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ABSTRACT

In the attribute inference problem, we aim to infer users’ private
attributes (e.g., locations, sexual orientation, and interests) using
their public data in online social networks. State-of-the-art meth-
ods leverage a user’s both public friends and public behaviors (e.g.,
page likes on Facebook, apps that the user reviewed on Google
Play) to infer the user’s private attributes. However, these meth-
ods suffer from two key limitations: 1) suppose we aim to infer a
certain attribute for a target user using a training dataset, they only
leverage the labeled users who have the attribute, while ignoring
the label information of users who do not have the attribute; 2) they
are inefficient because they infer attributes for target users one by
one. As a result, they have limited accuracies and applicability in
real-world social networks.

In this work, we propose Attrilnfer, a new method to infer user
attributes in online social networks. Attrilnfer can leverage both
friends and behaviors, as well as the label information of train-
ing users who have an attribute and who do not have the attribute.
Specifically, we model a social network as a pairwise Markov Ran-
dom Field (pMRF). Given a training dataset, which consists of
some users who have a certain attribute and some users who do not
have a certain attribute, we compute the posterior probability that a
target user has the attribute and use the posterior probability to infer
attributes. In the basic version of Attrilnfer, we use Loopy Belief
Propagation (LBP) to compute the posterior probability. However,
LBP is not scalable to very large-scale real-world social networks
and not guaranteed to converge. Therefore, we further optimize
LBP to be scalable and guaranteed to converge. We evaluated our
method and compare it with state-of-the-art methods using a real-
world Google+ dataset with 5.7M users. Our results demonstrate
that our method substantially outperforms state-of-the-art methods
in terms of both accuracy and efficiency.
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1. INTRODUCTION

In an online social network (OSN), a user often has a profile that
consists of a friend list, behaviors, and attributes (e.g., cities lived,
employer, sexual orientation). On Facebook, behaviors could be
the list of pages a user liked/shared; and on Google+, behaviors
could be the list of Google Play apps a user liked/reviewed. From
a perspective of data science, an OSN is essentially a mixture of
both public data and private data. For instance, public data could
include the friend lists, behaviors, and attributes that users make
public. Private data could include attributes that users do not dis-
close in their profiles. We call such attributes private attributes.
Specifically, private attributes could be 1) attributes that a user sets
to be private to its friends using privacy setting or 2) attributes that
a user does not provide in its profile.

One problem of increasing interest revolves around these private
attributes [16, 19, 34, 28, 13, 22, 18, 32, 4, 17, 12]. In this attribute
inference problem, we first collect public data from an OSN, and
then use them to infer private attributes of certain target users via
machine learning techniques. Attribute inference has serious im-
plications for Internet privacy as well as applications for targeted
advertisements and personalized recommendation. Therefore, var-
ious parties (e.g., cyber criminal, online social network provider,
advertiser, data broker, and surveillance agency) are motivated to
perform attribute inference. For instance, cyber criminals can lever-
age the inferred user attributes to further perform other attacks, e.g.,
targeted social engineering attacks and attacking personal infor-
mation based user authentication (also known as “security ques-
tions") [15]; data brokers make profit via selling the inferred user
attribute information to other parties such as advertisers, banking
companies, and insurance industries [1]. Moreover, an attacker can
leverage the inferred attributes to link online users across multiple
sites [10, 2] or with offline records (e.g., publicly available voter
registration records) [27, 21] to form detailed and composite user
profiles, resulting in bigger security and privacy risks.

Conventionally, most attribute inference methods [16, 19, 34, 28,
13, 22, 18, 32, 4, 17] leverage either public social graph or behav-
iors. Recently, Gong et al. [12] proposed a method (called VIAL)
that combines both social graph and behaviors to infer users’ pri-
vate attributes. In a nutshell, VIAL augments a social graph with
behavior nodes and attribute nodes; to infer a target user’s attributes,
VIAL performs a customized random walk started from the user
among the augmented graph, and the stationary probabilities of
attribute nodes are then used to infer attributes of the target user.
Gong et al. demonstrated that VIAL achieves state-of-the-art infer-
ence accuracy for various attributes. However, VIAL suffers from
two major limitations. First, suppose we aim to infer whether a tar-



get user has a certain attribute or not, and we are given a training
dataset, in which we have some users who have the attribute (posi-
tive training users) and users who do not (negative training users).
VIAL cannot leverage the label information of the negative train-
ing users because that a user does not have a certain attribute is not
encoded in the augmented graph. Second, VIAL is not efficient
because it needs to perform the random walk for every target user.

Our work: In this work, we propose Attrilnfer, a new method
that combines social graph and behaviors to perform attribute in-
ference. Attrilnfer can leverage both positive training users and
negative training users in the training dataset, as well as is efficient.
In particular, Attrilnfer can infer attributes for all target users simul-
taneously. In Attrilnfer, we model each user as a random variable
that characterizes the user’s attribute, and we model the joint prob-
ability of all users as a pairwise Markov Random Field (pMRF)
based on the social network structure. Given a training dataset, we
first use behaviors to learn a probability that each user has a consid-
ered attribute, and we call such probability prior probability. Then,
based on the pMRF model, we compute the posterior probability
that each target user has the attribute. The posterior probabilities
are used to infer attributes. In the basic version of Attrilnfer, we
use the popular Loopy Belief Propagation (LBP) method to com-
pute the posterior probabilities.

However, the basic version has two shortcomings: 1) we found
that it is not scalable enough because LBP needs to maintain mes-
sages on each edge, and 2) it is not guaranteed to converge because
LBP might oscillate on loopy graphs [25]. Therefore, we further
optimize Attrilnfer to address these shortcomings. Our optimiza-
tions include eliminating message maintenance and approximating
Attrilnfer by a concise matrix form. We also derive the conditions
for our optimized Attrilnfer to converge.

We compare Attrilnfer with state-of-the-art methods on a large-
scale Google+ dataset with 5.7M users. First, we observe that At-
trilnfer’s inference accuracy increases by combining social graph
with behaviors. Second, the optimized version of Attrilnfer is sig-
nificantly more efficient than the basic version. Third, Attrilnfer
substantially outperforms state-of-the-art methods in terms of both
inference accuracy and efficiency. For instance, Attrilnfer outper-
forms VIAL by 20% at inferring cities a user lived in.

In summary, our key contributions are as follows:

e We propose Attrilnfer, a new attribute inference method based
on pairwise Markov Random Field.

e We optimize Attrilnfer to be scalable and convergent.

e We compare Attrilnfer with state-of-the-art methods using a
large-scale dataset. Our results demonstrate that Attrilnfer sub-
stantially outperforms state-of-the-art methods in terms of both
inference accuracy and efficiency.

2. RELATED WORK

Using behaviors: Weinsberg et al. [32] investigated the inference
of gender using the rating scores that users gave to different movies.
In particular, they constructed a feature vector for each user; the ith
entry of the feature vector is the rating score that the user gave to the
ith movie if the user reviewed the ith movie, otherwise the ith entry
is 0. They compared a few classifiers including Logistic Regres-
sion (LG), SVM, and Naive Bayes, and found that LG outperforms
other approaches. Chaabane et al. [4] used the information about
the musics users like to infer attributes. They augmented the musics
with the corresponding Wikipedia pages and then used topic mod-
eling techniques to identify the latent similarities between musics.
A user is predicted to share attributes with those that like similar
musics with the user. Kosinski et al. [17] tried to infer various at-
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tributes based on the list of pages that users liked on Facebook.
Similar to the work performed by Weinsberg et al. [32], they con-
structed a feature vector from the Facebook likes and used LR to
train classifiers to distinguish users with different attributes.
Using social graph: Lindamood et al. [19] modified Naive Bayes
classifier to incorporate social links and other attributes of users
to infer some attribute. For instance, to infer a user’s major, their
method used the user’s other attributes such as employer and cities
lived, the user’s social friends and their attributes. However, their
approach is not applicable to users that share no attributes at all.
Zheleva and Getoor [34] studied various approaches to consider
both social links and groups that users joined to perform attribute
inference. Gong et al. [13] transformed attribute inference to a link
prediction problem through an augmented graph and demonstrated
that their method outperforms various social graph based methods.
Mislove et al. [22] proposed to identify a local community in
the social network by taking some seed users that share the same
attribute value, and then they predicted all users in the local com-
munity to have the shared attribute value. Their approach is not
able to infer attributes for users that are not in any local commu-
nities. Moreover, this approach is data dependent since detected
communities might not correlate with the attribute value. For in-
stance, Trauda et al. [29] found that communities in a MIT male
network are correlated with residence but a female network does
not have such property. Thomas et al. [28] studied the inference of
attributes such as gender, political views, and religious views. They
used multi-label classification methods and leveraged features from
users’ friends and wall posts. Moreover, they proposed the concept
of multi-party privacy to defend against attribute inference.

Using behaviors and social graph: Gong et al. [12] proposed
to combine behaviors and social graphs to perform attribute infer-
ence. In particular, their method (called VIAL) augments the social
graph with additional nodes, each of which represents an attribute
or a behavior object. If a user has a certain attribute or performed
a certain behavior on a behavior object, then VIAL adds an edge
between the user and the corresponding attribute node or behavior
node. To infer attributes of a target user, VIAL essentially performs
a customized random walk started from the target user among the
augmented graph, computes the stationary probability distribution
of the random walk, and uses it to infer attributes of the target user.
VIAL suffers from two limitations. First, VIAL cannot leverage
negative training users who do not have a certain attribute, because
the augmented graph does not encode the information that a user
does not have a certain attribute. Second, VIAL is not scalable
because it performs the random walk for every target user.

Other approaches: Bonneau et al. [3] studied the extraction of
private user data in OSNs via various attacks such as account com-
promise, malicious applications, and fake accounts. These attacks
can not infer user attributes that users do not provide in their pro-
files, while our method can. Otterbacher [24] studied the inference
of gender using users’ writing styles. More recent studies [23, 2]
demonstrated stronger results, i.e., authors can be deanonymized
via writing style analysis. Zamal et al. [33] used a user’s tweets
and her neighbors’ tweets to infer attributes. They didn’t consider
social structures nor user behaviors. Gupta et al. [15] tried to in-
fer interests of a Facebook user via sentiment-oriented mining on
the pages that were liked by the user. These studies are orthogonal
to ours since they exploited information sources other than social
graphs and behaviors that we focus on.

Finally, we note that another line of research [5, 8] aims to design
new paradigms of OSNs in which users have better control over
private data. These studies are orthogonal to ours as we focus on
the currently used paradigms of OSNs.



3. PROBLEM FORMULATION
3.1 Categorizing Different Types of Attributes

Binary attributes: A binary attribute only has two possible values,
and a user can have either of them. Gender (male vs. female)
and political view (democratic vs. republican) are example binary
attributes. Note that we distinguish between attribute and attribute
value, e.g., gender is an attribute, while male is an attribute value.

Multi-value attributes: A multi-value attribute has more than two
possible attribute values. However, a user only has one value for
the attribute. Age (e.g., 0-10 vs. 10-15 vs. 15-20 vs. >20) is an
example multi-value attribute.

Multi-value-multi-label attributes: A multi-value-multi-label at-
tribute has more than two possible attribute values, and a user can
have more than one attribute value for the attribute. For instance,
cities lived is a multi-value-multi-label attribute because a person
might have lived in multiple cities.

Transforming a multi-value attribute and a multi-value-multi-
label attribute to multiple binary attributes: We transform a
multi-value attribute or a multi-value-multi-label attribute to mul-
tiple binary attributes. Specifically, for each attribute value of the
attribute, we create a binary attribute, which has two attribute val-
ues “yes" and “no". For instance, for the cities lived attribute, we
represent each city as a binary attribute. If a user once lived in a
certain city, the user’s attribute value for the corresponding binary
attribute is “yes". We note that among the binary attributes corre-
sponding to a multi-value attribute, a user has “yes" for only one of
them. This is because a user only has one value for a multi-value
attribute. As we will see later, this transformation makes it easier to
model multi-value attributes and multi-value-multi-label attributes.

3.2 Attribute Inference

We take one binary attribute A as an example to illustrate the
problem of attribute inference. Suppose we are given an undirected
social graph G = (V,E), where a node v € V represents a user and
an edge (u,v) € E indicates a certain relationship between u and v.
For instance, such relationship could be that # and v are friends on
Facebook or u and v are in each other’ circle on Google+.

Each user either has the attribute A or does not have the attribute
A. For instance, when the binary attribute A is a city, having A
means that the user lives/lived in the city and not having A means
that the user hasn’t lived in the city. A user is called positive user if
it has the attribute, otherwise it is called negative user. Moreover,
each user has a list of behaviors (though this list might be empty
for some users). For instance, a user’s behaviors can be the pages
liked or shared on Facebook, or the mobile apps liked or reviewed
on Google Play. Given these terminologies, we can formally define
attribute inference problem as follows:

DEFINITION 1  (ATTRIBUTE INFERENCE PROBLEM). Suppose
we are given 1) a binary attribute A, 2) an undirected social graph
G = (V,E), 3) the list of behaviors of each user in the graph, 4) a
training dataset consisting of some users who are known to have
the attribute A and some users who are known to not have A, and
5) a set of target users. Attribute inference aims to infer whether
each target user has A or not.

3.3 Design Goals
We aim to design a method that achieves the following goals.

1) Leveraging both behaviors and social graph: Previous work [12]
has demonstrated that combining behaviors and social graph can
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achieve better inference accuracies. Therefore, our method should
be able to combine the two heterogeneous sources of information.

2) Incorporating training users having and not having the at-
tribute: From users’ public data in online social networks, we can
often obtain a set of users who publicly disclose that they have the
attribute. Moreover, we can also (approximately) obtain a set of
users who do not have the attribute. For instance, if the attribute
is a city, then we can find the list of users who disclosed that they
live/lived in the city and we treat them as positive training users.
If a user discloses multiple cities lived but they do not include the
considered city, then we can treat the user as a negative training
user. The intuition is that such a user would be highly likely to also
disclose the considered city in its profile if he/she lives/lived in it.

3) Scalable: Real-world OSNs often have hundreds of millions of
users and billions of edges. Moreover, a large fraction of users do
not disclose their attributes (e.g., around 70% of Google+ users did
not disclose any attributes [14]), and these users are potential tar-
get users. In other words, the number of target users is also large.
Therefore, our method should be computationally efficient with re-
spect to the size of the OSN as well as the number of target users.

Most existing attribute inference methods [16, 19, 34, 28, 13, 22,
18, 32, 4, 17] do not satisfy requirement 1). VIAL [12] does not
satisfy requirements 2) and 3).

3.4 Threat Model

Attribute inference can be viewed as a privacy attack to target
users. We discuss the threat model of attribute inference attacks.

Attackers: The attacker could be any party who has interests in
user attributes. For instance, the attacker could be OSN provider,
advertiser, data broker, or cyber criminal. OSN providers and ad-
vertisers could use the user attributes for targeted advertisements;
data brokers make profit via selling the user attributes to other par-
ties such as advertisers, banking companies, and insurance indus-
tries [1]; cyber criminals can leverage user attributes to perform
targeted social engineering attacks (now often referred to as spear
phishing attacks) and attacking personal information based user au-
thentication [15].

Attack procedure: In order to use our method to perform attribute
inference attacks. An attacker first collects public social graph and
user behaviors from a certain OSN. Then, the attacker infers at-
tributes of certain target users using the public data.

Performing further attacks: We stress that an attacker could
leverage our attribute inference attacks to further perform other at-
tacks. For instance, a user might provide different attributes on
different OSNs. Thus, an attacker could combine user attributes
across multiple OSNs to better profile users, and an attacker could
leverage the inferred user attributes to do so [2, 10]. Moreover, an
attacker can further use the inferred user attributes to link online
users with offline records (e.g., voter registration records) [27, 21],
which results in even bigger security and privacy risks, e.g., more
sophisticated social engineering attacks. We note that even if the
inferred user attributes (e.g., cities lived) seem not private for some
target users, an attacker could still use them to link users across
multiple online sites and with offline records.

4. DESIGN OF ATTRIINFER

4.1 Overview

Suppose we consider a binary attribute A. Given a training dataset,
we first use user behaviors to learn a binary classifier for the at-
tribute. Then, we use the classifier to predict the probability that



each target user has the attribute A. We call this probability prior
probability. We use a binary random variable to model each user,
and we model the joint probability distribution of all binary random
variables as a pairwise Markov Random Field (pMRF) based on the
structure of the social network. Given the training dataset and prior
probability, we propagate label information among the social graph
via the pMRF model. After the propagation, we obtain a posterior
probability of having the attribute for each target user. Then, we
use the posterior probability to predict whether a target user has the
attribute or not. In this section, we introduce a basic version of At-
trilnfer, in which we use Loopy Belief Propagation (LBP) to infer
the posterior probabilities.

4.2 Learning Prior using Behaviors

We associate a binary random variable x,, with each user u, where
x, = 1 means that u has the attribute A and x, = —1 means that u
does not have the attribute. We denote the behaviors of a user u as
a behavior vector Bu. The vector Zu can be a binary vector, where
an entry is 1 if and only if u has performed a certain action on the
corresponding object. For instance, when we consider page likes as
behaviors, an entry of 1 means that the user liked the corresponding
page. The behavior vector by can also be a real-valued vector. For
instance, when we consider reviews as behaviors, an entry is the
rating score that a user gave to the corresponding item (e.g., app,
movie, book). Likewise, when we consider clickstream as behav-
iors, an entry of a user’s behavior vector can be the frequency of a
certain subsequence (consisting of click events and discretized time
gaps between them) that appears in the user’s clickstream [30, 31].

We learn the prior probability of target users using a standard
logistic regression classifier. Specifically, the probability qulthat u

has the attribute A is modeled as ¢, = Pr(x, = 1) = e (Th)”

where h, = Z,I; -¢+d. d and the vector ¢ are parameters of the
logistic regression classifier. Given a training dataset, in which each
user has behaviors, we can learn these parameters via maximum
likelihood estimation. In our experiments, we leverage the library
LIBLINEAR [7] to learn these parameters. We note that we choose
logistic regression classifier instead of a Support Vector Machine
(SVM) because SVM does not directly produce a probability that
a user has the attribute.! With this logistic regression classifier, we
can compute the prior probability for each user who has behaviors.
A user has a prior probability of 0.5 if it does not have behaviors.

4.3 Propagating Prior Using Social Graph

We leverage a pMRF to model the social graph, with which we
can propagate the prior probability among the social graph to com-
pute a posterior probability that each target user has the attribute.

4.3.1 Intuitions

We denote by I, the set of u’s neighbors in the social network,
and X, the observed states (whether having the attribute or not) of
the neighbors. Social networks are known to have the homophily
property [20], i.e., if we sample an edge (u,v) from a social graph
uniformly at random, the two users u and v are highly likely to
both have the attribute or both not have the attribute. Based on this
homophily intuition, we model the probability that a user u has the
attribute A when the user’s neighbors’ states are already known as
follows:

1
1 +exp( Zver‘“ Juva - hu) '

Pr(x, = 1|%r,) = (1

'We note that SVM’s outputs can be transformed into probabili-
ties [7], but they achieve suboptimal performance.
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where J,, > 0 is the homophily strength between u and v, and h,,
characterizes u’s prior knowledge obtained through the logistic re-
gression classifier. A higher J,,, means that # and v are more likely
to have the same state.

4.3.2 A Pairwise Markov Random Field

We find that Equation 1 can be achieved by modeling the social
graph as a pairwise Markov Random Field (pMRF). A pMRF de-
fines a joint probability distribution for binary random variables as-
sociated with all the users in the social graph. Generally speaking,
a pMRF is specified by a node potential for each user u, which in-
corporates prior probability about u, and an edge potential for each
edge (u,v), which represents correlations between x,, and x,. In our
attribute inference problem, we define a node potential ¢, (x,) for
user u as
ifx, =1

qu
Xy) =
9ul) {1—% ifx, =—1
and an edge potential @y, (x,,x,) for the edge (u,v) as

if x,x, =1
~1,

Wuy

1—wy, ifxx, =

(Puv(xmxv) = {

where wy, := (1 +exp{—J,»})~!. Then, the following pMRF satis-
fies Equation 1 for every user.

H (Pu xu

ueV

H (Puv(xmxv) 5

(u,v)EE

where Z = Y, Tluev @u(xu) [(uv)cE Puv(xu,xy) is called the parti-
tion function and normalizes the probabilities. w,, > 0.5 captures
the homophily property. In our definitions, w,,, can be interpreted
as the probability that two linked users have the same state. In this
work, we set wy,, = w > 0.5 for all edges, and we call w homophily
strength. However, learning the parameters w,,, for different edges
would be a valuable future work.

4.3.3 Estimating Posterior Probability using LBP

We compute the posterior probability distribution of a user u,
ie., Pr(xy) = Yy, Pr(xy). For simplicity, we denote by p, the
posterior probability that u has the attribute, i.e., p, = Pr(x, = 1).
This posterior probability is used to predict whether a user has the
attribute or not. In the basic version of Attrilnfer, we use Loopy
Belief Propagation (LBP) [25] to estimate the posterior probabil-
ity distribution Pr(x,). LBP iteratively passes messages between

(f)(xu)

neighboring users in the graph. Specifically, the message myy,
sent from v to u in the ¢th iteration is

Z¢v Xy (Ptu xvyxu (2)

mvu xu

H m(t 1) -xv

kel (v)/u

where I'(v) /u is the set of all neighbors of v, except the receiver
node u. This encodes that each node forwards a product over in-
coming messages of the last iteration and adapts this message to
the respective receiver based on the homophily strength with the
receiver. LBP stops when the changes of messages become neg-
ligible in two consecutive iterations (e.g., /1 distance of changes
becomes smaller than 10’3) or it reaches the predefined maximum
number of iterations 7. After LBP halts, we estimate the posterior
probability distribution Pr(x,) as follows:

(-xu) (pu xu H mku xu

ke (u)

Pl &)



which is equivalent to

quk 1;1( )ml((t,j
el(u
P = o T @
qu 11 mku +(1—qu) TI (1—mku)
kel (u kel (u)
where m,(:u) = m,(:u) (xy=1)and 1— m,(:u) = m,itu) (xy = —1). Note that

normalizing m,(:u) (xy) does not affect the computation of posterior
probability distribution of any user. Therefore, for simplicity, we
have normalized m,(:,j () such that m,(:u) (u=1)+ m,itu) (u=-1)=
1 in the above equation.

We note that pMRF and LBP were also adopted to detect Sybils
in OSNs [11]. Sybil detection and attribute inference for binary
attributes are algorithmically similar. However, previous work [11]
didn’t perform optimization and convergence analysis as we will
discuss in the next two sections Section 5 and Section 6.1.

S. OPTIMIZING ATTRIINFER

The basic version of Attrilnfer has two shortcomings: 1) Attriln-
fer is not scalable enough, and 2) Attrilnfer is an iterative method
but is not guaranteed to converge. Being not convergent makes it
hard to select an appropriate number of iterations. The reason is
that LBP maintains messages on each edge and LBP might oscil-
late on loopy graphs [25]. Therefore, we further optimize Attrilnfer
to address these shortcomings.

5.1 Eliminating Message Maintenance

One of the major reasons why basic Attrilnfer is not scalable
enough is that LBP maintains messages on each edge. We observe
that the key reason why LBP needs to maintain messages on edges
is that when a node v prepares a message to its neighbor u, it ex-
cludes the message that u sent to v. Therefore, our first optimization
step is to include the message that u sent to v when v prepares its
message for u. Formally, we approximate Equation 2 as:

(t)

Myy xu Zq)v Xy (Pvu Xy, xu H m xv (5)
kel (v
Considering Equation 3, we have:
mSu) xu o< Z(Pvu xwxu)Pr( )(xv)' (6)
X,
Recall that we normalize m&ru) (xy) such that mg,,) (xy=1)+ m52 (o =

(®)

. t
—1) =1, and we abbreviate m\(,g (xy = 1) as myy,.
malization, our new messages become:

With such nor-

(0 _ =1

(1=
My = Py

w (1= py ) (1 —w).

Attrilnfer does not need to maintain messages on edges using our
new messages.

)

5.2 Linearizing as a Matrix Form

Attrilnfer iteratively applies Equations 7 and 4 using our new
messages, which still cannot guarantee convergence. The key rea-
son is that Equation 4 combines messages from a user’s neighbors
nonlinearly. We make Attrilnfer converge via linearizing Equa-
tion 4. The resulting optimized Attrilnfer can be represented in
a concise matrix form. Before introducing our linearization, we
define some terms. In particular, we define the residual y of a vari-
able y as ¥ =y —0.5; and we define the residual vector § of y as
§=D1—05,y2-05,---].
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[ (). () (1)

For convenience, we denote by p(’) =lpiipy oy
umn vector all users’ posterior probability in the rth iteration, and
its residual vector as 13(’ ). Similarly, we denote by a column vector

= [q1542;- - ;q)v)] all users’ prior probability, and by q its resid-
ual vector. Moreover, we denote by M € RIVIXIVI the adjacency
matrix of the social graph. With these notations, we can approx-
imate Attrilnfer as a concise matrix form. Formally, we have the
following theorem.

] a col-

THEOREM 1. We can approximate Equations. 7 and 4 as the
following equation:

PO =q+2-%-M-ptD. (8)

PROOF. See Appendix A. []

Theorem 1 enables us to design an efficient version of Attrilnfer:
first, we learn the prior probability for each user using behaviors;
second, we iteratively apply Equation 8 to compute the posterior
probabilities for all target users simultaneously. Attrilnfer halts
when the relative change of the posterior probability vector in two
consecutive iterations is smaller than 103

We note that Gatterbauer et al. [9] also linearized LBP over a
PMRE, and their linearized version is similar to ours. However,
their linearization requires different heuristics and assumptions. For

instance, their linearization requires residual of the homophily strength

to be very small and the approximation of * i + 5 % +€& — S—kz when
€1 and & are very small. In contrast, our 11nearlzation does not re-
quire these assumptions/approximations. Moreover, we eliminate
message maintenance before linearizing Equation 4, which makes
linearization much simpler, while their approach does not.

6. THEORETICAL ANALYSIS

6.1 Convergence Analysis

We analyze the condition when the optimized version of Attri-
Infer converges. Such analysis guides us to select appropriate ho-
mophily strength w. Suppose we are given an iterative linear pro-
cess: y<’) — c—O—Dy(’*l). According to [26], the linear process
converges with any initial choice y© if and only if the spectral ra-
dius of the matrix D is smaller than 1, i.e., p(D) < 1. The spectral
radius of a square matrix is the maximum of the absolute values of
its eigenvalues. Given this general result, we are able to analyze the
convergence condition of Attrilnfer.

THEOREM 2 (SUFFICIENT AND NECESSARY CONDITION).
The sufficient and necessary condition that Attrilnfer converges is
to bound the residual homophily strength w as:

1
2p(M

PROOF. Let D = 2w - M then p(D) = 2w - p(M).
holds if and only if W < 2p( y- O

W<

. 9
) &)

Theorem 2 provides a strong sufficient and necessary conver-
gence condition. However, in practice setting w using Theorem 2
is computationally expensive, as it involves computing the largest
eigenvalue with respect to spectral radius. Hence, we instead derive
a sufficient condition for Attrilnfer’s convergence, which enables us
to set w with cheap computation. Specifically, our sufficient con-
dition is based on the fact that any norm is an upper bound of the
spectral radius [6], i.e., p(D) < ||D||, where || - || indicates some ma-
trix norm. In particular, we use the induced /; matrix norm || - ||1,



where ||D||; = max;Y; [D;;|, the maximum absolute column sum
of the matrix. In this way, our sufficient condition for convergence
is as follows:

THEOREM 3  (SUFFICIENT CONDITION). The sufficient con-
dition that Attrilnfer converges is

1 1
W< = , (10)
2||MH1 2maxyey dy

where d, = |I'y| is the degree of u.

PROOF. As p(D) < ||D||;, we achieve the sufficient condition
by enforcing ||D||; < 1, where D = 2 - M. Specifically, we have

2W-p(M) < 1 <=2%|M||; < 1 an
! (12)

1
=W < = .
ZHMHI 2maxyey dy

a

Theorem 3 guides us to set W, i.e., once W is smaller than the
inverse of 2 times of the maximum node degree, Attrilnfer is guar-
anteed to converge. In practice, however, some users (e.g., celebri-
ties) could have orders of magnitude bigger degrees than the others
(e.g., ordinary people), and such nodes make w very small. In our
experiments, we find that Attrilnfer can still converge when replac-
ing the maximum node degree with the average node degree.

6.2 Complexity Analysis

We use sparse matrix representation to implement Attrilnfer. Com-

putational time of the optimized Attrilnfer consists of two parts:
time required to compute the prior probabilities using logistic re-
gression, and time required to compute the posterior probabilities
via iterative computations. The time complexity of the second part
is O(t - |E|), where ¢ is the number of iterations. The time complex-
ity of Attrilnfer does not rely on the number of target users whose
attributes an attacker wants to infer. We note that the basic version
of Attrilnfer has the same asymptotic time complexity. However,
the constants in the asymptotic representations are different, which
results in different scalability.

VIAL [12] does not learn the prior probabilities. For each target
user, VIAL computes the stationary probability distribution of a
random walk in the augmented graph, which starts from the target
user. The time complexity of VIAL is O(z - (|E| +m +my) - ny),
where ¢ is the number of iterations that a random walk requires to
converge, m is the total number of public attributes of all users, m;
is the total number of behaviors of all users, and n; is the number of
target users. As we will demonstrate in our experiments, although
VIAL does not learn the prior probabilities, it will be orders of
magnitude slower than Attrilnfer when an attacker aims to infer
attributes for a large number of target users.

7. EVALUATIONS
7.1 Experimental Setups

Dataset description: We obtained a Google+ social network snap-
shot with public user attributes from [14]. And we collected the
list of items (e.g., apps, books, musics) that each user reviewed on
Google Play, using the same methodology in [12]. A user reviewed
an item if the user liked or rated the item. When a user rated an
item, the user gave a rating score (1,2,3,4,0r 5) to represent its pref-
erence. We treat review as behavior. Table 1 summarizes the basic
statistics of the dataset. We note that our dataset is much larger
than the one used by VIAL (VIAL was tested on a dataset with 1.1
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Table 1: Dataset statistics.

#Users #Edges #Behaviors
5,735,175 | 30,644,909 | 35,528,322
0.0024F

0.0018F

0.0012

Fraction of user

0.0006

).0000 : : :
04 ([1 20 30 40
Index of city

10 50

Figure 1: Fraction of users who claim a city as cities lived.

million users). However, we acknowledge that the Google+ dataset
might not be a representative sample of the entire Google+ social
network, and thus our results might not be representative.

We perform evaluations using the attribute cities lived. We select
top-50 cities in the dataset. In other words, the cities lived attribute
has 50 possible attribute values. We note that, our method is also
applicable to other attributes such as major, employer, and sexual
orientation. We select cities lived because this attribute is avail-
able and allows us to perform evaluation at a large scale. 3.25% of
users have disclosed at least one of these cities as their cities lived.
Figure 1 shows the fraction of users in each city. Cities lived is a
multi-value-multi-label attribute, because a user could have lived
in multiple cities. We transform the attribute into binary attributes.
Since we focus on top-50 cities, we represent cities lived as 50 bi-
nary attributes, each of which represents one city.

Training and testing: We select 25% of users (i.e., around 7000
users) who have at least one city and 10 behaviors as test/target
users, and the remaining users who have at least one of the consid-
ered cities are treated as training users. For a city, the training users
who have this city are positive training instances, while the training
users who do not have this city are treated as negative training in-
stances. In our method, we train a logistic regression classifier for
each city using users’ reviews in order to learn prior probabilities.
Specifically, a user’s behavior vector is a real-valued vector, where
an entry is the rating score that the user gave to the corresponding
item. If the user only liked an item, the corresponding entry has a
value of 5, i.e., we treat a like as a rating with a score of 5. We used
the LIBLINEAR library [7] to train linear logistic regression clas-
sifiers. We remove the cities of the test users as groundtruth, use an
attribute inference method to predict cities for them, and evaluate
the performance of the method using the groundtruth.

Compared methods: We will evaluate the following methods. For
each test user, every method essentially computes a score for every
considered city. For instance, in our method Attrilnfer, the score is
the posterior probability that the test user lived in the city. In other
words, each method computes 50 scores for each test user.

e Random. This method computes the fraction of training users
who have a city, and predicts this fraction as the score for the
city for every test user.

e VIAL [12]. VIAL combines both social graph and behaviors
through an augmented graph. VIAL needs to repeat for every
test user. We use the same parameters for VIAL as in [12].

o Attrilnfer. Our proposed method, which combines social graph
and behaviors, as well as computes the scores for all test users



Precision

O

©

23
.\0‘\9,"60 3o

.
@6\%@0 ?&g{\

o

(a) Precision

(b) Recall

Figure 2: Precision, Recall, and F-Score of compared methods.

simultaneously. We set the residual of homophily strength (i.e.,
W) as 1/(2 x average degree) of the social graph, to consider
convergence. By default, we will use the optimized version.
Attrilnfer-Beh. A variant of our method, which only uses be-
haviors. Specifically, Attrilnfer-Beh assigns the prior probabil-
ity (learnt using behaviors and logistic regression) that a test
user has a city as the score for the city.

Attrilnfer-Soc. Another variant of our method, which only
uses social graph. Specifically, we do not learn prior probability
using behaviors. Instead, we assign a prior probability of 0.5
for every user that is not in the training dataset. Moreover, when
inferring a city, we assign a prior probability of 0.9 to a positive
training user who has the city and 0.1 to a negative training user
who does not have the city.

Ensemble. One natural way to combine behaviors and social
graph is to use an ensemble method. Therefore, we also evalu-
ate an ensemble method that combines the results of Attrilnfer-
Beh and Attrilnfer-Soc. Specifically, for a test user and a city,
each of the two methods produces a score, and we select the
larger one as the final score.

Evaluation metrics: We predict top-K cities with the highest
scores for a test user, and evaluate the predictions using Precision,
Recall, and F-Score. Precision is the fraction of predicted cities that
truly belong to the test users, Recall is the fraction of test users’ true
cities that are among the predictions, and F-Score is the harmonic
mean of Precision and Recall, i.e., F-Score = ZErecision Recall

= Precision+Recall *
7.2 Results

Our method is more accurate than state-of-the-art methods: Fig-

ure 2 shows the Precision, Recall, and F-Score of all compared
methods for top-1 predictions. We make several observations. First,
Attrilnfer substantially outperforms VIAL and Ensemble that com-
bine behaviors and social graph. For instance, Attrilnfer improves
upon VIAL by 20.1%, 16.04%, and 17.86% (these are relative im-
provements) for Precision, Recall, and F-Score, respectively. The
reason is that Attrilnfer leverages both positive training users and
negative training users, while VIAL only leverages positive train-
ing users. Ensemble method’s performance is even worse than
Attrilnfer-Soc, which only uses social graph. This observation
demonstrates that Attrilnfer is a significantly better way to com-
bine behaviors and social graph.

Second, combining behaviors and social graph indeed improves
prediction accuracy. Specifically, Attrilnfer outperforms Attrilnfer-
Beh and Attrilnfer-Soc by 58.5% and 5.38%. The reason is that
behaviors and social graph are complementary information sources
for some users, and combining them can better characterize users.
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Figure 3: Computational times of VIAL, basic version of Attrilnfer
(Attrilnfer-Basic), and optimized version of Attrilnfer (Attrilnfer-
Opt) as we attack more users.

Our method is more efficient than state-of-the-art methods: Fig-
ure 3 shows the times required by VIAL, basic version of Attriln-
fer (denoted as Attrilnfer-Basic), and optimized version of Attriln-
fer (denoted as Attrilnfer-Opt) as we attack more users. In order
to better contrast the crossing points of the three curves, we only
show the number of test users upto 300 in Figure 3. First, com-
putational times of Attrilnfer-Basic and Attrilnfer-Opt do not de-
pend on the number of test/target users, because they compute the
posterior probabilities for all target users simultaneously. There-
fore, their computational times are horizontal lines in the figure.
Note that the computational times also include the times required
to learn the prior probabilities using behaviors. Second, Attrilnfer-
Opt is substantially more efficient than Attrilnfer-Basic. This is be-
cause Attrilnfer-Opt does not maintain messages on each edge and
is concisely represented as a matrix form, while Attrilnfer-Basic
maintains messages on each edge. Third, the computational time
of VIAL increases linearly as we attack more users, which is con-
sistent with theoretical analysis in [12]. Fourth, when the number
of target users is larger than 14, Attrilnfer-Opt is more efficient than
VIAL, while Attrilnfer-Basic is more efficient than VIAL when at-
tacking more than 191 users. Moreover, as we attack more users,
the advantage of Attrilnfer over VIAL is more significant. Attri-
Infer iteratively computes the posterior probability vector for each
city, while VIAL computes the scores for all considered cities for
a test user using one random walk. Therefore, Attrilnfer is slower
than VIAL when attacking a very small number of users.
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Figure 4: Relative errors of the posterior probability vectors of
Attrilnfer-Opt in two consecutive iterations as a function of the
number of iterations.

Attrilnfer is convergent: Figure 4 demonstrates that the opti-
mized version of Attrilnfer indeed converges. Specifically, we de-
fine a relative error of the posterior probability vector in the rth
iteration as |[p®) —p~||;/|[p®]|;, and Figure 4 shows the rela-
tive error as a function of the number of iterations. As we can see,
Attrilnfer converges after around 10 iterations.

Prediction accuracy of a city is not significantly correlated with
its population: One natural question is which cities are easier to
predict. Since we model each city as a binary attribute and Attriln-
fer produces a posterior probability for each test user, we can mea-
sure performance for each city individually. First, we find that the
Pearson’s correlation coefficient between cities’ Precision for top-
1 predictions and cities’” population is around -0.06, where a city’s
population is the number of users who claim to live in the city.
This implies that cities’ prediction Precision is very weakly nega-
tively correlated with their populations. Figure 5 further shows the
prediction Precision for each considered city, where the cities are
sorted in a descending order using their populations (i.e., the order-
ing of cities is the same as that in Figure 1). The cities’ prediction
Precision fluctuates with respect to their populations.

Second, we speculate that popular international cities are harder
to predict, because a more diverse set of people may live or have
lived in such cities. Indeed, we find that 9 of the 10 cities with the
lowest Precision (ranging from 0.14 to 0.38) are popular interna-
tional cities in US, including San Francisco, Denver, Los Angeles,
San Diego, Seattle, New York, Philadelphia, Orlando, and Dallas.
People living in these cities are from different cultures, form dif-
ferent friend communities, and use quite different apps. The top-3
cities with the highest Precision (ranging from 0.95 to 0.86) are
Istanbul (in Turkey), Bangkok (in Thailand), and Moscow (in Rus-
sian), which are less international cities.

8.  CONCLUSION AND FUTURE WORK

In this work, we propose Attrilnfer, a new method to infer pri-
vate user attributes in online social networks. Attrilnfer can com-
bine both behaviors and social graph, leverage both positive train-
ing users and negative training users, and is scalable to large-scale
online social networks. Specifically, in Attrilnfer, we associate a
binary random variable with each user; the binary random variable
characterizes whether a user has a considered attribute or not. Attri-
Infer first learns a prior probability that a user has the attribute using
users’ behaviors through a logistic regression classifier. Then, At-
trilnfer models the joint probability distribution of all binary ran-
dom variables as a pairwise Markov Random Field (pMRF), and
computes the posterior probability that each target user has the at-
tribute. In the basic version, Attrilnfer uses Loopy Belief Propaga-
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Figure 5: Precision for top-1 prediction of each city. Cities are
sorted in a descending order using their populations.

tion (LBP) to estimate the posterior probabilities under the pMRF.
However, the basic version is not scalable enough and is not guar-
anteed to converge. Therefore, we further optimize Attrilnfer to be
scalable and guaranteed to converge. We compare Attrilnfer with
state-of-the-art methods using a large-scale Google+ dataset with
5.7M users. Our results demonstrate that Attrilnfer substantially
outperforms state-of-the-art methods in terms of both inference ac-
curacy and scalability. Moreover, the optimized version of Attriln-
fer is substantially more scalable than the basic version. Interest-
ing directions for future work include leveraging novel clickstream
features [30, 31] to learn prior probabilities and defending against
attribute inference attacks.

APPENDIX
A. PROOF OF THEOREM 1

Our core idea is to linearize Equation 4. We denote Q‘;(l) =

qullveru) m‘(,;) + (1= qu) Iyer@w (1 - m‘(f)). By rewriting pﬁﬂ =

(1)

ﬁqu H‘,er(u) my,, with the corresponding residual variables, we
have:
A1) _ A A (1)
0.5+ pu = W(OS—{—%) H (O,S—‘,—mm)
u vel(u)

—In(1+2p) = - Z" +1n(1+24)+ ¥ In(0.5+m)
vel(u)

=2 +n(1+24,)+ ¥, Wm(05)+ ¥ In(1+2a%)
vel'(u) vel(u)

Using approximation In(1+y) ~ y when y is small, we have:

Q)

28 = —In 2 +24,+[T(w)|-n(05) + Y 2.

vel(u)

20 (1—qu) Hvel"(u) (1- m\(/lu))

with the corresponding residual variables and using approximation
In(1—y) ~ —y when y is small, we have:

13)

N _ 1

Similarly, viarewriting 1 — p;,’ =

—2p0) = 2" — 24, + L) - n(0.5) — ¥ 27},
vel'(u)

14

Adding Equation 13 with Equation 14 yields In %(t) = |C(u)|-
In(0.5). Via substituting this relation into Equation 13 or Equa-

tion 14, we have ﬁl(f) =qu+ Zver(u) mﬁ’u) . Moreover, by substitut-
ing variables in Equation 7 with their residuals, we can represent
(®) (t) o

. N . A(t—1
the residual message i1y, as miy, = 2p$ )w. Therefore, we have

A = Gu 20 Loer AV

Theorem 1.

. Using matrix notations, we have
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