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Abstract—Link prediction is an important task in network
analysis, benefiting researchers and organizations in a variety
of fields. Many networks in the real world, for example social
networks, are heterogeneous, having multiple types of links and
complex dependency structures. Link prediction in such networks
must model the influence propagating between heterogeneous
relationships to achieve better link prediction performance than
in homogeneous networks. In this paper, we introduce Multi-
Relational Influence Propagation (MRIP), a novel probabilistic
method for heterogeneous networks. We demonstrate that MRIP
is useful for predicting links in sparse networks, which present
a significant challenge due to the severe disproportion of the
number of potential links to the number of real formed links. We
also explore some factors that can inform the task of classification
yet remain unexplored, such as temporal information. In this
paper we make use of the temporal-related features by carefully
investigating the issues of feasibility and generality. In accordance
with our work in unsupervised learning, we further design an
appropriate supervised approach in heterogeneous networks.
Our experiments on co-authorship prediction demonstrate the
effectiveness of our approach.

I. INTRODUCTION

Link prediction, that is, predicting the formation of links

in a network in the future or predicting the missing links

in a network, has become a hot topic in recent years. Most

of the recent link prediction methods [6] [7] [8] [1] are

designed for homogeneous networks, where only one type of

link exists in the networks. However, many important real-

world networks, such as DBLP bibliographic networks and

human disease-gene networks, are complicated and modeled

as heterogeneous interactions. For example, the DBLP network

contains conferences, papers, and authors as nodes, with links

from types of co-author, author-write-paper, paper-published

in-conference, and so on. A few studies have worked on the

link prediction in heterogeneous networks, from the early work

of [13] to the recent work of [20].

The complexity of structural dependency and heterogeneity

of links produces obstacles for link prediction in heteroge-

neous networks. Well-known topological features designed

for homogeneous networks are difficult to apply in such

complex scenarios. There are two typical ways of handling

the link prediction problem in heterogeneous networks: 1)

treating all types of link equally; 2) studying each type of link

independently and ignoring its correlation with other link types

Fig. 1. Correlation between Different Types of Links

[2]. However, both of these methods lead to a loss of informa-

tion. In particular for the second case, topological properties

may differ in each homogeneous projection of heterogeneous

networks, but different types of links are correlated with each

other and thus influence each other. For example, two people

connected in a cellphone network have a high probability to be

friends on Facebook. Likewise, two people who send emails

to each other frequently may also call each other (Figure 1).

The problem is: how to quantitatively capture the correlation
between different types of links and employ this information
to design an effective, general method for the link prediction
in heterogeneous networks?

To that end, we develop both unsupervised and supervised

learning methods in heterogeneous networks, which are based

on the topological structures and timestamps of links (if

available). We first introduce our method called the Multi-

Relational Influence Propagation (MRIP) for heterogeneous

networks. It is motivated from the work of Kempe et al.

[4] that which was designed for maximizing the spread of

influence in homogeneous networks. Experimental results on

the disease-gene network [2] and the DBLP network [15] are

presented for comparisons. Then we introduce our approach

of temporal link predictors which are time-involved variants

of classical link predictors, such as Common Neighbors [14]

and Adamic/Adar [6]. Most of these extended link predictors

outperform their original incarnations by more than 9% in

terms of AUROC (area under the receiver operating curve).

With careful extraction of features and in accordance with our

work in unsupervised learning, we design effective supervised

learning approaches for link prediction in heterogeneous net-

works. To summarize, the contributions of this paper are as

follows:

(a) We study the link prediction problem in heterogeneous

networks, where multiple types of link that are correlated
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with each other exist in the network.

(b) We propose a new topological feature called Multi-

Relational Influence Propagation (MRIP) that can capture

the correlation between different types of links for the link

prediction problem.

(c) We further propose temporal features in heterogeneous

networks to achieve even better link prediction accuracy.

(d) Experiments on real datasets have demonstrated the effec-

tiveness of our approaches compared with typical solutions

and most recently published solutions.

The remainder of the paper is organized as follows. We

introduce the preliminary concepts of heterogeneous networks

and define the problem in Section III. Section IV explains

standard unsupervised approaches and introduces our new

method MRIP. Extended temporal link predictors are described

in Section V. We show our methods of supervised learning in

heterogeneous networks and analyze the experimental results

in Section VI, and conclude the study in Section VII.

II. RELATED WORK

A few studies have worked on the link prediction in hetero-

geneous networks, from the early work of [13] to the recent

work of [2] [20]. However in the work of [13] the attribute

values of nodes are usually difficult to obtain in real world

dataset, thus in this paper our method will not be compared

with the method described in the work of [13].

In the work of [2] Davis et al. propsed to explore triad

information in heterogeneous network to assist the link predic-

tion task. Their method MRLP is a probabilistically weighted

extension of the Adamic/Adar measure for heterogenous infor-

mation networks. The MRLP was proved to be successful in

predicting links in heterogeneous networks when comparing

with traditional link predictors. In the work of [20] Litchen-

walter et al. proposed the concept of a vertex collocation

profile (VCP) for the purpose of topological link analysis

and prediction. In their definition a vertex collocation pro-

file (VCP), V CPn,r
v,u is a vector describing the relationship

between two vertices, u and v , in terms of their common

membership in all possible subgraphs of n vertices over r
relations [20]. In their paper VCP3U is designed to work in

undirected homogeneous/heterogeneous networks by describ-

ing node pair u and v relationship in all possible subgraphs

of 3 vertices, correspondingly VCP4U is employed to capture

the information of all possible subgraphs of 4 vertices for any

node pair u and v. In this paper our method will be compared

with these two most recent work in heterogeneous network.

To mention that in the work of [25] Rossetti et al. proposed

multidimensional versions of the Common Neighbors and

Adamic/Adar, and derived predictors that aimed at capturing

the multidimensional and edge level temporal information.

However their methodology of approaches are significantly

different from ours. We employ the network alignment tech-

nology to capture interrelations between link types, while

they use connectivity measure for multidimensional networks

to guide their design. In temporal methods design, we are

gathering nodal historical data and try to capture the preference

Fig. 2. DBLP Bibliographic Network

Fig. 3. Disease-Gene Network

of topological features when two nodes are associated by new

link; while they are interested in edge level communication

data. The work of [25] did not include a comparison with any

competitive approaches in recent publications, such as [1] and

[3].

III. CONCEPTS AND PRELIMINARIES

A. Heterogeneous Network

Given a heterogeneous network, it can be modeled as

G = (V1 ∪ V2... ∪ VM , E1 ∪ E2... ∪ EN ), where Vu (u ∈ N )

represents the set of nodes of the same type u and Ej (j ∈M )

represents the set of links with the type j. In the real world,

many important networks are heterogeneous. For example in

the DBLP bibliographic network there are several types of

nodes and links (Figure 2). Another example is the human

disease-gene network, which has two kinds of nodes (disease

and gene) and three types of links among these nodes (disease-

disease phenotypic link, gene-gene PPI link and disease-

gene genetic link) (Figure 3). Links, or interactions, in these

networks can occur between nodes of the same type, such as

co-authorship links and phenotypic links; or occur between

nodes of different types, such as links from the author-write-

paper relation and genetic links between diseases and genes.

B. The Link Prediction Problem Definition

Given a heterogeneous network G = (V1∪V2...∪VM , E1∪
E2...∪EN ), the link prediction task in such networks is to pre-

dict whether there is or will be a link of type i (i = 1, 2, ..., N)
between a pair of nodes u and v, where u ∈ Vx and v ∈ Vy .

In the unsupervised link prediction scenario, the problem is to

assign a score s(u, v, i) that indicates the possibility of a link

between nodes u and v, where i is the link type. While in the

supervised learning scenario, the target is to answer whether

a link of type i will form between two given nodes u and v.
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C. Preliminaries

We first briefly introduce the work of Kempe et al. [4]

for influence maximization in homogeneous network. The

influence maximization problem was originally proposed in

2003 by Kempe, Kleinberg and Tardos [4] as finding the

k most influential nodes in a social network under some

stochastic cascade models, such as the independent cascade
(IC) model or the weighted cascade (WC) model. In weighted
cascade model node v is assumed to activate its neighbor u
with the probability

pv,u = 1− (1− 1

degree(u)
)
weight(u,v)

To find out k most influential nodes in linear threshold model

for the network, many researchers employ breadth-first search

procedure to propagate the probability of activating from the

source node v to any reachable node u, the score sv,v is

initially assigned probability 1. Throughout this procedure,

the influence probability between each pair of nodes u and

v will be recorded to support the mining of the top k most

influential nodes. In the evolution of the network, influence

and link formation are closely interrelated. The link between

two nodes forms due to the reason that the mutual influence

between them is strong enough, while in turn the formation

of link enhances the influence between these two nodes.

This inspires us to use such influence score sv,u as an

estimation of the likelihood for new links (Equation 1). There

is minor change in the equation 1, we use
weight(v,u)
degree(v) as the

probability of activating for the simplicity of computation.

flow (v, u) = score (v) · weight (v, u)
degree (v)

(1)

However this methodology is designed for the homogeneous

network, much work need to be considered to make it feasible

in the heterogeneous network. While MRIP could employ the

similar method of propagating probability, it also brings up a

fundamental question: how to propagate influence/probability
in the heterogeneous network? This question has not yet been

answered in typical influence maximization research area. Our

solution to this problem will be discussed in Section IV.

IV. THE MRIP METHOD

In this section, we introduce our MRIP method for unsuper-

vised link prediction in detail, and show its effectiveness using

real-world examples and compare it with several baselines [10]

and most recent work of [2].

A. Baseline Predictors

Most approaches to link prediction are based on measures

that analyze the proximity of nodes in the network. Feature-

based link prediction methods can be categorized as: 1) meth-

ods based on node neighbors; 2) methods based on ensemble

of all paths. In category 1 there are several baseline predic-

tors, such as Common Neighbors [14], Jaccard Coefficient,
Adamic/Adar [6] and Preferential Attachment [7]. In category

2 a number of methods refine the notion of shortest-path

distance by implicitly considering the ensemble of all paths

between two nodes.

B. MRIP
In last section we bring up a fundamental question of our

method design: how to propagate influence/probability in the
heterogeneous network?. To solve this problem we need to

know the relations between any given pairs of edge types i
and j. However, it leads to additional questions:

(a) How do we represent the relationship between any given

pair of edge types i and j quantitatively?

(b) Is the relationship between two edge types i and j sym-

metric or asymmetric?

We propose the following solutions to the aforementioned

questions, which will be detailed in Section IV.
1) Link Interrelation: There are many work in the analysis

of multi-relational and heterogeneous networks, and several

measures/notions of correlation among dimensions/relations

are proposed in the work of [26] [27] [28]. Our solution

is motivated by the network alignment work in biological

research, which encompasses interactions of different link

types to study their interrelations [22] [23]. An important

evaluation metric for network alignment algorithms is called

edge correctness, which measures the percentage of correctly

aligned edges.
We use the conditional probability probability(i|j) to rep-

resent the correlation between link type i and link type j.

The conditional probability probability(i|j) is equivalent to

the edge correctness measurement for the network alignment,

which is a simple and effective method for link types in-

terrelation study. A toy example is given in Figure 5. In

Figure 5 the conditional probability is equivalent to the edge
correctness when we construct an alignment from one network

to another. For example when we map facebook network (5

edges) to cellphone network (3 edges), only one out of five

edges are correctly aligned, thus probability(c|f) = 0.2;

when we map cellphone network to facebook network, there

are one out of three edges are correctly aligned, such that

probability(f |c) = 0.33.
The edge correctness captures the interrelation between one-

hop distant node pairs (edges in the network) in different

dimensions, this method can be easily extended to measure

the correlation between two-hop distant node pairs or three-

hop distant node pairs. By scaling the hop distance between

node pairs, for h-hop distant node pairs of link type i and

link type j, we can obtain a correlation value Ch
i,j (Figure 4),

describing h-hop distant node pairs interrelation between link

type i and link type j. And then we can construct a correlation

vector �CVi,j (Equation 2) for each pair of link type i and

link type j, which describes the relationship between two link

types, i and j , in terms of their “edge correctness” in all

possible hop distance h.

�CV i,j = (C1
i,j , C

2
i,j , ..., C

h
i,j , ...) (2)

This vector can be useful in describing the topological sim-

ilarity of different dimensions in the heterogeneous network.
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Fig. 4. Examlpes of Correlation Values

Fig. 5. Toy Example for Correlation between Different Link Types

In this paper we only use the value C1
i,j (denoted as

probability(i|j) in following sections) to describe the correla-

tion of link types. In future our method MRIP can be trivially

extened to employ the information of Ch
i,j , h > 1.

2) Asymmetric Interrelation: Intuitively for any given pairs

of link types i and j, probability(i|j) should be different from

probability(j|i). For example, while it may be likely for two

friends to call each other, two people who call each other are

not necessarily friends.

MRIP method designation is based on the following con-

siderations.

(a) For any given link type i, the influence propagates not only

through the links of type i but also propagates through

other types of links.

(b) The probabilities that propagate through other link type

j depend on the correlation between link type i and link

type j.

To that end, we modify Equation 1.

flow(v, u, i) = score(v) · β · weight(v, u, i)
degree(v, i)

+ score(v) · β ·
K∑
j �=i

(σ(i, j) · weight(v, u, j)
degree(v, j)

)/(|E(v, u)| − 1)

(3)

where v and u are nodes, β = 0.05 is the katz [9] factor,

σ(i, j) is the probability(i|j), and |E(v, u)|−1 is the number

of link types between node v and u except type i (Figure 6).

MRIP employs breadth-first search procedure to propagate

the probability. Therefore score(v) is the probability of a link

between the source node (breadth-first search source node) and

node v. The katz factor is included into design to penalize the

case described in Figure 6 (b). The long distance propagation

Fig. 6. A conceptual overview of our Multi-relational Influence Propagation
algorithm. Flow propagates outward from the source node S.

will also be penalized by the katz factor. Additionally in the

equation the top part is the influence score flowing through

link type i, while the bottom part is the “hidden” information

propagating through other types of links, such as type j. If

link type j has a significant correlation with link type i, the

“hidden” information flowing through it is also large. The

contribution from link type j to link type i depends on its

own network structure and its correlation with link type i. If

there are multiple types of links related to link i, we take the

mean of the scores propagating through them as the ‘bonus’

part; if there is no other link type (|E(v, u)| = 1), there is

zero ‘bonus’ from other link types.

C. Discussion

In our current work we only employ the weighted cascade
model in our designation, actually the influence score prop-

agating from source node v to target node u is different in

different influence spreading models. Our future work will

find out which model works best in the real world network. In

recent work of [2] Davis et al. employed triad information to

capture the interrelations between different link types, however

the expense of computation is not so feasible in large-scale

network. As for our method we employ the dyad information

to study the interrelations, the complexity of computation is

reduced. Additionally in unsupervised experiments we can

show that the performance of our method is comparable

to or better than MRLP [2] in the disease-gene network.

The time complexity of calculating conditional probability is

O(|E|), and the MRIP algorithm takes O(|V |.|E|) time for all

reachable node pairs. The MRIP complexity can be reduced

heavily when we restrict the propagation within h hops.

The computation and evaluation for all possible links on

large networks is infeasible, due to multiple computational

reasons including time and storage capacity. The work of

[1] and [21] both proposed that the link prediction within a

short hop geodesic distance (i.e. 2 hops or 3 hops) provides

much greater baseline precision in many networks. Effectively

predicting links within this set offers a strong indicator of

reasonable deployment performance. In this paper for all

methods metioned, we restricted the prediction task within the

set of three hops node pairs due to their higher prior probability

of formation and computational feasibility. And in this case

the computation complexity of our MRIP method is reduced

significantly when the hop distance is within three.
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D. Dataset

We use two real-world heterogeneous networks to demon-

strate the effectiveness of our methods in this paper.

1) DBLP: Based on the DBLP dataset from [15], we

attach timestamps for each activity in the data and choose

3,215 authors who published at least 5 papers in conferences

relating to four areas (Data Mining, Database, Information

Retrieval, and Machine Learning) between 1990 and 2010.

There are four types of nodes—authors, papers, conferences,

and terms—with the network relation structure described in

Figure 2. In this paper we focus on the co-author relation

(collaborate on paper), common terms relation (publications

have similar terms) and common conference relation (show up

in the same conference in the same year, physical proximity).

For unsupervised learning, we choose data between 1990 and

2000 as our training set, and data between 2001 and 2005 as

testing set. While for supervised learning, data between 1990

and 2000 is employed as feature set, data between 2001 and

2005 is used as label set, and data between year 2006 and

2010 is the testing set.

2) Disease-Gene Network: The disease-gene (DG) network

was constructed from three individual datasets from [2]. As

the name suggests, this network has two distinct node types,

diseases and genes, with three link types connecting them

as described in Figure 3. This dataset was only used to

evaluate unsupervised learning experiments due to the reason

that we only have the same unsupervised learning setting

from the authors of [2]. The disease-gene network consists

of 703 diseases and 1,132 genes, 10,483 genetic links, 10,483

phenotypic links, and 2,450 PPI interactions exist among these

diseases and genes.

E. Experimental Results

In order to show the power of our MRIP method in

link prediction for heterogeneous networks, we use Common
Neighbor(CN), Jaccard Coefficient(JC), Adamic/Adar(AA),

Preferential Attachment(PA) and PropFlow as baselines. For

the disease-gene network, we use a 10-fold cross-validation

stratified edge holdout scheme. We chose holdout evaluation

since longitudinal data was not relevant for the disease-gene

network. Link prediction is evaluated for each link type i
separately on all eligible node pairs (u, v).

Link prediction performance is evaluated separately for each

link type using AUROC, which are shown in Table I and

Table II. Methods in bold face indicate the best overall link

predictor for the corresponding link type. First, we notice that

there is no universally dominant method, which is an expected

result since unsupervised link prediction methods are domain-

specific [2]. In the disease-gene network, MRIP outperforms

the other methods in predicting genetic and PPI links, while it

has comparable performance to the top performer in predict-

ing phenotypic links. And we also can see that our MRIP

method is comparable to or better than MRLP in all link

types of disease-gene network. In the DBLP network MRIP

has better performance in predicting co-authorship between

authors and predicting new terms/research shared by authors,

while it also has a comparable performance in conference

presentation prediction. Notice that, for the sparse link types,

such as co-authorship, terms, and PPI, MRIP performs better

than PropFlow, as that other dimensions of link information

are considered by MRIP, which undoubtedly improves the

effectiveness of MRIP. Generally speaking, MRIP works well

in most of link types, and is also stable (comparable to the

best predictors if not the best).

TABLE I
AUROC on Disease-Gene Network for Unsupervised Learning

Disease-Gene PA PF JC CN AA MRIP MRLP [2]

Genetic 0.903 0.951 0.957 0.951 0.956 0.975 0.974

Phenotypic 0.943 0.762 0.771 0.909 0.911 0.901 0.938

PPI 0.827 0.888 0.786 0.788 0.789 0.890 0.808

TABLE II
AUROC on DBLP Network for Unsupervised Learning

DBLP PA PF JC CN AA MRIP

Collaboration 0.673 0.676 0.590 0.597 0.596 0.766
Conference 0.503 0.704 0.701 0.698 0.689 0.691

Terms 0.738 0.742 0.545 0.546 0.532 0.811

V. TEMPORAL FEATURE BASED METHODS

Taskar et al. [13] employed the attributes of objects to

support link prediction tasks in heterogeneous networks. How-

ever the attribute information is generally difficult to collect

in real-world networks, often due to security reasons and

privacy issues. Additionally even if some of this information

is available, such as user surveys, it is usually incomplete or

unreliable. We need information that can potentially expose

users’ subconscious behavior, and time is the best choice we

have. On the other hand, time is important because network

evolution is associated with it. When users in the network

make a decision, their activities are tagged by timestamps,

which can serve as data for analyzing their behavior patterns.

Therefore, the combination of network topology and corre-

ponding temporal information can benefit the link prediction

task. However, it is a difficult conclusion to draw without

careful investigations.

A. A Simple Case for Temporal Network Analysis

We extract the DBLP co-author network from between

1980 and 2010, and for each year we compute the number

of new links constructed, creating a time series as shown in

Figure 7 (a). According to the figure, we can see that this time

series has a significant trend. To analyze a time series, the

preliminary step is to determine that whether there is unit root

at significant level. Dickey et al. [16] proposed a method called

the augmented Dickey-Fuller test, which can tell whether there

is unit root in the time series. With augmented Dickey-Fuller
test we find that the unit root p-value is significant (0.99).

Thus we know that this time series is non-stationary and that

a difference operator needs to be applied to the time series. In

this way we can determine an Unit-Root Nonstationary model
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Fig. 7. a) New Links Time Series for DBLP Co-author Network b) First
Differenced Time Series c) ACF of New Links Time Series d) ACF of First
Differenced New Links Time Series

is suitable for this time series. To analyze such time series,

we first take the difference from the original data and then

analyze its lag order. For example, if we know that the last

step had a decreasing trend, then we may forecast that this

trend will continue in the next step. However we don’t know

how many step-back-look should take without lag test. With

the first differenced time series, if we employ MLE (maximum

likelihood estimation) method to verify its lag order, we find

that lag order 1 is the best we have. This is also confirmed by

its Autocorrelation Function (ACF) plot in Figure 7 (d).

This observation demonstrates that link formation in net-

works is strongly associated with time, which serves as a

guideline for our method designation. In conclusion: 1) the

evolution of network of current step depends on the network

in last step at significant level (ACF); 2) link formation is

significantly correlated with time and can be modeled with

the associated time information.

Besides the global trend, the link formation is also in-

fluenced by individual behaviors. An obstacle, however, to

analyzing individual behavior is the lack of data. DBLP degree

distribution follows power law, which means most nodes have

low degrees and thus provide little information for statistical

analysis. Bootstrapping technology is also an option to solve

this issue. Notice, though, that link formation occurs between

two nodes; likewise, if there is enough information for one of

the nodes, we can use it to guide our analysis. In the DBLP

network, high degree nodes definitely have enough temporal

information for analysis, however we need to know what

percentage of new links are associated with them. Based on

the degree information, we rank the nodes in descending order,

and we statistically analyze how many new links in the future

are associated with the top K% of them. In Figure 8 we first

rank nodes in the network observed between 1980 and 2000,

and compute how many new links between 2001 and 2005

are related to the top K% of them; we repeat this experiment

for the network between 1980 and 2005 and new links within

2006 and 2010. We can see that about 60% of new links are

Fig. 8. Top K Percentage Author’s and New Links Associated with Them

constructed from the top 20% high degree nodes, which means

that in the link formation two end nodes do not play the same

role; rather, one of them dominates the formation of the link.

This finding guides our design of temporal features in the

following sections.

B. Temporal Features and Generalized Temporal Methods

We now introduce the temporal features used in our link

prediction solution, and some generalizations of baseline pre-

dictors.

1) Recency and Activeness: Recency is proposed by Pot-

gieter et al. [17] and activeness is proposed by Huang and

Lin [18]. Originally these two features are used to predict

the recurrence of links in the future. Recency is the length of

time elapsed since a node made its last communication, and

activeness is the number of communications made in last time

step. We alter the definition to fit into a new link prediction

scenario, where recency is the time elapsed since a node made

its last new link and activeness is the number of new links

made in last time step.

2) Degree Preferential Likelihood: This feature is designed

to capture the personalized behavior of a node in the network

when it’s trying to choose another node to form a new link.

Preferential Attachment suggests that high degree nodes have

a high probability of developing a new link. This is true

when the network has an outside intermediate to propagate

influences between nodes. For example, in an academic co-

authorship network, the influence not only propagates through

the network, but nontrivial percentage of influence is spread

through other media, such as magazines, TV, or newspaper.

When such outside media does not exist, such as in a cellphone

network, the hypothesis of Preferential Attachment could lead

to a poor prediction quality [1]. Thus, in our paper we decom-

pose Preferential Attachment. The benefit of decomposition is

demonstrated in Figure 11. In traditional Common Neighbor
method we can not differentiate the likelihood of two node

pairs sharing the same number of common neigbors, however

by decomposition we can capture the preference of individual

nodes and then distinguish that one node pair has larger

probability to occur than the other.

Definition 1. The degree preferential vector of a node v is a
sequence of historical data that describes the degree of node
v’s neighbor u when v and u form a link.

For each node in the network we record a degree preferential
vector as shown in Figure 10. Then given two nodes u, v
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Fig. 9. Two Models

Fig. 10. Degree Preferential Vector

Fig. 11. Decomposition Benefit

and their degree preferential vectors, we can compute the

prob(u|vector(v)) and prob(v|vector(u)). In this paper we

employ two methods to calculate the prob(u|vector(v)):
1) Naive Model:

prob(u|vector(v)) = |x|, x ∈ [α, β], x ∈ vector(v)

|vector(v)|
α = degree(u)− std(vector(v))

β = degree(u) + std(vector(v))
(4)

2) Null Hypothesis Model:

prob(u|vector(v)) = p value(t ratio)

t ratio =
degree(u)−mean(vector(v))

std(vector(v))

(5)

The obstacle to compute prob(u|vector(v)) is that the

probability of a single value is zero for a given continuous

PDF function. For model 1, the hypothesis is, if node u has a

high probability of being selected by node v for link formation,

then the scope (α, β) should cover a large portion of values in

the degree preferential vector. This is the most naive way to

estimate the probability that node u selects node v. In model

2, we have a null hypothesis H0 : the mean value of vector(v)
is degree(u). The p-value can reveal the significant level of

this null hypothesis H0. Our heuristic, the probability of link

Fig. 12. Temporal Methods

formation between nodes u and v, depends on the closeness

between degree(u) and mean(vector(v)).
Based on our findings in Section V-A, one node will

dominate the formation of a link. Thus we define the likelihood

of link between nodes u and v as:

degree preferential(u, v) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

prob(u|vector(v)) · prob(v|vector(u)) if d(u), d(v) � α

prob(u|vector(v)) if d(u) < α, d(v) � α

prob(v|vector(u)) if d(v) < α, d(u) � α

0 if d(v) < α, d(u) < α

(6)

α is a threshold that determines whether a node has enough

historical data for analysis, if degree(u) < α we consider the

other node v dominates the preference, while if both of them

do not have enough historical data the likelihood is assigned

probability zero.

Both models assume that if properties of two nodes u and

v fit well then there is a high chance that a link will form.

However in real world networks node u degree may be very

close to the mean of vector(v), in which case it is still possible

that they fail to link each other. If we can statistically collect

this information and develop a more decent model, temporal

methods discussed above may achieve better performance.

3) Temporal Methods: To generalize static baseline predic-

tors into methods including time information, eligible methods

should meet some requirements:

1) Simplicity: The original baseline predictors should be

simple in complexity, such as Common Neighbor and

Jaccard Coefficient. The paths involving methods are too

complex for computation when considering time, i.e.,

Katz.

2) Generality: These original baseline predictors should re-

veal the generality of nodes behavior, such as Preferential
Attachment, which describes the general behavior pattern

when people are choosing collaborators.

Based on above requirements we select Common Neigh-
bor(CN), Jaccard Coefficient(JC), Adamic Adar(AA) and Pref-
erential Attachment(PA) for generalization. Similar to the

degree preferential vector (Figure 10) we can collect the

common neighbor preferential vector for each node, and then

compute the common neighbor perferential likelihood score

for each pair of nodes u, v. We can generalize JC, AA and
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PA in the same way. (Figure 12)

4) Heterogeneous Network Discussion: We can also de-

velop some temporal features by using other types of link

information. For example, we can collect the common con-

ferences number when two authors construct a new link, or

gather the information about how similar their publications

terms are when a link forms. In this way we create a feature

called temporal Conference to measure the likelihood of link

formation between two given nodes u, v. Which link type is

selected to construct such a temporal feature depends on its

correlation with our predicting link type. A similar method like

meta-path [3] can be employed to evaluate the significance of

the correlation.

C. Unsupervied Experimental Results

In this section we perform the experiments for temporal

methods introduced above, and give their performance mea-

sured by AUROC in Table III. From the table we can see that

the temporal method generally yields better results than their

static counterparts. For example temporal Common Neighbor
outperforms Common Neighbor by 9% in terms of AUROC.

And temporal Conference performance (0.681) is even better

than PropFlow (0.676). The temporal degree pereferential
likelihood does not outperform Preferential Attachment, but

is still comparable. Additionally, we would like to note that

all of these temporal methods have very low complexity

of computation, however they achieve better or comparable

performance compared with PropFlow.

TABLE III
AUROC Comparison on DBLP Co-author Network

Temporal Predictor T PA T CN T JC T AA T Conf

AUROC 0.670 0.651 0.648 0.650 0.681
Static Predictor PA CN JC AA PF

AUROC 0.673 0.597 0.590 0.596 0.676

In these tables T PA states for Temporal Preferential Attachment method, T CN is the
Temporal Common Neighbor method, T JC is the Temporal Jaccard Coefficient
method, T AA represents the Temporal Adamic Adar method, and T Conf is the
Temporal Conference method.

In conclusion if temporal information is considered, then

we can achieve better predictive performance by generalizing

static baseline predictors, both on homogenous and heteroge-

neous networks.

VI. INTEGRATING MRIP AND TEMPORAL FEATURES IN A

UNIFIED SUPERVISED MODEL

We study the performance of supervised classification in

several contexts: first, the performance of link prediction, if

we involve multi-relational features, such as MRIP; second,

the performance of link prediction, when temporal features

are included; third, the performance of predictors that combine

both. In order to show the power of using temporal features

and MRIP feature in link prediction, we use bagging with

logistic regression (WEKA, default parameters) [12] for our

frameworks - Temporal Model and MRIP Model, that is

frequently used in binary link prediction tasks as the baseline.

And we also include the bagging with WEKA random forests

(10 trees, default parameters) for HPLP (High Performance

Link Prediction framework) [1] that incorporates powerful ho-

mogeneous features listed in Table IV, in our paper we denote

it as Homo Model. Note that for VCP3U and VCP4U we use

bagging with random subspace [24] as described in the paper

of [20]. VCP3U and VCP4U are the most recent supervised

learning models that can work in the heterogeneous network.

We undersample training set to 30% positive class prevalence

in training. We do not change the size or distribution of the

testing data.

A. Temporal Model, MRIP Model and Homo Model

In this section we compare three supervised learning mod-

els. In the Temporal Model we only include temporal features

as feature vectors, for the MRIP Model we include MRIP fea-

ture, and the Homo Model is the best supervised framework for

the homogeneous networks proposed in the work of [1]. The

features list of these three models are presented in Table IV.

Here we would like to note that these temporal features are

all computed under Null Hypothesis Model (Section V-B2).

Additionally we include the comparisons of our method with

VCP3U and VCP4U described in Section II, the detailed

features vectors for VCP3U and VCP4U can be found in the

work of [20] accordingly.

TABLE IV
Features List

Features Temporal Model MRIP Model Homo Model
Degree

√ √
Volume

√ √
Common Neighbor

√ √
Jaccard Coefficient

√ √
Adamic Adar

√ √
Preferential Attachment

√ √
Max Flow

√
Shortest Path

√ √
MRIP

√
PropFlow

√
Recency

√
Activeness

√
Temporal Common Neighbor

√
Temporal Jaccard Coefficient

√
Temporal Adamic Adar

√
Temporal Preferential Attachment

√
Temporal Conference

√

TABLE V
Three Models Comparison

Classifiers Temporal Model MRIP Model Homo Model VCP3U VCP4U
AUROC 0.787 0.739 0.697 0.718 0.723

The experimental results of these three models, VCP3U

and VCP4U are given in Table V. Interestingly we can see

that the Temporal Model outperforms all the other models.

Furthermore, in our observation with multi-relational features

(MRIP Model) we can achieve better AUROC than only using

homogeneous information (Homo Model). We conjecture that

better performance can be achieved by combining these useful

features, especially temporal features.
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Fig. 13. The ROC curve

B. Temporal Multi-Relational Model

In this section we combine the temporal features with multi-

relational features and informative homogeneous features,

resulting in a more effective model. For Table VI in this

section, MR-TM means that we use features which come from

combination of the MRIP model and the Temporal Model,
Homo-TM means the features combination of the Homo
Model and the Temporal Model, and MR-TM-Homo means

the combination of all features.

TABLE VI
Combinations of Models

Classifiers MR-TM Homo-TM MR-TM-Homo

Random Forest 0.773 0.773 0.789
Logistic 0.825 0.823 0.832

In these tables MR-TM model combines features from the MRIP model and the
Temporal Model, Homo-TM model features vector is the union of the Homo Model and
the Temporal Model, and MR-TM-Homo model uses all features listed in Table IV.

Obviously we can conclude MR-TM-Homo model outper-

forms all other solutions, and that we can achieve better

AUROC performance with a logistic classifier over a Random

Forest classifier.

C. Analysis and Discussion

Because AUROC alone can sometimes be misleading, we

also include ROC (receiver operating characteristic curve)

curves in Figure 13. From Figure 13 we can see that MRIP
Model is better than Homo Model, VCP3U and VCP4U in

predicting co-authorship, while Temporal Model outperforms

VCP3U, VCP4U and Homo Model. In our observation with

considering temporal information and multi-relational infor-

mation we can achieve much better performance than most re-

cent competitive work in the link prediction task, i.e. VCP3U,

VCP4U and Homo Model. MR-TM-Homo outperforms Homo
Model by almost 20% in terms of AUROC.

A significant challenge of link prediction as a supervised

learning problem comes from the sparseness of networks and

associated predictors’ values. We define a metric called density
ratio to measure the sparseness of link predictors.

Definition 2. The density ratio of the predictor p represents

how many percentages of node pairs in the link prediction
space have corresponding scores assigned by the predictor p.

The sparseness of the link predictors’ values makes it diffi-

cult for supervised classifiers to distinguish between positive

class and negative class. Multi-relational link predictors and

temporal link predictors can achieve better performance than

traditional link predictors due to the reason that they overcome

the sparseness issue. From Table VII we can see the mulit-

relational link predictors and temporal link predictors have

much larger density ratio than traditional link predictors, i.e.

Common Neighbor.

TABLE VII
Link Predictors Density Ratio

Homo Predictor Density Ratio Heter Predictor Density Ratio Temporal Predictor Density Ratio
AA 0.005 MRIP 0.31 T AA 0.139

CN 0.005 VCP3U 1.0 T CN 0.06

JC 0.005 VCP4U 1.0 T JC 0.139

PA 1.000 T PA 0.140

PF 0.110

We can observe that the sparseness of link predictors is

closely correlated with their prediction performance. However

the sparseness is not the only factor which determines the

performance of link predictors; for example, PropFlow values

on the DBLP network are much sparser than Preferential
Attachment, however PropFlow has higher AUROC score

than Preferential Attachment method. The inherent abilitiy

(such as heuristic, feasibility and generality) of link predictors

is another crucial factor that determines their performance.

Intuitively MRIP and temporal features estimate the likelihood

of new links based on more abundant information, thus they

undoubtedly provide more information for classifier to learn

from.

D. Performance Trend

When we scale the test set size, we get the different AUROC

scores, and we find that the performance trend agrees with the

global trend that we analyzed in previous Section V-A.

TABLE VIII
Model Performance Comparison: Label = 5 and Test = 1, 2, 3, 4, 5

DBLP T=1 T=2 T=3 T=4 T=5

MR-TM-RF 0.779 0.773 0.766 0.763 0.773

Hom-Time-RF 0.780 0.787 0.776 0.773 0.773

MR-TM-Hom-RF 0.813 0.799 0.792 0.789 0.789

MR-Time-Log 0.839 0.837 0.829 0.824 0.825

Hom-Time-Log 0.832 0.835 0.827 0.823 0.823

MR-TM-Hom-Log 0.849 0.842 0.836 0.833 0.832

An interesting observation is that the global new links

construction time series between 2006 and 2010 are highly

correlated with the AUROC scores in Table VIII, with the

same trend over time. This implies that global link construction

trend can influence the performance of link prediction as we

discussed in Section V-A. This also inspires us to include

the global trend of link formation in our future work, as the

performance of a link predictor aware of link occurrence time
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Fig. 14. New Links Time Series Trend and Prediction Performance Trend

should not be impacted significantly by the scale of the test

set.

VII. CONCLUSION

We proposed two types of predictors, which can be used

both in unsupervised and supervised models for link predic-

tion in heterogeneous networks. The unsupervised predictor

MRIP is demonstrated to have better performance than various

competing methods on heterogeneous networks. We also de-

signed several unsupervised temporal link predictors which are

extended from classical baseline predictors. They outperform

original methods by more than 9% in terms of AUROC.

In supervised works of this paper, we employ MRIP and

unsupervised temporal predictors as features to construct an

effective model for link prediction in heterogeneous networks.

The model utilizing temporal features and multi-relational

features demonstrates promising performance on DBLP co-

authorship prediction.

We also discussed the impact of global link formation

trends on the link predictors performance, which suggests that

including trend-aware features may benefit the link prediction.

Additionally, we show that temporal features can improve

the link prediction performance, motivating the next step

of our work to efficiently capture the richness of temporal

information in the networks. Developing temporal features in

the future may bring us a more effective model, which can be

used in the heterogeneous networks scenario.
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