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ABSTRACT

In online social networks people often express attitudes towards

others, which forms massive sentiment links among users. Predict-

ing the sign of sentiment links is a fundamental task in many areas

such as personal advertising and public opinion analysis. Previous

works mainly focus on textual sentiment classification, however,

text information can only disclose the “tip of the iceberg” about

users’ true opinions, of which the most are unobserved but implied

by other sources of information such as social relation and users’

profile. To address this problem, in this paper we investigate how

to predict possibly existing sentiment links in the presence of het-

erogeneous information. First, due to the lack of explicit sentiment

links in mainstream social networks, we establish a labeled het-

erogeneous sentiment dataset which consists of users’ sentiment

relation, social relation and profile knowledge by entity-level sen-

timent extraction method. Then we propose a novel and flexible

end-to-end Signed Heterogeneous Information Network Embedding

(SHINE) framework to extract users’ latent representations from

heterogeneous networks and predict the sign of unobserved sen-

timent links. SHINE utilizes multiple deep autoencoders to map

each user into a low-dimension feature space while preserving the

network structure. We demonstrate the superiority of SHINE over

state-of-the-art baselines on link prediction and node recommen-

dation in two real-world datasets. The experimental results also

prove the efficacy of SHINE in cold start scenario.
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1 INTRODUCTION

The past decade has witnessed the proliferation of online social

networks such as Facebook, Twitter and Weibo. In these social

network sites, people often share feelings and express attitudes

towards others, e.g., friends, movie stars or politicians, which forms

sentiment links among these users. Different from explicit social

links indicating friend or follow relationship, sentiment links are

implied by the semantic content posted by users, and involve dif-

ferent types: positive sentiment links express like, trust or support

attitudes, while negative sentiment links signify dislike or disap-

proval of others. For example, a tweet saying “Vote Trump!” shows

a positive sentiment link from the poster to Donald Trump, and

“Trump is mad...” indicates the opposite case.

For a given sentiment link, we define its sign to be positive

or negative depending on whether its related content expresses

a positive or negative attitude from the generator of the link to

the recipient [14], and all such sentiment links form a new net-

work topology called sentiment network. Previous work [6, 11, 15]

mainly focuses on sentiment classification based on the concrete

content posted by users. However, they cannot detect the existence

of sentiment links without any prior content information, which

greatly limits the number of possible sentiment links that could be

found. For example, if a user does not post any word concerning

Trump, it is impossible for traditional sentiment classifiers to ex-

tract the user’s attitude towards him because “one cannot make

bricks without straw”. Therefore, a fundamental question is, can

we predict the sign of a given sentiment link without observing its

related content? The solution to this problem will benefit a great

many online services such as personalized advertising, new friends

recommendation, public opinion analysis, opinion polls, etc.

Despite the great importance, there is little prior work concern-

ing predicting the sign of sentiment links among users in social

networks. The challenges are two-fold. On the one hand, lack of

explicit sentiment labels makes it difficult to determine the polarity

of existing and potential sentiment links. On the other hand, the

complexity of sentiment generation and the sparsity of sentiment

links make it hard for algorithms to achieve desirable performance.

Recently, several studies [12, 14, 31, 35] propose methods to solve

the problem of predicting signed links. However, they rely heavily

on manually designed features and cannot work well in real-world

scenarios. Another promising approach called network embedding
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[8, 17, 23, 26], which automatically learns features of users in net-

work, seems plausible to solve the task. However, they can only

apply to networks with positive-weighted (i.e., unsigned) and single-

type (i.e., homogeneous) edges, which limits their power in the task

of practical sentiment link prediction.

Based on the above facts, in this paper we investigate the prob-

lem of predicting sentiment links in absence of sentiment related

content in online social networks. Our work is two-step. First, con-

sidering the lack of labeled data, we establish a labeled sentiment

dataset fromWeibo, one of the most popular social network sites in

China. We leverage state-of-the-art entity-level sentiment extrac-

tion method to calculate the sentiment of the poster towards the

celebrity in each tweet. Besides, to handle the sparsity problem, we

collect two additional types of side information: social relationship

among users and profile knowledge of users and celebrities. Our

choices are enlightened by [27] and [34], respectively, in which

[27] demonstrates that the structural information of social net-

works can greatly affect users’ preference towards online items,

and [34] proves that information from knowledge base could boost

the performance of recommendation. The heterogeneous informa-

tion networks are illustrated in Fig. 1.

To explore more possible sentiment links from the network, in

the second step, we propose a novel end-to-end framework termed

as Signed Heterogeneous Information Network Embedding (SHINE).

Greatly different from existing network embedding approaches,

SHINE is able to learn user representation and predict sentiment

from signed heterogeneous networks. Specifically, SHINE adopts

multiple deep autoencoders [20], a type of deep-learning-based

embedding technique, to extract users’ highly nonlinear represen-

tations from the sentiment network, social network and profile

network, respectively. The learned three types of user represen-

tations are subsequently fused together by specific aggregation

function for further sentiment prediction. In addition to the adapt-

ability to signed heterogeneous networks, the superiority of SHINE

also lies in its end-to-end prediction technology and high flexibil-

ity of adding or removing modules of side information (i.e., social

relationship and profile knowledge), which is discuss in Section 5.

We conduct extensive experiments on two real-world datasets.

The results show that SHINE achieves substantial gains compared

with baselines. Specifically, SHINE outperforms other strong base-

lines by 8.8% to 16.8% in the task of link prediction on Accuracy,

and by 17.2% to 219.4% in the task of node recommendation on

Recall@100 for positive nodes. The results also prove that SHINE

is able to utilize the side information efficiently, and maintains a

decent performance in cold start scenario.

2 RELATEDWORK

2.1 Signed Link Prediction

Our problem of predicting positive and negative sentiment links

connects to a large body of work on signed social networks, in-

cluding trust propagation [9], spectral analysis [13], and social me-

dia mining [22]. For the link prediction problem in signed graphs,

Leskovec. et al. [14] adopt signed triads as features for prediction

based on structural balance theory. Ye et al. [31] utilize transfer

learning to leverage edge sign information from source network

Alice
Female
California
…

Bob
Male
Texas
…

Donald Trump
Male

Politician
American
1946
…

Emma Watson
Female
Actress
British
1990
…

Albert Einstein
Male

Scientist
German
1879
…

positive sentiment link
negative sentiment link
social link

Fig. 1: Illustration of a snippet of heterogeneous networks

with sentiment, social relationship and user profile.

and improve prediction accuracy in target network. Tang et al. de-

sign NeLP framework [21] which exploits positive links in social

media to predict negative links. The difference between the above

work and ours is that we construct a labeled dataset by entity-level

sentiment extraction method, as there is no explicit signed links in

mainstream online social networks. Besides, we use state-of-the-art

deep learning approach to learn the representation of links.

2.2 Network Embedding

There is a long history of work on network embedding. Earlier

works such as IsoMap [24] and Laplacian Eigenmap [1] first con-

struct the affinity graph of data using the feature vectors and then

embed the affinity graph into a low-dimension space. Recently,

DeepWalk [17] deploys random walk to learning representations

of social network. LINE [23] proposes objective functions that pre-

serve both local and global network structures for network embed-

ding. Node2vec [8] designs a biased randomwalk procedure to learn

a mapping of nodes that maximizes the likelihood of preserving

network neighborhoods of nodes. SDNE [26] uses autoencoder to

capture first-order and second-order network structures and learn

user representation. However, these methods can only address un-

signed and homogeneous networks. Additionally, several studies

focus on representation learning in the scenario of heterogeneous

network [3, 32], attributed network [10], or signed network [29, 33].

However, these methods are specialized in only one particular type

of networks, which is not applicable to the problem of sentiment

prediction in real-world signed and heterogeneous networks.

3 DATASET ESTABLISHMENT

In this section we introduce the process of collecting data from

online social networks, and discuss the details of how to extract

sentiment towards celebrities from tweets.

3.1 Data Collection

3.1.1 Weibo Tweets. We select Weibo1 as the online social net-

works studied in this work. Weibo is one of the most popular social

network sites in China which is akin to a hybrid of Facebook and

Twitter. We collected 2.99 billion tweets on Weibo from August 14,

2009 to May 23, 2014 as raw dataset. To filter out useful data which

contains sentiment towards celebrities, we first apply Jieba2, the

most popular Chinese text segmentation tool, to tag the part of

1http://weibo.com
2https://github.com/fxsjy/jieba
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Table 1: Statistics of Weibo sentiment datasets. “celebrities

v.” means the celebrities owning verified accounts onWeibo.

# users 12,814 # social links 71,268

# celebrities 1,723 # tweets 126,380

# celebrities v. 706 # pos. tweets 108,906

# ordinary users 11,091 # neg. tweets 17,474

speech (POS) of each word for each tweet. Then we select those

tweets containing words with POS tagging as “person name” which

exist in our established celebrity database (detailed in Section 3.1.4).

After getting the set of candidate tweets, for each tweet we calculate

its sentiment value (-1 to +1) towards the mentioned celebrities,

and select those tweets with high absolute sentiment values. The

final dataset consists of a set of triples (a,b, s), where a is the user

who posts the tweet, b is the certain celebrity mentioned in the

tweet, and s ∈ {+1,−1} is the sentiment polarity of user a towards

user b. The method of calculating sentiment values is detailed in

Section 3.2.

3.1.2 Social Relation. In addition to the sentiment dataset, we

also collect the social relation among users fromWeibo. The dataset

of social relation consists of tuples (a,b), where a is the follower

and b is the followee.

3.1.3 Profile of Ordinary Users. The profile of ordinary users

are collected from Weibo. For each ordinary user, we extract two of

his attributes, gender and location, as his profile information. The

attribute values are represented as one-hot vectors.

3.1.4 Profile of Celebrities. We use Microsoft Satori3 knowledge

base to extract profile of celebrities. First, we traverse the knowledge

base and select terms with object type as “person”. Then we filter

out popular celebrities with high edit frequency in knowledge base

and high appearance frequency in Weibo tweets. For each of these

“hot” celebrities, we extract 9 attributes as his profile information:

place of birth, date of birth, ethnicity, nationality, specialization, gen-

der, height, weight, and astrological sign. Values of these attributes

are discretized so that every celebrity’s attribute values can be ex-

pressed as one-hot vectors. Furthermore, we remove celebrities

with ambiguous names as well as other noises.

3.2 Sentiment Extraction

To extract users’ sentiment towards celebrities in tweets, we first

generate a sentiment lexicon consisting of words and their sentiment

orientation (SO) scores. To achieve this, we manually construct a

emoticon-sentiment mapping file and map each tweet to positive

or negative class according to the label of emoticon appeared in

the tweet. For example, “I love Kobe! [kiss]” is mapped to positive

class if the key-value pair ([kiss], positive) exists in the emoticon-

sentiment mapping file. Note that the class of emoticon cannot

be directly regarded as the sentiment towards celebrities since we

found a large number of mismatch cases, e.g., “Miss you Taylor Swift

[cry][cry]”. Afterwards, for each word (segmented by Jieba) with

occurrence frequency from 2,000 to 10,000,000 in the raw tweets

datasets, similar to [2], we calculate its SO score as

SO(word) = PMI (word,pos) − PMI (word,neд), (1)

3http://searchengineland.com/library/bing/bing-satori

+1

+1
+1

-1
-1

(a) Sentiment network (b) Social network

gender

nationality

specialization

(c) Profile network

Fig. 2: Illustration of the three studied networks.

where PMI is the point-wise mutual information [25] defined as

PMI (x ,y) = log
p(x,y)
p(x )p(y)

, pos and neд are the tweets of positive and

negative class, respectively. SO scores are subsequently normalized

to [−1, 1].

After getting the lexicon, we use SentiCircle [19] to calculate

sentiment towards celebrities in each tweet. Given a piece of tweet

as well as the mentioned celebrity, we represent the contextual

semantics of the celebrity as a polar coordinate space, where the

celebrity is situated in the origin and other terms in the tweet are

scattered around. Specifically, for celebrity term c , the coordinate
of term ti is (ri ,θi ), where ri is the inverse of distance between
c and ti in syntax dependence graph generated by LTP [4], and

θi = SO(ti ) · π . The overall sentiment towards the celebrity c is,
therefore, approximated as the geometric center of all terms ci .
We take the projection of the geometric center on y-axis as final

sentiment value towards the celebrity.

To validate the effectiveness of sentiment extraction, we ran-

domly select 1,000 tweets (500 positive and 500 negative tagged

by our method) in Weibo sentiment dataset, and manually label

each one of them. The result shows that the precision is 95.2% for

positive class and 91.0% for negative class, which we believe is

accurate enough for subsequent experiments. The basic statistics

of Weibo sentiment datasets is presented in Table 1.

4 PROBLEM FORMULATION

In this section we formulate the problem of predicting sentiment

links in heterogeneous information networks. For better illustration,

we split the original heterogeneous network into the following three

single-type networks:

Sentiment network. The directed sentiment network is denoted

as Gs = (V , S), where V = {1, ..., |V |} represents the set of users

(either ordinary users or celebrities) and S = {si j | i ∈ V , j ∈ V }

represents sentiment links among users. Each si j can take the value

of +1, −1 or 0, representing that user i holds a positive, negative,
or unobserved sentiment towards user j, respectively.

Social network. The directed social network is denoted asGr =

(V ,R), where R = {ri j | i ∈ V , j ∈ V } represents social links among

users. Each ri j can take the value of 1 or 0, representing that user i
follows user j or not in the social network.

Profile network. We denote A = {A1, ...,A |A | } the set of

user’s attributes, and akl ∈ Ak the l-th possible value of attribute

Ak . We take the union of all possible values of attributes and renum-

ber them as U =
⋃
Ak = {aj | j = 1, ...,

∑
k |Ak |}. Then the undi-

rected bipartite profile network can be denoted as Gp = (V ,U , P),
where P = {pi j | i ∈ V ,aj ∈ U } represents profile links between
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Fig. 3: Framework of the end-to-end SHINE model. To clearly demonstrate the model, we only show the encoder part of all

the three autoencoders and leave out the decoder part in this figure.

users and attribute values. Each pi j can take the value of 1 or 0,

representing that user i possesses attribute value j or not.
The three networks are illustrated in Fig. 2.

Sentiment links prediction. We define the problem of pre-

dicting sentiment links in heterogeneous information networks as

follows: Given the sentiment network Gs , social network Gr and

profile networkGp , we aim to predict the sentiment of unobserved

links between users in Gs .

5 SIGNED HETEROGENEOUS INFORMATION
NETWORK EMBEDDING

In this section we introduce the proposed SHINE model. We first

show the whole framework of SHINE. Then we present the details

of the SHINE model, including how to extract user representation

jointly from the three networks as well as the learning algorithm.

At last we give some discussions on the model.

5.1 Framework

In this paper we propose an end-to-end SHINE model to predict

sentiment links. The framework of SHINE is shown in Fig. 3. In

general, the whole framework consists of three major components:

sentiment extraction and heterogeneous networks construction

(the left part), user representation extraction (the middle part), as

well as representation aggregation and sentiment prediction (the

right part). For each tweet mentioning a specific celebrity, we first

calculate the associated sentiment (discussed in Section 3.1), and

represent the user and the celebrity in this sentiment link by us-

ing their neighborhood information from the three constructed

networks (introduced in Section 4). We then design three distinct

autoencoders to extract short and dense embeddings from origi-

nal sparse neighborhood-based representation respectively, and

aggregate these three kinds of embeddings into final heterogeneous

embedding. The predicted sentiment can thus be calculated by ap-

plying specific similarity measurement function (e.g., inner product

or logistic regression) to the two heterogeneous embeddings, and

the whole model can be trained based on the predicted sentiment

and the target (i.e., the ground truth obtained in sentiment extrac-

tion step). In the following subsections we will introduce SHINE

model in detail.

5.2 Sentiment Network Embedding

Given the sentiment graph Gs = (V , S), for each user i ∈ V , we
define its sentiment adjacency vector xi = {si j | j ∈ V } ∪ {sji | j ∈
V }. Note that xi fully contains the global incoming and outgoing

sentiment information of user i . However, it is impractical to take xi
directly as the sentiment representation of user i , as the adjacency
vector is too long and sparse for further processing. Recently, a lot of

network embedding models [8, 17, 23, 26] are proposed, which aim

to learn low-dimension representations of vertices while preserving

the network structure. Among those models, deep autoencoder is

proved to be one of state-of-the-art solutions, as it is able to capture

highly nonlinear network structure by using deep models [26].

In general, autoencoder [20] is an unsupervised neural network

model of codings aiming to learn a representation of a set of data.

Autoencoder consists of two parts, the encoder and the decoder,

which contains multiple nonlinear functions (layers) for mapping

the input data to representation space and reconstructing original

input from representation, respectively. In our SHINE model, we

propose to use autoencoders for efficiently user representation

learning.

Fig. 4 illustrates the autoencoder for sentiment network embed-

ding. As shown in Fig. 4, the sentiment autoencoder maps each

user to a low-dimension latent representation space and recover

original information from latent representation by using multiple

fully-connected layers. Given the input xi , the hidden representa-

tions for each layer are

xki = σ
(
Wk

s x
k−1
i + bks

)
, k = 1, 2, ...,Ks , (2)

where Wk
s and bks are weight and bias parameters of layer k in the

sentiment autoencoder, respectively, σ (·) is the nonlinear activation
function, Ks is the number of layers of sentiment autoencoder, and

x0i = xi . For simplicity, we denote x′i = x
Ks
i the reconstruction of

xi .

The basic goal of the autoencoder is to minimize the reconstruc-

tion loss between input and output representations. Similar to [26],

in SHINE model the reconstruction loss term of sentiment autoen-

coder is defined as

Ls =
∑

i ∈V

��(xi − x′i ) � li
��2
2 , (3)
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Fig. 4: Illustration of a 6-layer autoencoder for sentiment

network embedding.

where � denotes theHadamard product, and li = (li,1, li,2, ..., li,2 |V | )

is the sentiment reconstruction weight vector in which

li, j =

{
α > 1, i f si j = ±1;

1, i f si j = 0.
(4)

The meaning of the above loss term lies in that we impose more

penalty to the reconstruction error of the non-zero elements than

that of zero elements in input xi, as a non-zero si j carries more

explicit sentiment information than an implicit zero si j . Note that
the sentiment embedding of user i can be obtained from the layer

Ks/2 in the sentiment autoencoder, and we denote x̂i = x
Ks /2
i the

sentiment embedding of user i for simplicity.

5.3 Social Network Embedding

Similar to previous sentiment network embedding, we apply au-

toencoder to extract user representation from the social network.

Given the social network Gr = (V ,R), for each user i ∈ V , we
define its social adjacency vector yi = {ri j | j ∈ V } ∪ {r ji | j ∈ V },

which fully contains the structural information of user i in the

social network. The hidden representations of each layer in the

social autoencoder are

yki = σ
(
Wk

r y
k−1
i + bkr

)
, k = 1, 2, ...,Kr , (5)

where the meaning of notations are similar to those in Eq. (2).

We also denote y′i = y
Kr
i the reconstruction of yi . Similarly, the

reconstruction loss term of social autoencoder is

Lr =
∑

i ∈V

��(yi − y′i ) � mi

��2
2 , (6)

where mi = (mi,1,mi,2, ...,mi,2 |V | ) is the social reconstruction

weight vector in which if ri j = 1,mi, j = α > 1, elsemi, j = 1. The

social embedding of user i is denoted as ŷi = y
Kr /2
i .

5.4 Profile Network Embedding

The profile networkGp = (V ,U , P) is an undirected bipartite graph

which consists of two disjoint sets of users and attribute values.

For each user i ∈ V , its profile adjacency vector is defined as

zi = {pi j | j ∈ U }. User i’s hidden representations of each layer in

the profile autoencoder are

zki = σ
(
Wk

p z
k−1
i + bkp

)
, k = 1, 2, ...,Kp , (7)

where the meaning of notations are similar to those in Eq. (2). We

also use the notation z′i to denote the reconstruction of zi . Therefore,

the reconstruction loss term of profile autoencoder is

Lp =
∑

i ∈V

��(zi − z′i ) � ni
��2
2 , (8)

where ni is the profile reconstruction weight vector defined sim-

ilarly to mi in the previous subsection. The profile embedding of

user i is denoted as ẑi = z
Kp/2
i .

5.5 Representation Aggregation and Sentiment
Prediction

Once we obtain the sentiment embedding x̂i , social embedding ŷi ,

and profile embedding ẑi of user i , we can aggregate these embed-

dings into final heterogeneous embedding ei by specific aggregation

functionд(·, ·, ·). We list some of the available aggregation functions

as follows:

• Summation [34], i.e., ei = x̂i + ŷi + ẑi ;

• Max pooling [28], i.e., ei = element-wise-max (̂xi , ŷi , ẑi );
• Concatenation [23], i.e., ei = 〈̂xi , ŷi , ẑi 〉.

Finally, given two users i and j as well as their heterogeneous
embedding ei and ej , the predicted sentiment s̄i j can be calculated

as s̄i j = f (i, j), where f (·, ·) is specific similarity measurement

function. For example:

• Inner product [3, 5], i.e., s̄i j = eTi ej + b, where b is a trainable

bias parameter;

• Euclidean distance [26], i.e., s̄i j = −‖ei − ej ‖2 +b, where b is a

trainable bias parameter;

• Logistic regression [17], i.e., s̄i j =WT〈ei , ej 〉+b, whereW and

b are trainable weights and bias parameters.

We will study the choices of f and д in the experimental part.

5.6 Optimization

The complete objective function of SHINE model is as follows:

L =
∑

i ∈V

��(xi − x′i ) � li
��2
2 + λ1

∑
i ∈V

��(yi − y′i ) � mi

��2
2

+ λ2
∑

i ∈V

��(zi − z′i ) � ni
��2
2 + λ3

∑
si j=±1

(
f (ei , ej ) − si j

)2
+ λ4Lr eд ,

(9)

where λ1, λ2, λ3 and λ4 are balancing parameters. The first three

terms in Eq. (9) are the reconstruction loss terms of sentiment au-

toencoder, social autoencoder, and profile autoencoder, respectively.

The fourth term in Eq. (9) is the supervised loss term for penaliz-

ing the divergence between predicted sentiment and ground truth.

The last term in Eq. (9) is the regularization term that prevents

over-fitting, i.e.,

Lr eд =

Ks∑
k=1

��Wk
s

��2
2 +

Kr∑
k=1

��Wk
r

��2
2 +

Kp∑
k=1

��Wk
p

��2
2 +

��f ��22, (10)

where Wk
s , W

k
r , W

k
p are the weight parameters of layer k in the

sentiment autoencoder, social autoencoder, and profile autoencoder,

respectively, and ‖ f ‖22 is the regularization penalty for similarity

measurement function f (·, ·) (if appropriate).
We employ the AdaGrad [7] algorithm to minimize the objective

functions in Eq. (9). In each iteration, we randomly select a batch

of sentiment links from training dataset and compute the gradient
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of the objective function with respect to each trainable parameter

respectively. Then we update each trainable parameter according

to the AdaGrad algorithm till convergence.

5.7 Discussions

5.7.1 Asymmetry. Many real-world networks are directed, which

implies that for two nodes i and j in the network, edges (i, j) and
(j, i) may coexist and their values are not necessarily identical. A

few recent studies have focused on this asymmetry issue [16, 36]. In

this work, whether the basic SHINE model can characterize asym-

metry depends on the choice of similarity measurement function f .
Specifically, SHINE is capable of dealing with the direction of a link

if and only if f (i, j) � f (j, i) (e.g., logistic regression). However (and
fortunately), even if we choose a symmetric function (e.g., inner

product or Euclidean distance) as f , we can still easily extend the

basic SHINE model to asymmetry-aware version by setting two

distinct sets of autoencoders to extract representation of source

node and target node respectively. From this point of view, in basic

SHINE model the parameters of autoencoders are actually shared

for source node and target node to alleviate over-fitting, and we

can choose to explicitly distinguish the two sets of autoencoders

for asymmetry reasons.

5.7.2 Cold start problem. A practical issue for network embed-

ding is how to learn representations for newly arrived node, which

is the cold start problem. Almost all existing models cannot work

well in cold start scenario because they only use the information

from the target network (e.g., sentiment network in this paper),

which is not applicable for the newly arrived node who has little in-

teraction with the existing target network. However, SHINE is free

of the cold start problem, as it makes full use of side information

and incorporate it naturally into the target network when learning

user representations. We will further study the performance of

SHINE in cold start scenario in the experiment part.

5.7.3 Flexibility. It is worth noticing that SHINE is also a frame-

work with high flexibility. For any other new available side infor-

mation of users (e.g., users’ browsing history), we can easily design

a new parallel processing component and “plug” it in the original

SHINE framework to assist learning representation. Contrarily, we

can also “pull out” social autoencoder or profile autoencoder from

SHINE framework if such side information is unavailable. Besides,

the flexibility of SHINE also lies in that one can choose different

aggregation functions д and similarity measurement functions f ,
as discussed in Section 5.5.

6 EXPERIMENTS

In this section, we evaluate the performance of our proposed SHINE

on real-world datasets. We first introduce the datasets, baselines,

and parameter settings for experiments, then present the experi-

mental results of SHINE and baselines.

6.1 Datasets

To comprehensively demonstrate the effectiveness of SHINE frame-

work, we use the following two datasets for experiments:

• Weibo-STC: Our proposed Weibo Sentiment Towards Celebri-

ties dataset consists of three heterogeneous networks with

12,814 users, 126,380 tweets, 71,268 social links and 37,689

profile values, of which the detail is presented in Section 3.

• Wiki-RfA: Wikipedia Requests for Adminship [30] is a signed

network with 10,835 nodes and 159,388 edges, corresponding

to votes cast by Wikipedia uses in election for promoting

individuals to the role of administrator. A signed link indicates

a positive or negative vote by one user on the promotion

of another. Note that Wiki-RfA does not contain any side

information of nodes, therefore, this dataset is used to validate

the efficacy of the basic sentiment autoencoder in SHINE.

6.2 Baselines

We use the following five methods as baselines, in which the first

three are network embedding methods, FxG is a signed link predic-

tion approach, and LIBFM is a generic classification model. Note

that the first three methods are not directly applicable to signed

heterogeneous networks, so we use them to learn user representa-

tions from positive and negative part of each network respectively,

and concatenate them to form the final embeddings. For FxG on

Weibo-STC dataset, we only use the sentiment network as input

because the FxG model cannot utilize the side information of nodes.

• LINE: Large-scale Information Network Embedding [23] de-

fines loss functions to preserve the first-order and second-

order proximity and learns representations of vertices.

• Node2vec: Node2vec [8] designs a biased random walk proce-

dure to learn a mapping of nodes that maximizes the likelihood

of preserving network neighborhoods of nodes.

• SDNE: Structural Deep Network Embedding [26] is a semi-

supervised network embedding model using autoencoder to

capture local and global structure of target networks.

• FxG: Fairness and Goodness [12] predicts the weights of edges

in weighted signed networks by introducing two measures of

node behavior: goodness (i.e., how much the node is liked by

other nodes) and fairness (i.e., how fair the node is in rating

other nodes’ likeability).

• LIBFM: LIBFM [18] is a state-of-the-art feature based factor-

ization model. In this paper, we use the concatenated one-hot

vectors of users in three networks as input to feed LIBFM.

6.3 Parameter Setttings

We design a 4-layer autoencoder in SHINE for each network, in

which the hidden layer is with 1,000 units and the embedding layer

is with 100 units. Deeper architectures cannot further improve the

performance but incur heavier computational overhead according

to our experimental results. We choose concatenation as the aggre-

gation function д and inner product as the similarity measurement

function f . Besides, we set the reconstruction weight of non-zero

elements α = 10, the balancing parameters λ1 = 1, λ2 = 1, λ3 = 20,

and λ4 = 0.01 for SHINE. We will study the sensitivity of these

parameters in Section 6.6. For LINE, we concatenate the first-order

and second-order representations to form the final 100-dimension

embeddings for each node, and the total number of samples is 100

million. For node2vec, the number of embedding dimension is set

as 100. For SDNE, the reconstruction weight of non-zero elements

is 10 and the weight of first-order term is 0.05. For LIBFM, the

dimensionality of the factorization machine is set as {1, 1, 0} and
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Fig. 5: Accuracy and micro-F1 on Weibo-STC and Wiki-RfA for link prediction.

we use SGD method for training with learning rate of 0.5 and 200

iterations. Other parameters in these baselines are set as default.

In the following subsections, we conduct experiments on two

tasks: link prediction and node recommendation.

6.4 Link Prediction

In link prediction setting, our task is to predict the sign of an unob-

served link between two given nodes. As the existing links in the

original network are known and can serve as the ground truth, we

randomly hide 20% of links in the sentiment network and select a

balanced test set (i.e., the number of positive links is the same as

negative links) out of them, while use the remaining network to

train SHINE as well as all baselines. We use Accuracy and Micro-F1

as the evaluation metrics in link prediction task. For a more fine-

grained analysis, we compare the performance while varying the

percentage of training set from 10% to 100%. The result is presented

in Fig. 5, from which we have the following observations:

• Fig. 5 shows that our methods SHINE achieves significant im-

provements in Accuracy and Micro-F1 over the baselines in

both datasets. Specifically, in Weibo-STC, SHINE outperforms

LINE, node2vec, and SDNE by 13.8%, 16.2%, and 8.78% respec-

tively on Accuracy, and achieves 15.5%, 17.6%, 9.71% gains

respectively on Micro-F1.

• Among the three state-of-the-art network embeddingmethods,

SDNE performs best while LINE and node2vec show relatively

poor performance. Note that SDNE also uses autoencoder to

learning the embedding of nodes, which proves the superiority

of autoencoder in extracting highly nonlinear representations

of networks from a side.

• FxG performs much better in Wiki-RfA than in Weibo-STC.

This is probably due to the following two reasons: 1) Unlike

other methods, FxG cannot utilize the side information in

Weibo-STC dataset. 2) Weibo-STC is sparser than Wiki-RfA,

which is unfavorable to the computing of goodness and fair-

ness of nodes in FxG model.

• Although LIBFM is not specially designed for network-structured

data, it still achieves fine performance compared with other

network embedding methods. However, during experiments

we find that LIBFM is unstable and prone to parameters tuning.

This can also be validated by the fluctuating curves of LIBFM

in Fig. 5c and Fig. 5d.

To compare the performance of SHINE and baselines in cold

start scenario, we construct a test set of newly arrived users for

Table 2: Comparison of models in terms of Accuracy and

Micro-F1 on Weibo-STC in cold start scenario.

Model
Accuracy Micro-F1

all users new users all users new users

SHINE 0.855 0.834 0.881 0.858

LINE 0.751 0.664 0.763 0.739

node2vec 0.736 0.653 0.749 0.667

SDNE 0.786 0.667 0.803 0.751

FxG 0.732 0.601 0.765 0.652

LIBFM 0.748 0.639 0.802 0.746

Weibo-STC, in which the associated ordinary user of each senti-

ment link dose not appear in the training set. We report Accuracy

and Micro-F1 for all users and new users in Table 2. From the results

in Table 2 it is evident that SHINE can still maintain a decent perfor-

mance in the cold start scenario, as it fully exploits the information

from social network and profile network to compensate for the

lack of sentiment links. By comparison, the performance of other

baselines degrades significantly in cold start scenario. Specifically,

the Accuracy decreases by 2.46% for SHINE and by 11.58%, 11.28%,

15.14%, 17.90%, 14.57% respectively for LINE, node2vec, SDNE, FxG

and LIBFM, which proves that SHINE are more capable of effec-

tively transferring knowledge among heterogeneous information

networks, especially in cold start scenario.

6.5 Node Recommendation

In addition to link prediction, we also conduct experiments on node

recommendation, in which for each user we aim to recommend a set

of users who have not been explicitly expressed attitude to but may

be liked by the user. The performance of node recommendation can

reveal the quality of learned representations as well. Specifically, for

each user, we calculate his sentiment score toward all other users,

and selectK users with largest sentiment score for recommendation.

For completeness, we recommend not only the nodes that a user

may like but also the nodes that he may dislike. Therefore, we use

positive and negative Precision@K and Recall@K respectively for

evaluation in corresponding experimental scenarios. The results

are shown in Fig. 6, which provides us the following observations:

• The curve of SHINE is almost consistently above the curves

of baselines, which proves that SHINE can better learn the

representations of heterogeneous networks and perform rec-

ommendation than baselines.
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Fig. 6: Positive and negative Precision@K and Recall@K on Weibo-STC and Wiki-RfA for node recommendation.

Table 3: Accuracy on Weibo-STC w.r.t. the combinations of

similarity measurement function and aggregate function.

f
д

Summation Max pooling Concatenation

Inner product 0.802 0.761 0.855

Euclidean distance 0.788 0.779 0.837

Logistic regression 0.816 0.782 0.842

• Negative precision is low than positive precision while nega-

tive recall is higher than positive recall for most methods. This

is because negative links are far fewer than positive links in

both datasets, which makes it easier to cover more negative

links in the recommendation set.

• In general, the results of precision and recall on Weibo-STC is

better than Wiki-RfA, which is in accordance with the results

in link prediction. The reason lies in that Weibo-STC provides

more side information which can greatly improve the quality

of learned user representations.

6.6 Parameters Sensitivity

SHINE involves a number of hyper-parameters. In this subsection

we examine how the different choices of parameters affect the

Accuracy of SHINE onWeibo-STC dataset. Except for the parameter

being tested, all other parameters are set as default.

Similaritymeasurement function f and aggregation func-

tion д.We first investigate how the similarity measurement func-

tion f and aggregation function д affect the performance by testing

on all combinations of f and д, and present the results in Table 3.

It is clear that the combination of inner product and concatenation

achieves the best Accuracy, while max pooling performs worst,

which is probably due to the reason that concatenation preserves

more information out of the three types of embeddings than sum-

mation and max pooling during embedding aggregation. It should

also be noted that there is no absolute advantage of all the three f
functions according to the results in Table 3.

Dimension of embedding layer and reconstructionweight

of non-zero elements α . We also show how the dimension of

embedding layer in the three autoencoders of SHINE and the hyper-

parameterα affect the performance in Fig. 7a.We have the following

two observations: 1) The performance is initially improved with

the increase of dimension, because more bits in embedding layer

can encode more useful information. However, the performance

drops when the dimension further increases, as too large number

of dimensions may introduce noises which mislead the subsequent

prediction. 2) α controls the reconstruction weight of non-zero

elements in autoencoders. When α is too small (e.g., α = 1), SHINE

will reconstruct the zero and non-zero elements without much

discrimination, which deteriorates the performance because non-

zero elements are more informative than zero ones. However, the

performance will decrease if α gets too large (e.g., α = 30), because

large α will lead SHINE to totally ignore the dissimilarity (i.e., zero

elements) among users.

Balancing parameters λ1, λ2, and λ3. λ1, λ2, and λ3 balance
the loss terms of the objective function in Eq. (9). We treat λ1 and
λ2 as binary parameters and vary the value of λ3 to study the per-

formance of SHINE. Note that whether λ1 or λ2 equals 1 indicates
that whether we use the additional social information or profile

information in link prediction. Therefore, the study of λ1 and λ2
can also be seen as to validate the effectiveness of social network

embedding module and profile network embedding module. The

result is presented in Fig. 7b, from which we can conclude that:

1) The curve of λ1 = 1, λ2 = 0 and λ1 = 0, λ2 = 1 are both above

the curve of λ1 = 0, λ2 = 0, which demonstrates the significant

gain by incorporating the social information and profile informa-

tion (especially the latter) into the sentiment network. Moreover,

combining both additional information can further improve the

performance. 2) Increasing the value of λ3 can greatly boost the

accuracy, as SHINE will concentrate more on the prediction er-

ror rather than the reconstruction error. However, similar to other

hyper-parameters, too large λ3 is not satisfactory since it breaks

the trade-off among loss terms in objective function.
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7 CONCLUSIONS

In this paper we study the problem of predicting sentiment links in

absence of sentiment related content in online social networks. We

first establish a labeled, heterogeneous, and entity-level sentiment

dataset from Weibo due to the lack of explicit sentiment links. To

efficiently learn from these heterogeneous networks, we propose

Signed Heterogeneous Information Network Embedding (SHINE),

a deep-learning-based network embedding framework to extract

users’ highly nonlinear representations while preserving the struc-

ture of original networks. We conduct extensive experiments to

evaluate the performance of SHINE. Experimental results prove

the competitiveness of SHINE against several strong baselines and

demonstrate the effectiveness of usage of social relation and profile

information, especially in cold start scenario.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their feedback and sug-

gestions. This work was partially sponsored by the National Basic

Research 973 Program of China under Grant 2015CB352403.

REFERENCES
[1] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral

techniques for embedding and clustering. In NIPS, Vol. 14. 585–591.
[2] Felipe Bravo-Marquez, Eibe Frank, and Bernhard Pfahringer. 2015. Positive,

negative, or neutral: Learning an expanded opinion lexicon from emoticon-
annotated tweets. In IJCAI 2015, Vol. 2015. AAAI Press, 1229–1235.

[3] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and
Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 119–128.

[4] Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. Ltp: A chinese language technol-
ogy platform. In Proceedings of the 23rd International Conference on Computational
Linguistics: Demonstrations. Association for Computational Linguistics, 13–16.

[5] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi Zhang.
2017. A Hybrid Collaborative Filtering Model with Deep Structure for Recom-
mender Systems. In Thirty-First AAAI Conference on Artificial Intelligence.

[6] Cícero Nogueira Dos Santos and Maira Gatti. 2014. Deep Convolutional Neural
Networks for Sentiment Analysis of Short Texts.. In COLING. 69–78.

[7] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[9] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins.
2004. Propagation of trust and distrust. In Proceedings of the 13th international
conference on World Wide Web. ACM, 403–412.

[10] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining. ACM, 731–739.

[11] Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and Saif Mohammad. 2014.
NRC-Canada-2014: Detecting aspects and sentiment in customer reviews. In
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014). 437–442.

[12] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 221–230.

[13] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner,
Ernesto W De Luca, and Sahin Albayrak. 2010. Spectral analysis of signed
graphs for clustering, prediction and visualization. In Proceedings of the 2010
SIAM International Conference on Data Mining. SIAM, 559–570.

[14] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting pos-
itive and negative links in online social networks. In Proceedings of the 19th
international conference on World wide web. ACM, 641–650.

[15] Thien Hai Nguyen and Kiyoaki Shirai. 2015. PhraseRNN: Phrase Recursive Neural
Network for Aspect-based Sentiment Analysis.. In EMNLP. 2509–2514.

[16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, andWenwu Zhu. 2016. Asymmet-
ric transitivity preserving graph embedding. In Proc. of ACM SIGKDD. 1105–1114.

[17] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[18] Steffen Rendle. 2012. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST) 3, 3 (2012), 57.

[19] Hassan Saif. 2015. Semantic Sentiment Analysis of Microblogs. Ph.D. Dissertation.
The Open University.

[20] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. International
Journal of Approximate Reasoning 50, 7 (2009), 969–978.

[21] Jiliang Tang, Shiyu Chang, Charu Aggarwal, and Huan Liu. 2015. Negative
link prediction in social media. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining. ACM, 87–96.

[22] Jiliang Tang, Yi Chang, Charu Aggarwal, and Huan Liu. 2016. A survey of signed
network mining in social media. ACM Computing Surveys (CSUR) 49, 3 (2016),
42.

[23] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. ACM, 1067–1077.

[24] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319–
2323.

[25] Peter D Turney. 2002. Thumbs up or thumbs down?: semantic orientation applied
to unsupervised classification of reviews. In Proceedings of the 40th annual meet-
ing on association for computational linguistics. Association for Computational
Linguistics, 417–424.

[26] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 1225–1234.

[27] Hongwei Wang, Jia Wang, Miao Zhao, Jiannong Cao, and Minyi Guo. 2017.
Joint-Topic-Semantic-aware Social Recommendation for Online Voting. In Pro-
ceedings of the 26th ACM International Conference on Conference on Information
and Knowledge Management. ACM, 347–356.

[28] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket rec-
ommendation. In Proceedings of the 38th International ACM SIGIR conference on
Research and Development in Information Retrieval. ACM, 403–412.

[29] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. 2017.
Signed network embedding in social media. In Proceedings of the 2017 SIAM
International Conference on Data Mining. SIAM, 327–335.

[30] Robert West, Hristo S Paskov, Jure Leskovec, and Christopher Potts. 2014. Ex-
ploiting social network structure for person-to-person sentiment analysis. arXiv
preprint arXiv:1409.2450 (2014).

[31] Jihang Ye, Hong Cheng, Zhe Zhu, and Minghua Chen. 2013. Predicting positive
and negative links in signed social networks by transfer learning. In Proceedings
of the 22nd international conference on World Wide Web. ACM, 1477–1488.

[32] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommendation:
A heterogeneous information network approach. In Proceedings of the 7th ACM
international conference on Web search and data mining. ACM, 283–292.

[33] Shuhan Yuan, Xintao Wu, and Yang Xiang. 2017. SNE: Signed Network Em-
bedding. In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 183–195.

[34] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 353–362.

[35] Quan Zheng and David B Skillicorn. 2015. Spectral embedding of signed networks.
In Proceedings of the 2015 SIAM International Conference on Data Mining. SIAM,
55–63.

[36] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
Graph Embedding for Asymmetric Proximity.. In AAAI. 2942–2948.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

600




