are similar/dissimilar
to each other. The number of training samples Nm is very
small for each domain, so we assume there are large amounts
of unlabeled data that have representations in all domains
DU

= {(xU
1n,x

U
2n, . . . ,x

U
Mn)}N

U

n=1, and these data are usually
easy to collect in practice [Qi et al., 2012]. Then the general
formulation of the proposed HMTML for learning the metrics
{Am}Mm=1 is given by

argmin

{Am}M
m=1

F ({Am}) =
MX

m=1

 (Am) + �R(A1, . . . , AM ),

s.t. Am ⌫ 0,m = 1, 2, . . . ,M,
(5)

where  (Am) =

2
Nm(Nm�1)

P
i<j L(Am;xmi,xmj , ymij)

is the empirical loss w.r.t. Am in the m’th domain, and
R(A1, A2, . . . , AM ) is some regularizer to enforce informa-
tion transfer across different domains. Following [Jin et al.,
2009], we choose L(Am;xmi,xmj , ymij) = g(ymij [1 �
kxmi � xmjk2Am

]) and adopt the hinge loss for g, i.e.,
g(z) = max(0, b � z). Here, b is set to be zero, and
kxmi � xmjk2Am

= (xmi � xmj)
TAm(xmi � xmj). For

notation simplicity, we denote xmi, xmj and ymij as x

1
mk,

x

2
mk and ymk respectively, where k = 1, 2, . . . , N 0

m =

Nm(Nm�1)
2 . We also set �mk = x

1
mk � x

2
mk so that

kx1
mk � x

2
mkk2Am

= �TmkAm�mk, and the loss term becomes

 (Am) =

1
N 0

m

PN 0
m

k=1 g
�
ymk(1� �TmkAm�mk)

�
.

To enable knowledge transfer across domains, we propose
to decompose the positive semi-definite metric Am as Am =

UmUT
m, and then using the feature mapping Um 2 Rdm⇥r to

project the unlabeled data points of different domains into a
common subspace, where the correlation of all domains are
maximized. This leads to the following optimization prob-
lem:

argmax

{Um}M
m=1

1

NU

NUX

n=1

corr(z

U
1n, z

U
2n, . . . , z

U
Mn), (6)

where corr(z

U
1n, z

U
2n, . . . , z

U
Mn) = (z

U
1n � z

U
2n � . . . �

z

U
Mn)

T
e is the correlation of the projected representations

{zUmn = UT
mx

U
mn}Mm=1 among all domains for the n’th

sample. Here, � is the element-wise product, and e 2
Rr is an all ones vector. This correlation is equivalent to
G ¯⇥1(x

U
1n)

T . . . ¯⇥M (x

U
Mn)

T according to [Luo et al., 2015],
where G =

Pr
q=1(u

q
1�u

q
2�. . .�u

q
M ) = Ir⇥1U1⇥2U2 . . .⇥M

UM is the covariance tensor of the mappings. Here, � is the
outer product, Ir 2 Rr⇥r⇥...⇥r is an identity tensor (the en-
tries are 1 in the diagonal, and 0 otherwise) of size r, which is
the number of common factors shared by all domains. Then
the problem (6) becomes

argmax

{Um}M
m=1

1

NU

NUX

n=1

G ¯⇥1(x
U
1n)

T . . . ¯⇥M (x

U
Mn)

T , (7)

Let CU
n = x

U
1n � xU

2n � . . . � xU
Mn be the covariance tensor of

the original feature representations among all domains for the
n’th sample, the above problem can be further reformulated
as follows according to [De Lathauwer et al., 2000a],

argmin

{Um}M
m=1

1

NU

NUX

n=1

kCU
n � Gk2F . (8)

By regarding the objective of (8) as the regularizer in (5),
we obtain the following specific optimization problem for
HMTML:

argmin

{Um}M
m=1

F ({Um})

=

MX

m=1

1

N 0
m

N 0
mX

k=1

g
�
ymk(1� �TmkUmUT

m�mk)
�

+

�

NU

NUX

n=1

kCU
n � Gk2F +

MX

m=1

�mkUmk1,

s.t. Um ⌫ 0,m = 1, 2, . . . ,M,
(9)

where � and {�m} are all positive tradeoff parameters. We
enforce the feature mapping to be sparse as suggested in
[Zhou et al., 2014] and the non-negativity constraints are to
preserve non-negative correlation between the original fea-
ture representations. Intuitively, minimization of the second
term in (9) corresponds to find a latent subspace where the
representations of all domains are close to each other. Knowl-
edge is transferred in this subspace and so different domains
can help each other in learning the mapping Um, or equiva-
lently the metric Am.
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2.3 Optimization Algorithm
The problem (9) can be solved by iteratively updating only
one variable Um at a time and fixing all the other Um, m0 6=
m. According to [De Lathauwer et al., 2000b], we have

G = Ir ⇥1 U1 ⇥2 U2 . . .⇥M UM = B ⇥m Um.

where B = Ir⇥1U1 . . .⇥m�1Um�1⇥m+1Um+1 . . .⇥MUM .
By applying the metricizing property of the tensor-matrix
product, we have G(m) = UmB(m). Besides, it is easy to
verify that kCU

n � Gk2F = kCU
n(m) �G(m)k2F . Therefore, the

sub-problem of (9) w.r.t. Um becomes:

argmin

Um

F (Um) = �(Um) + ⌦(Um),

s.t. Um ⌫ 0,
(10)

where �(Um) =

1
N 0

m

PN 0
m

k=1 g
�
ymk(1� �TmkUmUT

m�mk)
�
+

�mkUmk1, and ⌦(Um) =

�
NU

PNU

n=1 kCU
n(m) � UmB(m)k2F .

We propose to solve the problem (10) efficiently by utiliz-
ing the projected gradient method (PGM) presented in [Lin,
2007]. However, the terms in �(Um) are non-differentiable,
we thus first smooth it according to [Nesterov, 2005]. For no-
tation clarity, we omit the subscript m in the following deriva-
tion. According to [Nesterov, 2005], the smoothed version of
the hinge loss g(U ; �k, yk) = max{0,�yk(1� �Tk UUT �k)}
can be given by

g� = max

⌫2Q
⌫k

�
�yk(1� �Tk UUT �k)

�
� �

2

k�kk1⌫2k , (11)

where Q = {⌫ : 0  ⌫k  1, ⌫ 2 RN 0} and � is the smooth
parameter, which is set as 0.5 in this paper. By setting the
gradient of the objective function in (11) to become zero and
then projecting ⌫k on Q, we obtain the following solution,

⌫k = median{�yk(1� �Tk UUT �k)

�k�kk1
, 0, 1}. (12)

By substituting the solution (12) back into (11), we have the
piece-wise approximation of g, i.e.,

g� =

8
>>>><

>>>>:

0,
yk(1� �Tk UUT �k)

> 0

;

yk(�
T
k UUT �k � 1)� �

2 k�kk1,
yk(1� �Tk UUT �k)

< ��k�kk1
;

(yk(1��Tk UUT �k))
2

2�k�kk1
, otherwise.

(13)

To utilize the PGM for optimization, we have to compute the
gradient of the smoothed hinge loss to determine the descent
direction. We summarize the results in the following theorem.
Theorem 1. The sum of gradient of the smoothed hinge loss
g�(U ; �k, yk) over all samples is

@g�(U)

@U
=

X

k

(2yk⌫k(�k�
T
k )U). (14)

Here, ⌫k is related to U .

It is easy to prove this theorem according to (12) and (13),
so we do not present the proof here due to the limited space.
Similarly, for the sparse term kUk1 =

Pd
i=1

Pr
j=1 l(uij),

where l(uij) = |uij |, we have the following piece-wise ap-
proximation of l with the smooth parameter �:

l� =

8
<

:

�uij � �
2 , uij < ��;

uij � �
2 , uij > �;

u2
ij

2� , otherwise.

(15)

The gradient of smoothed kUk1 is given by
@(
Pd

i=1

Pr
j=1 l

�
(uij))/@U = O with each oij =

median{uij

� ,�1, 1}. In addition, it is easy to deduce
that the gradient of ⌦(U) w.r.t. U is

@⌦(U)

@U
=

2�

NU

X

n

(UBBT � CU
n BT

). (16)

Therefore, the gradient of the smoothed F (Um) is
@F�

(Um)

@Um
=

1

N 0
m

X

k

�
2ymk⌫mk(�mk�

T
mk)Um

�

+

2�

NU

X

n

⇣
UmB(m)B

T
(m) � CU

n(m)B
T
(m)

⌘
+ �mOm,

(17)
Finally, based on the obtained gradient, we apply the im-
proved PGM presented in [Lin, 2007] to minimize the
smoothed primal F�

(Um), i.e.,
U t+1
m = P [U t

m � µtrF�
(U t

m)], (18)
where the operator P [x] projects all the negative entries of x
to zero, and µt is the step size that must satisfy the following
condition:
F�

(U t+1
m )� F�

(U t
m)  rF�

(U t
m)

T
(U t+1

m �U t
m), (19)

where the parameter  is chosen to be 0.01 following [Lin,
2007]. The step size can be determined using the Algorithm
4 in [Lin, 2007], and the convergence of the algorithm is
guaranteed according to [Lin, 2007]. The stopping criterion
we utilized here is |F�

(U t+1
m ) � F�

(U t
m)|/(|F�

(U t+1
m ) �

F�
(U0

m)| < ✏), where the initialization U0
m is the set as

the results of the previous iterations in the alternating of all
{Um}Mm=1.

Finally, the solutions of (9) are obtained by alterna-
tively updating each Um until the stop criterion |OBJk+1 �
OBJk|/|OBJk| < ✏ is reached, where OBJk is the objec-
tive value of (9) in the k’th iteration step. Because the objec-
tive value of (10) decreases at each iteration of the alternating
procedure, i.e., F (Uk+1

m , {Uk
m0}m0 6=m)  F ({Uk

m}). This
indicates that F ({Uk+1

m })  F ({Uk
m}). Therefore, the con-

vergence of the proposed HMTML algorithm is guaranteed.
Once the solutions {U⇤

m}Mm=1 have been obtained, we can
conduct subsequent learning, such as multi-class classifica-
tion in each domain using the learned metric A⇤

m = U⇤
mU⇤

m
T .

3 Experiments
In this section, we evaluate the effectiveness of the proposed
HMTML on both multi-lingual document categorization and
multi-view image annotation. Prior to these evaluations, we
present the experimental settings.
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3.1 Datasets, Features, and Evaluation Criteria
The dataset used in document categorization is the Reuters
multilingual collection (RMLC) [Amini et al., 2009], which
contains news articles written in five languages, and from six
populous categories. In this dataset, we choose three lan-
guages (i.e., English (EN), Italian (IT), and Spanish (SP)) and
regard each of them as a domain. The provided TF-IDF fea-
tures are adopted for document representation. We preprocess
these representations by performing PCA to find comparable
patterns for meaningful transfer and 20% energy is preserved.
This results in 245, 213, and 107 features for documents of
the three domains respectively. The number of samples for
the three domains are 18, 758, 24, 039, and 12, 342 respec-
tively. In each domain, the sample sets are randomly split
into equal size to form the training and test sets, and we ran-
domly choose {5, 10, 15} labeled samples for each category
in the training set to determine the performance of the com-
pared methods w.r.t. the number of labeled instances.

In image annotation, we employ a challenge natural image
dataset NUS-WIDE (NUS) [Chua et al., 2009]. The dataset
contains 269, 648 images, and our experiments are conducted
on a subset that consists of 16, 519 images belonging to 12

animal concepts: bear, bird, cat, cow, dog, elk, fish, fox,
horse, tiger, whale, and zebra. In this dataset, we choose three
types of features, namely 500-D bag of visual words (BOVW)
based on SIFT [Lowe, 2004] descriptors, 144-D color auto-
correlogram (CORR), and 128-D wavelet texture (WT), to
represent each image. We preprocess the different features
using PCA and the result dimensions are all 100. Each image
representation is regarded as a domain. In each domain, we
randomly split the image set into a training set of 8, 263 im-
ages and a test set of 8, 256 images, and the number of labeled
instances for each concept varies in the set {4, 6, 8}.

In both datasets, the task in each domain is to perform
multi-class classification, where the nearest neighbor (1NN)
classifier is adopted. The side information in terms of pair-
wise similarity constraints are obtained according to whether
two labeled training samples belong to the same class or not.
The remained training data that have representations in all
domains are used as unlabeled data. The parameters are de-
termined using leave-one-out cross validation on the labeled
set. The classification accuracy is utilized as evaluation cri-
teria. The average performance of all domains is calculated
for comparison. In all the following experiments, five random
choices of the labeled instances are used, and the mean values
are reported.

3.2 Experimental Results and Analysis
The comparison baselines are listed as below:

• EU: directly computing the Euclidean distance between
samples based on their original feature representations
in each domain.

• RDML [Jin et al., 2009]: learning the distance metric
for each domain separately using the efficient and com-
petitive regularized distance metric learning algorithm
presented in [Jin et al., 2009]. This method only utilizes
the given limited labeled samples in each domain, and
does not make use of any additional information from

other domains. The trade-off parameter is chosen from
the set {10i|i = �5,�4, . . . , 4}.

• DAMA [Wang and Mahadevan, 2011]: constructing
mappings Um to link multiple heterogeneous domains
using manifold alignment. The parameter is determined
according to the strategy presented in [Wang and Ma-
hadevan, 2011].

• MTDA [Zhang and Yeung, 2011]: performing super-
vised dimension reduction simultaneously for heteroge-
neous features (domains) using the multi-task extension
of linear discriminative analysis. The learned transfor-
mation Um = WmP , which consists of a domain spe-
cific part Wm, and a common part P shared by all do-
mains. The intermediate dimensionality parameter is set
as 100 for both datasets since the model is not very sen-
sitive to the parameter according to [Zhang and Yeung,
2011].

• HMTML: the proposed heterogeneous multi-task met-
ric learning method. The parameters �m are set as the
same value, and we tune both � and �m over the set
{10i|i = �5,�4, . . . , 4}.

In DAMA and MTDA, after learning Um, we derive the
metric for each domain as Am = UmUT

m. For DAMA,
MTDA, and the proposed HMTML, the number r of the
common factors (or dimensionality of the common subspace)
used to explain the original data of all domains varies in
{1, 2, 5, 8, 10, 20, 30, 50, 80, 100}.

Multilingual Document Categorization
The classification accuracies in relation to the number r are
shown in Figure 2. From these results, we observe that: 1)
the performance of all the compared methods improves with
an increased number of labeled instances; 2) although the la-
beled samples in each domain is scarce, learning the distance
metric separately using RDML can still improve the perfor-
mance significantly. This demonstrates the effectiveness of
distance metric learning (DML) in this application; 3) all
the three heterogeneous transfer learning approaches achieve
much better performance than RDML. This indicates that it is
useful to leverage information from other domains in DML;
Besides, the optimal number r is usually less than 30. This
can be interpreted as using only 30 common factors (topics)
is enough to distinguish the different categories in the dataset;
4) DAMA is superior to MTDA when the number of labeled
samples is small, since MTDA is a discriminative method and
highly relies on the label information, while DAMA preserves
topology in each domain and this is helpful given insuffi-
cient labeled instances. The proposed HMTML is superior to
DAMA even limited labeled samples are provided, since we
make use of large amounts of unlabeled data to connect differ-
ent domains; 5) overall, the proposed HMTML outperforms
both DAMA and MTDA at most numbers (of common fac-
tors). This indicates that the learned factors by our method are
more expressive than the other approaches. The main reason
is that our method directly examining the high-order statistics
of all domains simultaneously, whereas, in DAMA only the
pairwise relationships are explored, and in MTDA the dif-
ferent domains must communicate with each other through
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Figure 2: Average accuracy of all domains vs. number of the common factors on the RMLC dataset.
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Figure 3: Average accuracy of all domains vs. number of the common factors on the NUS animal subset.

an intermediate structure, where some important information
contained in the original features may be lost; 6) in particular,
we obtain significant relative improvements of 16.8%, 9.4%,
and 4.2% over the competitive MTDA when the number of
labeled samples are 5, 10, and 15 respectively.

Multi-view Image Annotation

We show the annotation accuracies of the compared methods
in Figure 3. It can be observed from the results that: 1) the
accuracy of RDML is lower than directly using the Euclidean
distance (EU) when the number of labeled samples is small
(e.g., 4). This may be because RDML is a linear metric learn-
ing approach, while structure of the data distribution of image
features is usually nonlinear; 2) DAMA totally fails in this
application, and MTDA only obtain satisfactory accuracies
when enough (e.g., 8) labeled instances are provided. The
main reason is that in this application, the different domains
corresponding to different kinds of features. This setting is
much more challenge than the multilingual document classi-
fication, where the feature types (TF-IDF) are the same and
only the vocabulary varies. The statistical properties of the
different kinds visual features utilized here are quite differ-
ent from each other, so it is very hard to find some common
expressive factors across all domains by only exploiting the
pair-wise relationships between them. Nevertheless, the pro-
posed HMTML achieves satisfactory performance by simul-
taneously exploring all domains.

4 Conclusion

This paper presents a method for heterogeneous metric learn-
ing. The proposed method can not only effectively make
use of the limited side information in each domain, but also
discover high order statistics among multiple heterogeneous
domains by analyzing their feature covariance tensor calcu-
lated using large amounts of unlabeled data. The knowledge
shared by the different domains is successfully transferred in
a common subspace to help each of them in metric learning
by maximizing their high-order covariance in the subspace.
We develop an efficient algorithm for optimization with con-
vergence guarantee, and the exploited high-order correlation
information was demonstrated empirically to be superior to
the pairwise correlations utilized in traditional approaches.

From the experimental validation on two popular applica-
tions we mainly conclude that: 1) learning metric for each
domain separately may deteriorate the performance if given
insufficient side information, and the labeled data deficiency
problem can be alleviated by learning metrics for multi-
ple heterogeneous domains simultaneously. This is consis-
tent with the results of multi-task learning literatures; 2) the
shared knowledge of different domains exploited by the trans-
fer learning methods can benefit each domain if appropriate
common factors are discovered, and the high-order statistics
(correlation information) is critical in discovering such fac-
tors; In the future, we plan to extend the proposed method to
learn nonlinear metrics so that it has the capability to handle
complicated domains.
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