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ABSTRACT
Heterogenous information network embedding aims to embed het-
erogenous information networks (HINs) into low dimensional spaces,
in which each vertex is represented as a low-dimensional vector,
and both global and local network structures in the original space
are preserved. However, most of existing heterogenous informa-
tion network embedding models adopt the dot product to measure
the proximity in the low dimensional space, and thus they can only
preserve the first-order proximity and are insufficient to capture
the global structure. Compared with homogenous information net-
works, there are multiple types of links (i.e., multiple relations) in
HINs, and the link distribution w.r.t relations is highly skewed.

To address the above challenging issues, we propose a novel het-
erogenous information network embedding model PME based on
the metric learning to capture both first-order and second-order
proximities in a unified way. To alleviate the potential geometrical
inflexibility of existing metric learning approaches, we propose to
build object and relation embeddings in separate object space and
relation spaces rather than in a common space. Afterwards, we
learn embeddings by firstly projecting vertices from object space
to corresponding relation space and then calculate the proximity
between projected vertices. To overcome the heavy skewness of
the link distribution w.r.t relations and avoid “over-sampling” or
“under-sampling” for each relation, we propose a novel loss-aware
adaptive sampling approach for the model optimization. Extensive
experiments have been conducted on a large-scale HIN dataset,
and the experimental results show superiority of our proposed
PME model in terms of prediction accuracy and scalability.
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1 INTRODUCTION
In the era of Big Data, large-scale information networks are be-
coming ubiquitous in the real world, such as social networks, pub-
lication networks, E-commerce information networks and knowl-
edge base graphs. Traditionally, an information network is repre-
sented as a graph G =< V ,E >, where V is vertex set represent-
ing the nodes in a network, and E is an edge set representing the
relationships among nodes. However, for large-scale information
networks, the traditional graph-based representation poses a great
challenge to numerous applications that search and mine informa-
tion in them such as link prediction, node classification, clustering,
and recommendation [33–38], due to the high computational com-
plexity [8]. Recently, this motivates a lot of research interests [8] in
network embedding techniques that aim to embed information net-
works into low dimensional vector spaces, in which every vertex
is represented as a low-dimensional vector. A good embedding can
preserve the proximity (i.e., similarity) between vertices in the orig-
inal information network. Then, various search and mining tasks
can be efficiently done in the embedded space with the help of
off-the-shelf multidimensional indexing approaches and machine
learning techniques for vector spaces.

While information network embedding has recently received
a tremendous amount of research attention, most of them (e.g.,
LINE [26], DeepWalk [18], node2vec [11]) are focused on homo-
geneous network embedding that equally treats each type of nodes
and each type of links. Heterogeneous information networks (HINs),
such as publication networks [26], knowledge base graph [15] and
E-commerce information networks, containmultiple types of nodes
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Figure 1: An illustrative example of a heterogenous social network (Yelp), and PME model architecture for embedding this
heterogenous network (a). A heterogenous Yelp network consists of four types of nodes (i.e., user, business, attribute, category), which
are connected via 4 relations (i.e., user-user, user-business, business-attribute, business-category). (b). The heterogenous Yelp network can be
decomposed into as 4 bipartite networks based on the 4 relations (i.e., user-user, user-business, business-attribute, and business-category).
(c). Each bipartite network is projected to a relation specific semantic space in which the proximity of two vertices is measured by the
Euclidian distance. (d). By joint learning multiple semantic-specific Euclidian spaces, the low dimensional vector representations for each
vertex are learned.

and edges with diverse semantics. For example, in the Yelp plat-
form, various types of objects (users, business, business attributes
such as locations, and business categories) are inter-connected via
multiple types of links (i.e., user-user friend relation, user-business
interaction relation, business-attribute description relation, business-
category classification relation). Compared to homogeneous net-
work embedding, the proximity between objects in a HIN is not
just a measure of closeness or distance, but it is also based on se-
mantics. For example, in the HIN of Figure 1, vertex u1 is close to
both b2 andu3, but these relationships have different semantics. b2
is a business visited by user u1, while u3 is a friend of u1.

To model semantic-specific relationships, Huang and Mamoulis
[13] introduced meta paths (i.e., a sequence of object types with
edge types in between) in their heterogeneous information net-
work embedding algorithm, and Xu et al. [32] introduced a harmo-
nious embedding matrix to measure the proximity between nodes
of different types in their proposed coupled heterogeneous net-
work embedding method. However, both of them employed the
dot product to compute the proximity between nodes in the low
dimensional vector space. The dot product is not a metric based on
distance learning, as it does not meet the condition of the triangle
inequality that is the most crucial to the generalization of a learned
metric [12]. The triangle inequality states that for any three ob-
jects, the sum of any two pairwise distance should be greater than
or equal to the remaining pairwise distance. For example, vertices
a and b are both close to vertex c . The triangle inequality implies a
is also close to b. Therefore, these existing heterogeneous informa-
tion network embedding approaches based on dot product proxim-
ity can only capture local structures represented by observed links
in networks and preserve the first-order proximity (e.g., both a and
b are close to c), but fail to capture the second-order proximity be-
tween vertices (e.g., a and b is also close) that is determined by the
shared neighborhood structures of the vertices. It has been widely
acknowledged that the first-order proximity is not sufficient for
preserving the global network structures [26].

In light of this, we propose a Projected Metric Embedding
model (PME) for HIN embedding based on the metric or distance

learning, to simultaneously preserve both first-order and second-
order proximity in a unified and elegant way. Specifically, for each
node in the HIN, we learn a low dimensional vector such that dis-
tances between pairs of nodes with observed links are smaller than
those pairs of nodes without observed links in the latent space.
However, directly applying the Euclidean distance as a metric will
be problematic from both intuitive and mathematical perspectives.
Mathematically, it is geometrically restrictive and also leads to an
ill-posed algebraic system since it tries to fit each pair of linked
nodes into the same point in the low dimensional space, but each
nodemay havemany neighbors. This intrinsic geometric inflexibil-
ity causes adverse repercussions when the dataset is large since it
tries to force all of a node’s neighbors onto the same point [28]. On
the other hand, an object may have multiple aspects, and various
relations focus on different aspects of objects and have different
semantics in HINs.

To address the above issues, our PME introduces a relation-specific
projection embedding matrix so that we model objects and rela-
tions in distinct spaces, i.e., one shared object space and multi-
ple relation spaces (i.e., relation-specific object spaces), and per-
forms proximity calculation via the Euclidian distance in the cor-
responding relation space. Hence, it is possible that some objects
are far away from each other in the object space, but are close
to each other in the corresponding relation spaces. This allows
for a greater extent of geometric flexibility and modelling capa-
bility. The basic idea of PME is illustrated in Figure 1. For each
observed link (vi ,vj ), vertices in the object space are first pro-
jected into r -relation space as vri and vrj with operation matrix
Mr . The relation-specific projection can make vertices that actu-
ally hold the relation close with each other, and also get far away
from those that do not hold the relation. As the number of unob-
served links is huge in HINs, we adopt the bidirectional popularity-
biased negative-sampling approach [33] to optimize our PMEmodel,
inspired by the good performance of the negative sampling-based
optimization method in recent network embedding models such as
LINE [26], PTE [25] and EOE [32].
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Compared with homogenous networks, there are multiple re-
lations in a HIN and the distribution of observed links w.r.t. re-
lations is heavily skewed, which poses a great challenge for the
model optimization of PME. Take the Yelp dataset for example.
More than half (54%) of observed links are user-user links, and sec-
ond comes with user-business links, which takes up 34.3%. In con-
trast, business-attribute and business-category only take up 5.7%
and 5.8%, respectively. During the model training, if we uniformly
draw an observed link and perform stochastic gradient descent on
the drawn case, just as done in the standard stochastic gradient
descent algorithm, more than half of the sampled observed links
would belong to the user-user relation, and it would lead to that the
trained model may not be able to preserve the network structures
of business-attribute and business-category relations. To address
the challenge in the joint training of multiple relations, Tang et
al. [25] proposed to alternatively sample observed links from each
relation. Specifically, they first uniformly draw a relation, and then
randomly sample an observed link from the drawn relation. Thus,
each relation would receive the same number of training examples.
It would result in that relations with a small number of observed
links are over-sampled while those with a large number of links
are under-sampled. Besides, the difficulty of preserving the prox-
imity between pairs of vertices in each relation is different, there-
fore the required number of training examples for each relation
should also be different. Moreover, both the difficulty of preserving
the proximity and the required number of training examples for
each relation are dynamically changing as the model parameters
are updated during the model training process. To overcome the
heavy skewness of the heterogeneous link distribution, we propose
a novel loss-aware adaptive sampling approach to draw observed
links for model optimization. The basic idea is that the relations
with a larger loss should have a higher probability to be sampled,
as they need more training examples to correct the current model
parameters.

To summarize, we make the following contributions:

(1) We propose a novel heterogeneous information network em-
bedding model called “PME”, which suits arbitrary types of
large-scale heterogeneous information networks. It learns a
distance metric to preserve both the first-order and second-
order proximities in a unified and elegant way, and intro-
duces distinct latent spaces to model objects and relations
to alleviate the potential geometrical inflexibility of existing
metric learning approaches and scale to a larger number of
links.

(2) To overcome the heavy skewness of the heterogeneous link
distribution w.r.t relations, we propose a novel loss-aware
adaptive sampling approach to draw training examples in
the model optimization.

(3) We conduct extensive experiments to evaluate the perfor-
mance of PME in terms of prediction accuracy and scala-
bility on a large-scale HIN published by Yelp. The results
show the superiority of our proposals by comparing with
the state-of-the-art techniques.

The remainder of the paper is organized as follows. Section 2
reviews the relatedwork, and Section 3 introduce the preliminaries.

Section 4 details our proposed PME model. Section 5 reports the
experimental setup and results, and Section 6 concludes the paper.

2 RELATEDWORK
We first introduce the related methods of general network embed-
ding, and then discuss the recent works on heterogeneous network
embedding.

2.1 Network Embedding
Originally, graph or network embedding methods were proposed
as tools of dimension reduction for network features, such as linear
methods based on SVD [27], multi-dimensional scaling (MDS) [39],
IsoMap [2] , Spectral clustering [17] and Laplacian Eigenmap [29].
The ideas behind thosemethods are to learn low dimensional latent
factors that can preserve the majority of network features. How-
ever, these methods are not applicable for current large informa-
tion networks because of their low efficiency and large computa-
tional complexity. Another graph embedding method called graph
factorization [1] works out the low dimensional latent embeddings
of a large graph through Matrix Factorization by utilizing network
edges. It presents graphs as matrices where matrix elements cor-
respond to edges between vertices. However, the graph factoriza-
tion methods only preserve linkage information of directly linked
nodes so it is insufficient for leaning the high-order proximity of a
network. Moreover, representation learning on knowledge graphs
is also related to our work. The representative methods such as
[4] and Trans-family models (TransE [3], TransH [30], TransR[15])
have been shown effective for modelling knowledge bases. Our
idea of building projection matrices for different relations is in-
spired by TransR but designed for different purposes (to allevi-
ate geometric inflexibility when performing metric learning). Re-
cently,With the advances in languagemodelling [16], skip-gram al-
gorithm shows its superiority in modelling sentences by capturing
the neighbour words concurrencies. Inspired by this idea, Deep-
Walk [18] was proposed to embed network structures by using
local information obtained from truncated random walks as the
equivalence of sentences. Along this line of research, node2vec
[11] is another representative method. Besides, LINE [26] was pro-
posed as an efficient network embedding method, has shown its
robustness and effectiveness in dealing with large-scale informa-
tion networks. Although it is proposed to be able to preserve both
local and global proximity of the network vertices, it didn’t con-
sider the heterogeneity of complex information network.

2.2 Heterogeneous Network Embedding
Different fromhomogenous networks, heterogeneous networks con-
sist of different types of nodes and links. Although general network
embeddingmethodsmight be applied by treating every node in the
networks as the same type, it is still an interesting and challenging
problem to develop more dedicated methods for modelling the het-
erogeneous types of nodes and links in a unified way.

A heterogeneous social network embedding algorithm [14] for
classifying nodeswas proposed by Yann et. al. They learn the repre-
sentations of all types of nodes in a common vector space, and per-
form the inference in that space. In [5], a deep embedding method
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for heterogeneous network was proposed to learn the represen-
tations of nodes with different types of network structures. They
use a CNN model and a fully connected layer to learn the embed-
dings of images and texts respectively, and then map the images
and texts embeddings to a common space so that the similarities
between data from different modalities can be directly measured.

Similar as general network embedding, the random walk pro-
cess is also applied for heterogeneous networks embedding (i.e.,
metapath2vec [9]), which leverages the pre-definedmeta-paths [23]
w.r.t different node types to guide the randomwalk process to learn
network structures. They adopt a similar strategy as LINE to pre-
serve the proximity in the low dimensional space. Meta-path based
methods also includes [21] [22] [23] [24].

PTE [25] was proposed as an extension of LINE to suite the het-
erogeneous networks. It first partitions a heterogeneous network
into multiple bipartite graphs and performs network embedding
individually by using LINE. Then, the representations of differ-
ent network nodes can be learned by jointly optimizing the lin-
early combined objective function. PTE also addressed the sam-
pling problem in heterogeneous network embedding by alterna-
tively sampling positive edges from each type of edges. However,
it is still problematic when various types of links are heavily un-
balanced distributed. Moreover, PTE models vertices into a single
space will make it difficult to distinguish the heterogeneity among
different types of nodes and links.

A very recent work EOE [32] was proposed as a network em-
bedding method for coupled heterogeneous network. The coupled
heterogeneous network consists of two different but related homo-
geneous networks. For each homogeneous network, they adopt the
same function as LINE to model the relationships between nodes.
But, EOE is able to model both homogenous and heterogeneous
network by using a harmonious embedding matrix to measure the
closeness between nodes of different networks. Because the inter-
network edges are able to provide the complementary information
in the presence of intra-network edges, the learned embeddings of
nodes also perform well on several tasks. However, it only models
observed linkage information between heterogeneous nodes based
on dot product of learned latent vectors and the second-proximity
between network vertices cannot be preserved when the triangle
inequality is violated. Also, EOE did not consider the comparabili-
ties between different weights of network links, this will lead prob-
lems when optimizing the loss function. Besides, EOE can only
suite the coupled heterogeneous network.

All above mentioned methods are either designed for specific
tasks or have limitations onmodellingmultiple types of nodes. Our
proposed Projected Metric Embedding using relation-specific
projectionmatrices is versatile andmore flexible tomodel arbitrary
types of networks. Its intrinsic geometric flexibility is able to pre-
serve first-order and second-order proximity naturally.

3 PRELIMINARIES
In this section, we first introduce preliminary concepts in hetero-
geneous information networks and then define the problem of het-
erogeneous information networks embedding.

Definition 3.1. A heterogeneous information network is an
information network with multiple types of objects and/or multi-
ple types of links, formally defined as G = (V, E,W,R), where
V is the union of different types of vertices, E is the union of dif-
ferent types of links, R denotes the link type set, andW is the
union of the weight on each link. An edge e ∈ E is defined as:
ei jr = (vi , r ,vj ),vi ,vj ∈ V, r ∈ R.

Problem 1. Projected Metric Embedding for Heterogeneous
information Network: Given a heterogenous network G, the prob-
lem is to learn low-dimensional vector representationsX ∈ R∥V ∥∗dv
for network nodes and low-dimensional latent representations A ∈
R∥R ∥∗dr ∗dv for heterogenous network relations, where dv is the di-
mension of node embeddings, anddr ∗dv is the dimension of relation-
specific projection matrix.

Note that, the output of the problem consists of two parts: a).
A low-dimensional Matrix X for node representations, with its ith
row representing the latent vector vi ∈ Rdv for nodevi . b). A low-
dimensional tensor A, with its rth slice denoting the link-specific
projection matrix Mr ∈ Rdr ∗dv for link r , r ∈ R.

4 PROJECTED METRIC EMBEDDING (PME)
In this section, we present the novel PME model for HINs and
its optimization algorithm. Additionally, we also introduce a loss-
aware adaptive positive sampling mechanism for optimization.

4.1 The PME Model and Optimization
To address the key challenge of distinguishing the heterogeneity
resulting frommultiple types of vertices and relations in a HIN, we
first project the latent representation vi of a node vi into relation-
specific projectionmatrixMr. Then, the projected node embedding
vector is defined as:

vri = Mrvi (1)

With the above defined link-specific projection, we now could per-
form the proximity calculation between two linked vertices in the
corresponding relation space. For each observed link ei jr , denoting
vertex vi and vj are connected via a link r , the distance between
vi and vj in the r -relation space is calculated as:

dr (vi ,vj ) = ∥Mrvi −Mrvj∥, r ∈ R (2)

The Euclidian distance is applied here to calculate the closeness
between two nodes in specific relation space as Euclidian distance
satisfy the triangle inequality and thus can preserve the first-order
and second-order proximity naturally. At the same time, for the
consideration of weighted edges in a HIN, we then define the fol-
lowing score function for an observed edge ei jr :

fr (vi ,vj ) = wi j ∥Mrvi −Mrvj∥, r ∈ R (3)

With the defined score function for observed links in a given HIN,
our idea is to keep vertices with links to be close to each other
in certain relation space, and keep vertices without links far apart.
We define the following margin-based loss function as objective
for training:

Lr =
∑

(vi ,vj )∈Dr

∑
(vi ,vk )<Dr

[m + fr (vi ,vj )2 − fr (vi ,vk )2]+ (4)
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where vi and vj is a pair of linked vertices, and vk is a vertex not
connected with vi . Dr is the positive link set with relation type
r , r ∈ R. [z]+ = max(z, 0) is the standard hinge loss, r denotes a
specific kind of link, andm > 0 is the safety margin size. The above
loss functionmodels one relation-specific network out of the entire
given HIN. With respect to the whole heterogeneous network, the
overall loss function is written as:

L =
∑
r ∈R

∑
(vi ,vj )∈Dr

∑
(vi ,vk )<Dr

[m + fr (vi ,vj )2 − fr (vi ,vk )2]+ (5)

Then, the problem of learning embeddings of a heterogeneous net-
work is turned to minimizing the following objective function:

min
v∗,M∗

∑
r ∈R

∑
(vi ,vj )∈Dr

∑
(vi ,vk )<Dr

[m + fr (vi ,vj )2 − fr (vi ,vk )2]+

s .t . ∥v∗∥ <= 1 and ∥M∗∥ <= 1
(6)

We adopt the stochastic gradient algorithm for the model optimiza-
tion. In each step, we sample a mini-batch of edges and update the
embeddings.

4.2 Bidirectional Negative Sampling Strategy
However, directly minimizing Eqn. (6) is computationally expen-
sive, as the number of unobserved network edges are huge and
cubic to the number of observed network vertices and links. In-
spired by the negative sampling techniques in [16] [26], instead
of sampling all unobserved examples, we select some most likely
negative examples for model optimization. For each sampled pos-
itive edge ei jr , most related existing works on negative sampling
[31] [19] [20] [1] [26] [25] generate the negative examples from
only one side. Specifically, for example, given an unidirectional
edge ei jr , denoting a tripe (vi , r ,vj ) (i.e., two nodes vi and vj are
connected via the relation r ). Aforementioned negative samplers
usually fix the vertex vi and relation r , generating some negative
verticesvk (i.e., vertexvk is never connected withvi via r ) accord-
ing to a nosie distribution Pn (v), and treat (vi , r ,vk ) as negative
examples. This negative sampling strategy achieves good perfor-
mance on most homogenous network embedding tasks [26] [16]
[6] [11]; however, directly appling this negative sampling method
on heterogeneous networkwill be insufficient andwould lead to in-
effectivemodelling results. For example, in the “business-category”
sub-network in Yelp network, if we only sample negative nodes
from category side, we cannot accurately learn latent vector repre-
sentations for category nodesvj , because only observed businesses
are considered and thus the learned attributes vector v could not
discriminate whether an unobserved business belongs to it.

Thus, we follow our previous work [33] to draw negative sam-
ples from both sides of an edge. Specifically, for a sampled positive
edge ei jr , we first fix vertex vi and edge type r , then generate K
negative verticesvk according to thewidely adopted noise distribu-
tion [1] Pn (v) ∼ d0.75v , wheredv is the degree of vertexv . Similarly,
we then fix right side of ei jr , and sample K negative vertex from
the left side. Accordingly, the objective function can be refined as

Eqn.(7).

O =
∑
r ∈R

∑
(vi ,vj )∈Dr

(
K∑
k=1

Evk ∼ pn (v)[m + fr (vi ,vj )2 − fr (vi ,vk )2]+

+

K∑
k=1

Evk ∼ pn (v)[m + fr (vi ,vj )2 − fr (vk ,vj )2]+)

(7)

4.3 Loss-aware Adaptive Positive Sampling
Strategy

Another challenging issue related to themodel optimization is how
to sample the positive examples sinceHINs containmultiple relation-
specific sub-networks (i.e. the sub-networks extracted according to
different link types), and the distribution of observed positive ex-
amples is heavily skewed and imbalanced. Table 1. shows the de-
tailed statistics of the constructed Yelp heterogenous network. In
every single state, the user-user relationships and the user-business
interactions take the majority of all observed edges. If we adopt
the uniform sampling to draw an observed edge and perform sto-
chastic gradient descent algorithm, the most majority sampled ob-
served edges would be user-user and user-business links. This sam-
pling process will lead the trained model fail to preserve the the
structure of business-attribute and business-category sub-networks.
Besides, as the distribution of different types of links is quite dif-
ferent from different HINs, a fixed sampling mechanism is not able
to fit all scenarios. Moreover, the efforts needed to preserve the
network structure for different sub-network is different and will
dynamically change while training. Thus, to build a versatile HIN
embedding model, an adaptive sampling strategy for positive links
is required.

We propose a novel loss-aware adaptive positive sampling strat-
egy dedicated for heterogeneous networks. Intuitively, one can sam-
ple different types of positive examples from training set accord-
ing to the training losses of individual sub-networks after each
epoch during the training. As the distribution of various types of
links in original training set is skewed and the difficulty of pre-
serving the proximity between pairs of nodes in each relation is
different, the convergence speed for each sub-network is differ-
ent. Therefore, We can monitor the loss of each sub-network, if
the loss of one particular sub-network is relatively high compared
with the losses of other sub-networks, we adaptively increase the
amount of positive samples for this kind of edges in next epoch.
Otherwise, we decrease the amount of positive samples of this
type of edges. Specifically, let L = (l1, l2, l3, ..., l ∥R ∥) denote the
sequence of the loss of each sub-network extracted from the com-
plete heterogeneous network. One can simply calculate the sum of
the losses Lsum =

∑
r ∈R

lr and the percentage of each individual loss

lr
Lsum after each training epoch. Then, draw a random value within

the range of [0, 1] to see which interval [∑r−1
j=0

lj
Lsum ,

∑r
j=0

lj
Lsum ),

the random value falls into. Obviously, this positive sampler will
change accordingly while model parameters are updated because
the parameter changes will lead the loss for each sub-network vary
step by step. Thus, our proposed positive sampler is adaptive. As
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Table 1: Yelp network statistics

No. of Edges No. of Nodes
State User to User User to Business Business to Attributes Business to Categories Business Users Attributes Categories
Complete 29,271,479 4,153,150 605,231 527,229 14,4072 1,029,432 81 1,191
NV 4,891,171 1,460,807 106,789 105,358 28,214 428,840 81 1,030
AZ 2,269,462 1,265,915 161,361 162,393 43,492 311,857 81 1,052
ON 465,204 500,812 120,241 84,491 24,507 92,997 66 777
WI 57,593 88,778 14,986 18,479 3,899 25,773 81 678
EDH 25,695 44,631 12,676 11,972 3,539 8,371 72 456

Algorithm 1 Training PME model

Input: A heterogeneous network G(V ,E,W ,R), number of
stochastic gradient steps, N , number of negative
samples for each positive sample, K ;

Output: Embeddings for network vertices and relation-
specific projection matrix. (i.e., v,Mr );

1: iter← 0 :
2: while iter < N do
3: if iter = 0 then
4: Initialize the positive sampling probability as propor-

tional to the original link distribution from G;
5: else
6: SampleM positive examples based on adaptive positive

sampling strategy;
7: End if
8: For each sampled positive edge, sampleK negative vertices

from both sides of the edge;
9: Compute gradients and update parameters;
10: Censor the norm of v and projection matrix Mr ;
11: Compute relation-specific subgraph loss, and update the

positive sampling probability;
12: iter← iter + 1 :
13: end

the loss for each sub-network is zero at the beginning of train-
ing, we initialize the positive sampling probability for each type
of sub-network with proportional to their original edge distribu-
tion. The algorithm for optimizing our PME model is illustrated in
Algorithm 1.

5 EXPERIMENTS
In this section, we first describe the experimental settings and then
report the experimental results.

5.1 Dataset
We conduct our experiments on a large-scale and real-life dataset
provided by Yelp Challenge1 published in 2016. The dataset in-
cludes information about local business, user information, inter-
actions between user and business (ratings, reviews), as well as
friendship network among users. The original dataset contains the

1https://www.yelp.com/dataset/challenge

information in five states in the U.S, and we processed and ex-
tracted six (five individual state and one complete) large-scale het-
erogeneous social networks. Each network contains four different
sub-networks, which are user-user, user-business, business-attribute,
and business-category networks. Table 1. shows the detailed statis-
tic of the extracted Yelp network. To make our experiments repeat-
able, we make our dataset and codes publicly available at our web-
site2.

Table 2: Statistics on AZ network

u2u u2b b2a b2c |U| |B| |A| |C|
Amount 1518610 961997 161361 162392 162345 43492 81 1052
Sparsity 0.99994 0.99986 0.95420 0.99645 - - - -
Toal amount 2,804,360 206,970

5.2 Evaluation Method
5.2.1 Evaluation of Prediction Accuracy. We perform this

task on AZ (Arizona) state dataset. We further process this dataset
by filtering out the nodes whose degree are less than 5. Then, we
use 80-th percentile as the cut-off point so that the network link-
age records before this point are used for training. In the train-
ing dataset, we choose the last 10% records as the validation data
to tune the model parameters, including the dimension of latent
feature vectors, margin, learning rate and the number of gradi-
ent steps. According to the above dividing strategies, we split the
dataset D+ into D+traininд , D

+
validate and D+test . We summarise

the detailed statistics of this dataset in Table 2.
To evaluate the embedding models, we employ the methodol-

ogy and measurement Hits@k which have been widely adopted
by recommender system and knowledge graph communities [15]
[7]. Specifically, for each linkage information (a triple consists of
two vertices connected by a link) i.e., ei jr ∈ D+test :
• We randomly choose 5000 items with which vertex vi has
been never connected by link type r to replace vj and form
5000 negative examples.
• We compute a score for ei jr as well as the 5000 negative
examples by calculating their relative Euclidean distance by
Equation (2).
• We form a ranked list by ordering these 5001 examples ac-
cording to their distances to vi . Let rank(ei jr ) denote the
position of ei jr in the ranking list.
• We form a top-k prediction list by picking the k top ranked
examples from the list. If rank(ei jr ) <= k , we have a hit.
Otherwise, we have a miss.

2https://sites.google.com/view/hongxuchen
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Figure 2: Hit ratio@ top 20, 15, 10, 5, 1

The computation of Hits ratio proceeds as follows. We define
hit@k for a single test case as either 1, if the positive example ei jr
appears in the top-k results, or 0, if otherwise. The overallHits@k
is defined by averaging over all test cases:

Hits@k = #hit@k
∥D+test ∥

where #hit@k denotes the number of hits in the test set, and ∥D+test ∥
is the number of all test cases. A good predictor should achieve
higher #hit@k . We can further divide D+test into four groups of
triples according to the different edge types, and then analyze the
performance of prediction models on each specific type of network
edges. Besides Hits ratio, we also adopt the commonly used metric
in information retrieval Mean Reciprocal Rank (MRR) to measure
the prediction accuracy, and it is defined as follows:

MRR = 1
∥D+test ∥

∑
ei jr ∈D+test

1
rank (ei jr )

MRR is an average of the reciprocal rank of a positive example
over all sampled negative examples, and a good prediction model
should have a bigger MRR value. In contrast to mean rank, MRR is
less sensitive to outliers.

5.2.2 Binary Link Classification. Binary link classification
tasks aim to predict whether the given links exist in the given net-
works. For this task, we split the original dataset into training, val-
idation and testing dataset according to the same split strategy de-
scribed in section 5.2.1, but we choose NV dataset to perform this
task, which has a similar scale, but is geographically separate with
AZ dataset. For each positive example (label as “1”) in the testing

set, we generate one negative example with label “0”. Then, the
performance of this task is evaluated with the widely used AUC
metric [10].

5.3 Comparison Methods
We compare our proposed model with the following recent embed-
ding methods for heterogeneous networks:

• metapath2vec [9]metapath2vec leverages predefinedmeta-
path [23] guided random walks to construct the heteroge-
neous neighbourhood of a node and then applies a heteroge-
neous skip-gram model to perform node embedding. In our
experiment, to include all types of nodes and links, we de-
fined five different meta-paths: “ABA” (Attribute-Business-
Attribute), “UBU” (User-Business-User), “CBC” (Category-
Business-Category), “UBCBU” (User-Business-Category-Bus
iness-User) and “UBABU” (User-Business-Attribute-Business-
User) as the guidance of random walks.
• node2vec [11] This method diversifies the neighbourhood
by using biased random walks over networks to produce
paths of nodes. It also leverages the skip-gram architecture
in word2vec [16] to model the network structure.
• PTE [25] PTE was further developed from LINE[26] , as an
extension for heterogeneous network embedding. We con-
struct four bipartite heterogeneous networks (user-user, user-
business, bossiness-attributes, business-category) and restrain
it as an unsupervised network embedding method.
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• EOE [32] EOE learns embeddings for nodes in a coupled
heterogenous network, and introduce a harmonious matrix
to reconcile the heterogeneity between different types of
nodes. However, EOE requires two inter-related homoge-
nous networks, which has limitations when it is applied to
general HINs embedding. Thus, we extend the EOE model
by constructing bi-partite heterogenous networks and treat-
ing them as homogenous networks.

5.3.1 Parameter Settings. In the experiment, all the hyper-
parameters of both compared methods and our method are tuned
to perform the best on the validation set. For our model, we set
margin m = 2, learning rate α = 0.001, batch size B = 480. To
compare with all other methods, we set the common hyperparam-
eters as follows, negative samples N = 5, embedding dimension
D = 128. For random walk based methods node2vec[11] and meta-
path2vec [9], we set the number of walks per nodew = 1000, walk
length l = 100.

5.4 Experimental Results
In this section, we report our experimental results regarding social
link prediction accuracy and binary link classification.

5.4.1 Social LinkPredicationAccuracy. In Figure 2,We present
the prediction accuracy of all comparisonmethods in terms ofHits@k ,
where k ∈ {1, 5, 10, 15, 20}. Specifically, Figure 2 (a) - (d) show the
individual prediction performance on each type of sub-network
links (i.e., business-attribute, business-category, user-user, and user-
business), and Figure 1 (e) shows the overall prediction accuracy
on the whole test set that consists of all types of links.

It is clear that our proposedmodel consistently and significantly
outperforms all compared methods in all types of network links
prediction. Impressively, our model shows its superiority more sig-
nificantly when the network is more sparse. For example, there
are 162,345 users in our AZ dataset, which forms very sparse user-
user (only 1,518,610 links, sparsity level 99.994%). Our model gains
3.6x, 35x, 4.26x, 3.28x times performance atHit@20 comparedwith
EOE, PTE, metapath2vec, node2vec, respectively as indicated in
Figure 2(c). This reflects our model has good adaptability when
dealing with data sparsity that is the nature of real-world HINs.
The reason behind the superiority is that our PMEmodel leverages
a more geometrically flexible way to capture both the first-order
and second-order proximity among nodes simultaneously. Thus,
the weak relations in sparse network can be captured. Table 3 il-
lustrates the prediction accuracy in terms ofMRR metric, which is
consistent with the performance in terms of Hits@k in Figure 2.

We also noted thatmetapath2vec performsworse than node2vec
in most experiments. We find the reason behind this is probably
that the node2vec uses both BFS andDFS to traverse the network to
generate node sequences, which is able to capture local and global
network structure (higher-order proximity) at the same time.While,
a key limitation of meta2path is that it treats the first-order prox-
imity and the second-order relations as contributing equally to the
learning. Moreover, the pre-definedmeta-path for generating node
sequences is also a key factor to the model performance. How-
ever, it is an interesting problem to select an appropriate meta-path
based on different tasks and networks.

Table 3: Predication accuracy in terms of MRR
PME node2vec PTE EOE metapath2vec

Overall 0.1253 0.0396 0.0181 0.0624 0.0098
user-user 0.1249 0.0314 0.0036 0.0260 0.0019
user-business 0.0529 0.0163 0.0219 0.0403 0.0089
business-attribute 0.3701 0.1539 0.1179 0.3059 0.0547
business-category 0.3151 0.1418 0.0321 0.2923 0.0435

Table 4: AUC scores on NV network
PME node2vec PTE EOE metapath2vec

Overall 0.9618 0.8789 0.7494 0.8562 0.6232
user-user 0.9672 0.8909 0.6347 0.9033 0.5141
user-business 0.9590 0.8835 0.8615 0.9129 0.8179
business-attribute 0.9376 0.7522 0.8944 0.9201 0.5653
business-category 0.9896 0.9233 0.9652 0.9819 0.7725

5.4.2 Binary Link Classification. Next, we introduce our ex-
perimental results on binary link classification task in Table 4, where
we report the binary link classification results in terms of AUCmet-
ric of our PME model and different compared methods. Obviously,
our model significantly improves the binary classification results
consistently in all types of sub-networks.

We explore the reason behind the superiority of our proposed
PME model. The superiority of our proposed PME model are two-
folds. First, we deploy Euclidian distance as the metric to model
the proximity in distinct relation-specific spaces, which preserves
both the first-order and second-order proximity in a unified way,
and the relation-specific space is helpful to represent the semantics
of different relations. Other methods such as EOE that models the
proximity between nodes by using dot product is not able to pre-
serve the geometric properties of leant metric. Moreover, our PME
model adopts a novel adaptive positive sampling and bidirectional
negative sampling strategy while other models including EOE and
PTE only consider replacing one side to draw samples. EOE em-
ploys gradient-based algorithms to perform the optimization and
treats all unobserved links as negative examples. Although this so-
lution empirically works well on small datasets, it has limited pre-
diction accuracy because some of the missing links might be posi-
tive. Moreover, this solution cannot apply to large-scale HINs due
to the huge number of unobserved links and the expensive compu-
tational cost.

5.5 Parameter Sensitivity Analysis
In this section, we investigate the sensitivity of different parame-
ters in our model, including the number of embedding dimensions
D, the number of negative samplesN , the number of training times
T (i.e., the number of epochs). We investigate how these parame-
ters influence the performance of our proposed model by setting
dimensions D to 32, 64, 128, 256 and 512, respectively; the number
of epochs from 50 to 1000, and negative samples from 1 to 15.

Figure 3 (a) shows the results of prediction accuracy (Hits@20)
w.r.t. the number of embedding dimensionality. From the results,
we observe that the performance of our PMEmodel improves with
the increase of the number of dimensionality dramatically, and the
performance becomes very stable when embedding dimensional-
ity is going above 100. This implies our model is capable to cap-
ture the complex network structure among thousands of heteroge-
neous nodes and millions of links by only consuming such a low
resource. Similar trends are also observed in figure 3 (b) and (c),
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Figure 3: Parameter sensitivity
where in figure 3 (b) we can see that when the number of negative
examples is larger than 4, the performance of our model archives
a good and stable results. For training times, our model is starting
converging after 200 epochs as shown in figure 3 (c).

5.6 Evaluation of Efficiency and Scalability
As heterogeneous networks are complex and contain such an im-
pressive large number of nodes in the real world application sce-
nario, it is necessary for a model being feasible to be applied in the
large scale datasets. In this section, we investigate the scalability
of our PME model optimized by the asynchronous stochastic gra-
dient descent, which deploys multiple threads for parallel model
optimization.Our experiments are conducted in a computer server
with 64 cores and 1 Tb. memory. We run experiments with default
settings (refers as in section 5.3.1) but different threads from 1 to
64. Figure 4 shows the speedup ratio w.r.t. the number of threads.
The speedup ratio is quite close to linear, which shows that the
optimization algorithm of the PME is quite scalable.
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Figure 4: Scalability of PME

5.7 Case study: embedding visualization
Finally, for an intuitive understanding, we visualize the embed-
ding vectors in a 2-dimensional space. Figure 5 (a) and (b) show
the business-attribute relation space and business-category rela-
tion space respectively. From Figure 5 (a), we can see business
nodes are clearly clustered into several groups and their distance
to relevant attributes are revealed. This implies businesses are di-
vided into groups based on their common attributes. In Figure 5 (b),
we also observe our method successfully categorises businesses
into more fine-grained clusters according to relevant categories

because in our dataset, the number of categories is larger than at-
tributes (i.e., 1052 categories and 81 attributes).

(a) business-attribute space (b) business-category space

Figure 5: visualization (zoom-in for a better readability)

6 CONCLUSION
In this work, we proposed a novel model PME to embed heteroge-
nous information networks, which elegantly solves the challeng-
ing problem of modelling node and link heterogenities in elabo-
rately designed relation-specific spaces. Besides, we apply Euclid-
ian Distance as a metric to embed nodes proximities, which sat-
isfies the crucial triangle inequality and preserves both the first-
order and the second-order proximity at the same time. To opti-
mize the PME model, we also introduce a novel loss-aware adap-
tive positive sampling strategy to overcome the heavy skewness
of the heterogenous link distribution w.r.t. relations and further
improve the model convergence speed. In addition, our model is
versatile and suits arbitrary networks with no application limita-
tions. Extensive experiments were conducted on a large-scale Yelp
heterogenous network, and our PME model significantly outper-
forms the state-of-art heterogenous network embedding methods.
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