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a b s t r a c t

The crowdfunding industry is growing rapidly worldwide and poses new challenges on how to under-
stand investment behavior. Indeed, a key challenge in this area is how to measure the similarity of an
investor and a company, or the interest of an investor in a company. Tremendous effort has been made in
previous research regarding the single effective factor or homogeneous network model based on link
prediction for investment behavior prediction. In this study, we build an investment behavior prediction
model of meta-path-based heterogeneous network, which considers multiple entity and relation types
associated with the investment behavior of a particular investor. Our investment behavior prediction
model provides an effective similarity measure function for meta-path. To validate the proposed model,
we perform experiments on real-world data from CrunchBase. Experimental results reveal that our in-
vestment behavior prediction model is indeed a useful indicator.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

A new investment style, crowdfunding, is emerging [1].
Crowdfunding is the practice of funding a project or venture by
raising monetary contributions from a large number of people,
typically via the Internet. Therefore, predicting investor behavior
has become another new behavior prediction in the crowdfunding
field.

Numerous studies have explored investment behavior. Factors
such as psychological differences [2], geographic differences [3],
investment experiences [4], and even genetics [5–7] have been
proposed to explain factors that spur investments. Moreover, some
researchers use social network features, extracted from a homo-
geneous relational network of investors and companies, to build a
predictive model based on link prediction [8]. A homogeneous
network considers nodes as the same entity type (e.g., person) and
links as the same relation type (e.g., friendship). Nevertheless, in
the real world, most networks are heterogeneous [9], where
multiple types of objects and links exist. On the one hand, con-
sidering nodes as the same type may miss important semantic
information. On the other hand, significant schema-level in-
formation may also be lost when we treat all nodes in a distinct
type. Considering that companies are of the same kind and
uyouli@foxmail.com (Y. Li),
(Z. Lin),
comparing them with some other kinds, such as categories, is
important. Thus, a heterogeneous network may be suitable in
capturing the essential semantics of the CrunchBase dataset.

Various methods, such as modeling a link prediction problem,
predict the emergence of links between investors and companies
in a network based on current or historical network information
[10]. However, link prediction methods are designed for homo-
geneous networks. In the present study, we extend the link pre-
diction to the relationship prediction in heterogeneous informa-
tion networks. Bio-inspired models and algorithms, such as P
systems (inspired by the structure and functioning of cells) [11,12]
and evolutionary computation (motivated by Darwinian theory of
evolution) [13,14], are also useful methods for investment beha-
vior prediction.
2. Previous related work

Eugene and Daphne [15] explored the possibility that investors
invest in companies based on social relationships, whether posi-
tive or negative, similar or dissimilar. Their predictive model is
based on a homogeneous network, but most networks are het-
erogeneous where multiple types of objects and links exist. We
proposed a method that is based on heterogeneous networks.
Guang et al. [16] conducted studies using the CrunchBase dataset
and, using profiles and news articles from TechCrunch, predicted
company acquisitions with factual and topical features. Their
works focus on a different domain of mergers and acquisitions,
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and did not use other relations and all the influential factors in
investor behavior.

Sun et al. [17], by exploring meta-path-based [18] features,
introduced relationship prediction in a heterogeneous information
network. To measure the similarity of different types of objects
and links, the measure functions used for the meta-path include
PathCount, NormalizedPathCount [19], RandomWalk [20], and
others. Shi and Kong [21] proposed a novel measure function,
HeteSim, that quantifies the topology. The related similarity
computation is also used in gene-disease heterogeneous networks
[22–24].

The original contribution of this paper is that it proposes the
use of a meta-path-based heterogeneous information network as
the main way to predict if investments will occur. For example,
given an Investor and a Company, we can predict if the Investor
will invest in that particular Company by mining the similarity
between the Investor and the Company, which merges multiple
impact factors together. Experimental results reveal that our
model is an effective approach for companies that are seeking
investments because these companies have a significant similarity
to potential investors in all respects.
3. Meta-path-based relationship prediction

In this section, using the CrunchBase dataset, we introduce how
to model the investment behavior by measuring the meta-path-
based similarity between Investor and Company in heterogeneous
information networks.

3.1. CrunchBase dataset

CrunchBase (http://www.crunchbase.com) is an open dataset
that contains information on startups, investors, funders, acquisi-
tions, trends, companies, and related subjects. CrunchBase relies
on the online community to provide and edit most of its content.
As of May 2014, CrunchBase consisted of 46,015 companies (or-
ganizations); 106,075 investments; and 12,068 acquisitions.

Entity types
Investor. Investors consist of persons and companies (organi-

zations), such as Garret Camp, Google, and others. In subsequent
calculations, we denote Inv as an investor set and Invi as investor i.

Company. Companies are simply companies (organizations),
such as Google, Uber, AOL, and others. In subsequent calculations,
we denote Com as company set and Comi as company i.

Category. The current CrunchBase dataset has 741 categories.
For example, the categories of the Google company are software,
search, and others. In subsequent calculations, we denote Cat as
category set and Cati as category i.

City. The city is the location of the corporate headquarters.
Study [3] revealed that geographic differences spur investments.
In subsequent calculations, we employ Cit as cities set and Citi as
city i.

Relationship type
Investment. Investment relationships are created as a result of

the investment behavior of an Investor. For example, Google in-
vested in AOL in December 2005. In subsequent calculations, we
denote RInv as an investment relationship set and Rij

Inv as investor i
who invests in company j.

Market. The market refers to the company’s products that be-
long to a given Category. For example, Uber’s business includes
automobiles and transportation. In subsequent calculations, we
denote RMar as a market relationship set and Rij

Mar indicates the
market of company i at category j.

Location. This variable refers to the location of the company
headquarters. For example, Uber’s headquarters is in San Francis-
co. In subsequent calculations, we denote RLoc as a location re-
lationship set, and Rij

Loc indicates that company i is located in city j.
Acquisition. Acquisition relationships are created as a result of

agreements between Companies. For example, Google acquired
Adometry in May 2014. In subsequent calculations, we denote RAcq

as an acquisition relationship set, and Rij
Acq indicates that company

i acquires company j.

3.2. CrunchBase heterogeneous information network

3.2.1. Definition of CrunchBase heterogeneous information network
schema

A heterogeneous network schema is a special type of in-
formation network that differs from a traditional homogeneous
network in that the underpinning data structure is in the form of a
directed graph. We define a heterogeneous information network
as follows:

Definition 1. (Heterogeneous information network schema)
Given a schema ( )=T , ,G which is a meta template for a hetero-
geneous network = ( )G V E, with the object type mapping function
ϕ →: V and the link type mapping function ψ →:E , which means
that each object ∈v V meets ( )ϕ ∈v and each link ∈e E meets ψ ( )∈e ,
and G is a directed graph defined over object types , with edges as
relations from . Furthermore, in a heterogeneous network G, the
types of object or the type of relation or both is more than one.

In a heterogeneous information network of the CrunchBase
dataset, the sets of entity and relation types are and , re-
spectively. RInv, which represents the investment relationship be-
tween Inv and Com, is denoted as →Inv

RInv
. Inv is the source type and

Com is the target type that belongs to relation RInv. The path from
Com to Inv is deemed to be the inverse of the relation RInv and is
denoted as →

( )−
Com

RInv 1
.

3.2.2. Heterogeneous information network used for experiment
Using the dataset from CrunchBase, we build a heterogeneous

information network based on the entity and relationship types
mentioned in Section 3.1, where nodes represent entities and
edges indicate relationships. Fig. 1 outlines the heterogeneous
information network used for experiments. To construct the het-
erogeneous information network shown in Fig. 1, we have to first
select entities as nodes and then connect the nodes based on the
relationships between entities. Fig. 1 covers almost all of the
usable information on the CrunchBase dataset except the in-
formation on URLs, serial numbers, and so on. After establishing
the network, we can extract meta-paths and use them to model
the similarity between an investor and a company. In the next
section, we explain the meta-paths and their measure function in
detail.

3.3. Meta-Paths in CrunchBase heterogeneous information network

In this section, we introduce the concept of Meta-Path and
describe how to apply it to the CrunchBase Heterogeneous In-
formation Network. The meta-path, a special type of path that
connects two objects in a Heterogeneous Information Network, is
defined as follows:

Definition 2. (Meta-Path) A meta-path is a path defined on the
graph of network schema (= )T ,G , and is denoted in the form of
→ → ⋯ →

−
A A

R R R
n2

n1 2 1
, which defines a composite relation

= ∘ ∘⋯∘ −R R R Rn1 2 1 between type A1 and An, where ∘ denotes the
composition operator on the relations.

As mentioned in Definition 2, a meta-path is a path defined

http://www.crunchbase.com
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Fig. 1. Heterogeneous information network schema of CrunchBase dataset.
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Fig. 2. Investment behavior prediction framework.
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over a network schema, which denotes a composition relationship
over a heterogeneous information network. The neighbor set-
based and path-based features are defined in a homogeneous
network, but both of them can be generalized in a heterogeneous
network by considering paths that follow different meta-paths [4].
In the network shown in Fig. 1, we extract all the significant meta-
paths within a length constraint less than 4, starting with the type
Inv and ending with the type Com. In our experimental section, we
explain in detail that longer meta-paths do not make sense in
measuring the similarity between an investor and a company.
Meta-paths between investor type and company type can be ex-
tracted by traversing the graph of network schema. Then, all the
meta-paths between investors and companies are summarized in
Table 1.

3.4. Measure function on meta-path

Once the meta-path-based topology (see Table 1) has been
generated, the effective measure functions that quantify the to-
pology are required.

Formula (1) is the HeteSim [21] between two objects a and b
based on meta-path . HeteSim is the cosine of the probability
distributions of the source object ∈a Inv and target object ∈b Com,
which reach the middle type object M. HeteSim ranges from 0 to 1.

( ) ( )
( )

| =
( )

( ) ( )

−

−
HeteSim a b

PM a PM b

PM a PM b
,

,: ,:

,: ,:
,

1

1

1

L R

L R

where PM is an attainable probability matrix for meta-path p,
and ( )PM i j, represents the probability of object ∈i Inv reaching
object ∈j Com based on meta-path . ( )PM a, : is the a-th row in
PM and is calculated by Formula (2). −PM 1 is the transposed
matrix of PM . L and R are the left and right aspects of the meta-
path, respectively.

= ⋯ ( )PM U U U , 2R R Rn1 2

where URn is the normalized matrix of the adjacent relationship
matrix Rn. Rn is an element of the adjacent relationship matrix set
, where ( *)−R 1 is the transposed matrix of *R . Specifically, in our

work, we use the Fig. 1 network schema, where the R1 must be RInv.
Table 1
Significant Meta-Path under length 4 in CrunchBase network.

Meta-Path Semantic meaning of the relation

Inv-Com-Inv-Com Similarity of Invi and Comj that was invested by

Inv-Com-Cat-Com Similarity of Invi and Comj that market at Cati t
Inv-Com-Cit-Com Similarity of Invi and Comj that is located at Ca
Inv-Com-Com Similarity of Invi and Comj that was acquired by

Inv-Com-Com-Inv-Com Similarity of Invi and Comj that was invested by
Inv-Com-Cat-Com-Com Similarity of Invi and Comj that was acquired by
Inv-Com-Com-Cat-Com Similarity of Invi and Comj that market at Cati a
Path Count indicates the number of path instances between
objects a and b following , as given by the following equation:

= { ∈ } ( )PC p p: , 3

where p is a path instance between objects a and b.
Random Walk represents the random walk probability that

starts from a and ends with b following meta-path , which is the
sum of the probabilities of all the path instances ∈p starting from
a and ending with b, as denoted by the following equation:

)∑= (
( )∈

RW Prob p .
4p

3.5. Investment behavior prediction

As depicted in Fig. 2, the prediction framework consists of a
training stage and a test stage. Given the training pairs of investors
and companies, we first collect their associated heterogeneous
network features extracted from the aggregated network in the
time interval T0. Then, we record the investment behavior building
facts, represented as labels in the future interval T1, that exist be-
tween the investors and the companies. Thereafter, we build a
prediction model to learn the weights that are relevant to these
heterogeneous features.

3.5.1. Investment behavior prediction model
To predict whether an investor will invest in a particular

company in a future interval, denoted as y, we use the logistic
regression model as the prediction model. For each training pair of
investors and companies < >Inv Com,i j , which follows Bernoulli

distribution with probability pij( ( )= =P y p1ij ij), (1) let Xij be the

( + )d 1 -dimensional vector, which includes constant 1 and d het-
erogeneous network features between investors and companies,
and (2) yij be the label of whether an investor will invest in a
company in the future ( =y 1ij if an investor will invest and 0
otherwise). The probability pij is modeled as follows:
Invj similar to Invi

hat Invj is interested in

ti where Invi invests more

Comi similar to Invi

Invj similar to Invi and acquired by Invj invested Comi

Comi, which has a common category with Comk that was invested by Invi

nd has common categories with Comi that was acquired by Comk similar to Invi



Fig. 3. Prediction model parameters learning.
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=
+ ( )
β

βp
e

e 1
,

5

X

Xij

ij

ij

where β is the +d 1 coefficient weight relevant to the constant
and each heterogeneous topological feature. Then, the regression
coefficients are optimized in the regularization framework, i.e., the
maximum log-likelihood estimate on the training dataset. The
formula is described as follows:

( )( ) ∑β = + −
( )β ∈ ∈

⎡⎣ ⎤⎦maxL y log p y log p1 ,
6i Inv j Com ij ij ij ij,

where stochastic gradient descent method can be used to learn the
coefficients. Finally, we present an integrated investment behavior
prediction model of the supervised learning framework in Fig. 3.

3.5.2. Investment behavior building time prediction model
Previous studies that modeled investment behavior as link

prediction focused on asking whether a link would be built in the
future, i.e., “whether an investor will invest in a company.”
Nevertheless, we are interested in predicting when the investment
will be built.

Thus, we propose the GLM-based [25] prediction model, which
directly models the investment behavior building time as a func-
tion of meta-paths, and provides methods to learn the parameters
of the model under different assumptions for investment behavior
building time distributions.

The main idea of GLM is to model the response variable y, ( )E y ,
as a function (link function) of the linear expression of meta-paths,
that is, βXi , where Xi is the ( + )d 1 -dimensional vector including
constant 1 and d meta-paths between investors and companies,
and β is the coefficient vector. Then, the goal is to learn β ac-
cording to the training data. Under different distribution as-
sumptions for y, usually from the exponential family, ( )E y has
different forms of parameter set, and the link functions also have
different forms. The logistic regression is a special case of GML and
y obeys Bernoulli distribution.

We first consider the exponential distribution [26], which is the
most frequently used distribution in modeling the waiting time for
an event. The probability density function of an exponential dis-
tribution is

θ
( )= ( )θ−f y e

1
, 7

y

where ≥y 0, and θ > 0 is the parameter denoting the mean waiting
time for the event. The cumulative distribution function is

( )( )= ≤ = − ( )θ−F y P Y y e1 . 8
y

Then, we consider the Weibull distribution, which is a gen-
eralized version of exponential distribution. The probability den-
sity function of a Weibull distribution is

λ
θ

( )= ( )
λ

λ
θ

−
−( )λf y

y
e , 9

y
1

/

where ≥y 0, and θ > 0 and λ > 0 are two parameters related to
mean waiting time for the event and hazard of happening of the



Fig. 4. Investment behavior prediction model comparison of homogeneous and
heterogeneous networks.
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event along with the time. When λ > 1, an increasing happening
rate occurs along the time (if an event does not happen at an early
time, it has higher probability of happening at a later time); and
when λ < 1, a decreasing happening rate occurs along the time (if
an event does not happen at an early time, it has less possibility of
happening at a later time). In our experiments, we set λ as equal to
0.95. When λ = 1, the Weibull distribution becomes exponential
distribution with mean waiting time as θ , and the happening rate
does not change along the time. The Weibull distribution cumu-
lative distribution function is

( )( )= ≤ = − ( )θ−( )λF y P Y y e1 . 10y/

Model under Weibull Distribution. We only need to consider the
prediction model with Weibull distribution (when λ≤1).

In this case, we assume that investment behavior building time
yi for each train pair is independent of each other, following the
same Weibull distribution with the same λ, but with different
mean waiting time θi. Under this assumption, we can evaluate the
expectation for each random variable yi as θ( )= Г( + )

λ
E y 1i i

1 . We

then use the link function ( )= Г( + )β
λ

−E y e 1X
i

1i , that is

βθ β β= − − ∑ = − XXlog i k
d

i
k

k i0 , where β0 is the constant term. Then,
we can write the log-likelihood function as follows:

( ) ( )∑ { } { }θ λ θ λ= ( + ≥ )
( )

< ≥log L f y I P y T I, , ,
11i

n

i i y T i i y Ti i

where { }<I y Ti
and { }≥I y Ti

are indicator functions, which are equal to
1 if the predicate holds, or 0 otherwise. Eq. (11) means that if yi is
observed in a future interval, we use its density function; other-
wise, we use the probability of >y Ti in the function. In our ex-
periments, we regarded ( )θ λ≥P y T ,i i as zero.

By plugging in βθ = − Xlog i i , we can obtain the log likelihood
with parameters β and λ as follows:

( ) ∑ ∑{ }β λ
λ

= −
( )β β

λ

λ

λ

=
<

−

−
=

−
⎜ ⎟⎛
⎝

⎞
⎠LL I log

y

e
y

e
, ,

12X X
i

n

y T
i

i

n
i

1

1

1
i i i

where LL denotes the log-likelihood function under Weibull
distribution [27].

The learning of a model is an optimization problem, which aims

to find β̂ and λ̂ that maximize the log likelihood. Newton–Raphson
method can be used to derive the update formulas.
Table 2
Significant of meta-paths with different measure function.

Meta-paths p-Value

HeteSim PathCount RandomWalk

Inv-Com-Inv-Com o2e�16(***) o2e�16(***) o2e-16(***)
Inv-Com-Cat-Com o2e�16(***) o2e�16(***) o2e-16(***)
Inv-Com-Cit-Com o2e�16(***) o2e�16 (***) o2e�16(***)
Inv-Com-Com 0.0218(*) 0.9964( ) 0.0556(.)
Inv-Com-Com-Inv-Com 8.79e�7(***) 0.0335(*) 0.8813( )
Inv-Com-Cat-Com-Com 0.0968(.) 0.3801( ) 0.2682( )
Inv-Com-Com-Cat-Com 0.0807(.) 0.0180(*) 0.2239( )

0: ‘***’; 0.001: ‘**’; 0.01: ‘*’; 0.05: ‘.’; 0.1: ‘ ’.
4. Experiments

To validate the proposed model, we performed our experi-
ments on the real-world data from CrunchBase, and evaluated the
prediction more efficiently than did the previous studies. We ap-
plied AUC, used in previous research, as our evaluation metric to
compare our experimental results. Note that the positive and ne-
gative samples are severely imbalanced, and we randomize (equal
probability) the negative samples to the usual level.

4.1. Aggregate performance comparison

We compare the experimental results based on meta-path
heterogeneous information network with the results based on a
homogeneous network. Overall, the performance of all algorithms
exceeded the baseline performance of 0.6 for AUC. For the meta-
paths extracted from the heterogeneous information network, we
used HeteSim, PathCount, and RandomWalk to measure the simi-
larity of the seven meta-paths listed in Table 1. The comparison
results are summarized in Fig. 4.

We determine the HomoDT, HomoSVM, and HomoNB model
investment behavior as a link prediction problem, and then extract
multiple link prediction features from the homogeneous network.
They are distinct from using difference learning algorithms as
follows: DT refers to decision tree, SVM refers to support vector
machine, and NB refers to naive Bayes. HeteSim, PathCount, and
RandomWalk refer to model investment behavior as a hetero-
geneous information network relationship prediction problem,
and we use HeteSim, PathCount, and RandomWalk, respectively, to
measure similarity for meta-path. Experimental results using the
measure function of HeteSim and PathCount reveal that our pre-
diction models can predict investment behavior more effectively
than modeling that use link prediction in a homogeneous in-
formation network.
4.2. Significant of meta-path study

In this section, we show the learned significance of meta-path
for each topological feature in deciding the relationship between
investors and companies built on CrunchBase. Table 2 presents the
coefficients for all the seven meta-paths according to their differ-
ent measure functions.

Considering the results shown in Table 2, we summarize the
following three findings: (1) On the one hand, HeteSim and
PathCount obtain better performance than RandomWalk, which
indicates that the significant rankings of meta-paths are similar to
both measure functions. (2) On the other hand, overall, HeteSim is
the best measure of investment behavior prediction. Meanwhile,
because the p-Value of meta-paths of Inv-Com-Inv-Com, Inv-Com-
Cat-Com, Inv-Com-Cit-Com, Inv-Com-Com, and Inv-Com-Com-
Inv-Com have positive promotion, we infer that the relationship
type of Market, Investment, and Geography [3] prompts investors
to invest in companies, but in PathCount and RandWalk the non-
significant of Inv-Com-Com reveal that Acquisition may be not
directly associated with investment behavior. (3) Finally, according
to the experimental results of different measure functions of the
six groups, we find that the significance of the meta-path weakens
as the length of the path increases.



Table 3
Detailed time intervals.

Group T0 T1 T2

T1 2007/11-2010/11 2010/11-2013/11 2013/11-2014/05

T2 2007/05-2010/05 2010/05-2013/05 2013/05-2014/05

T3 2006/11-2009/11 2009/11-2012/11 2012/11-2014/05

T4 2006/05-2009/05 2009/05-2012/05 2012/05-2014/05

T5 2005/11-2008/11 2008/11-2011/11 2011/11-2014/05

T 6 2005/05-2008/05 2008/05-2011/05 2011/05-2014/05

Fig. 5. F-score comparison of different time interval in the test future interval.

Fig. 6. F-score comparison of different models prediction results.
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4.3. Investment behavior prediction with time

We propose a prediction model based on the linear model in-
troduced in Section 3. Our prediction model learns a function on
meta-path features to predict investment behavior building time.
Our model uses the maximum log-likelihood estimate method to
learn the coefficients of each heterogeneous network feature un-
der different time interval assumptions for investment behavior
building-time distributions.

To validate the effect of time on meta-path-based hetero-
geneous information network investment behavior predictions,
we set the training future interval to be unequal to the test future
interval ( ≠T Ttrain test). Therefore, in the test future interval (T), we
consider six groups of different time intervals as follows:

={ }T T T T T T T, , , , ,1 2 3 4 5 6 . Table 3 shows the details of the time
intervals.

In the recommendation system, the F1-score [28] is the most
widely used for recommendation quality comprehensive mea-
surement. The evaluation accuracy of the investment behavior
prediction algorithm is similar to the evaluation accuracy of the
recommendation algorithm. Therefore, in the experimental sec-
tion, we regard the F-score as performance metric. Fig. 5 shows a
summary F-score of four groups, each with a different test future
interval and three different measure functions. The results reflect
that our prediction model has good generalization power in time.
Also, in our model, HeteSim has remarkable prediction effective-
ness relative to PathCount and RandomWalk.

Table 4 shows the experimental results of three different
measure functions in four groups of future time intervals. The
results reveal that HeteSim obtains better performance in recall
Table 4
Prediction generalization power and effectiveness comparison.

Months HeteSim (%) PathCount (%)

Precision Recall F1 Precision

6 99.4 45.8 62.7 23.3
12 99.5 40.6 57.6 21.6
18 99.6 35.8 52.7 20.9
24 99.4 38.4 55.5 20.0
30 99.6 35.3 52.1 24.4
36 99.5 32.1 48.5 23.9
than RandomWalk, and a more reasonable performance than
PathCount both in recall and precision.

4.3.1. Different prediction model comparison
In Section 3.5, we denote our model with another different

distribution assumption as exponential and Weibull distribution,
respectively. To demonstrate the power of using time-involved
model in investment behavior prediction, we use logistic regres-
sion as the baseline. The output of the logistic regression is a
probability that denotes whether a relationship will be built in T1

for each test pair. In the exponential and Weibull distribution
models, the output is the parameter set for distribution of the
investment building time. To compare the three models with
F-score, we define the following indicator function ( )I y T,i 1 as fol-
lows:

( )^ =
^ ≤
^ > ( )

⎪
⎪⎧⎨
⎩

I y T
y T

y T
,

1,

0, , 13
i

i

i

1
1

1

where ( )^ =I y T, 1i 1 refers to correct prediction result, or is wrong

otherwise; then, we apply HeteSim to measure similarity.
As shown in Fig. 6, the exponential and Weibull distribution

models can improve their prediction of the longer-term invest-
ment building behavior than logistic regression. On the other
hand, the exponential and Weibull distribution models can infer
much more information rather than a simple probability as to
whether an investor will invest in a company.
5. Conclusion

In this study, we designed a data-driven investment behavior
prediction framework that models investment behavior prediction
as a meta-path-based heterogeneous information network re-
lationship prediction problem. Specifically, we first built a het-
erogeneous relationship network schema based on entity and re-
lationship types. Then, based on the heterogeneous relationship
network, we extracted all significant meta-path lengths that are
equal to or less than 4, and provided the effective measure func-
tions to quantify the meta-path topology. Finally, we proposed a
supervised learning investment behavior prediction model to
RandomWalk (%)

Recall F1 Precision Recall F1

14.9 18.2 99.5 3.1 6.0
14.0 17.0 98.3 3.5 6.7
14.1 16.8 99.7 3.7 7.1
10.0 13.3 99.5 4.3 8.2
8.7 12.8 84.5 5.3 10.0
5.3 8.7 98.3 5.1 9.7
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predict investment behavior. Experimental results reveal that our
model is also a useful indicator to help companies (1) improve
their understanding of how and when investors invest, and
(2) improve their preparation when they are attempting to seek
external investment. The related methods can be extended to the
network analysis in other fields, such as bioinformatics [29–32],
image processing [33–36], big data [37–41], machine learning re-
search [42–45], neural networks [46–49], and spiking neural
model-based optimization [50–54].
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