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ABSTRACT
Link prediction targets to predict the future node interactions

mainly based on the current network snapshot. It is a key step

in understanding the formation and evolution of the underlying

networks; and has practical implications in many real-world appli-

cations, ranging from friendship recommendation, click through

prediction to targeted advertising. Most existing efforts are devoted

to plain networks and assume the availability of network struc-

ture in memory before link prediction takes place. However, this

assumption is untenable as many real-world networks are affiliated

with rich node attributes, and often, the network structure and

node attributes are both dynamically evolving at an unprecedented

rate. Even though recent studies show that node attributes have

an added value to network structure for accurate link prediction, it

still remains a daunting task to support link prediction in an online

fashion on such dynamic attributed networks. As changes in the

dynamic attributed networks are often transient and can be endless,

link prediction algorithms need to be efficient by making only one

pass of the data with limited memory overhead. To tackle these

challenges, we study a novel problem of streaming link prediction

on dynamic attributed networks and present a novel framework -

SLIDE. Methodologically, SLIDE maintains and updates a low-rank

sketching matrix to summarize all observed data, and we further

leverage the sketching matrix to infer missing links on the fly. The

whole procedure is theoretically guaranteed, and empirical exper-

iments on real-world dynamic attributed networks validate the

effectiveness and efficiency of the proposed framework.
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1 INTRODUCTION
The pervasiveness of myriad social media platforms significantly

alters the conventional ways people interact and communicate.
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By performing various social activities (e.g., befriend with others,

follow a celebrity, retweet a post), online social media users build

different social interactions which ease the channel of information

seeking and spreading. To this end, understanding and predicting

the formation of social interactions will shed light on the underly-

ing evolution mechanisms of the social networks; and also, from a

microscopic perspective, it can help us gain more insights on the

social behaviors of a particular user. The problem is often referred

as the link prediction problem in the data mining and network sci-

ence community [5, 37]. Formally, given a snapshot of network

structure with partially observed links, link prediction aims to infer

the missing links that may appear in a foreseeable future. The link

prediction problem also has practical implications in many real-

world applications, ranging from friend suggestion, click through

prediction to targeted marketing [17].

Despite much progress has been made in the field of link predic-

tion, existing link prediction algorithms overwhelmingly assume

the availability of whole network structure. However, this assump-

tion is untenable as real-world networks are often in large-scale

and are measured in terabytes or even petabytes, making them

difficult to be materialized in memory before link prediction takes

place. In addition, networks are often not static but are dynamically

evolving at an unprecedented rate with frequent updates (e.g., ad-

ditions/deletions of nodes and edges). Furthermore, a vast majority

of existing work are devoted to predicting missing links in plain

networks. More often than not, nodes in the networks are affiliated

with a rich set of attributes such as user profile information and

user posts. Recent studies indicate that the formation of network

structure highly depends on the associated node attributes and

vice versa [28, 29, 34, 43]. On account of this, probing the node

attributes could be potentially helpful in achieving better link pre-

diction performance, especially when the network suffers from

high sparsity. On top of that, by leveraging node attributes, it en-

ables the prediction for those cold-start users that are otherwise

intractable. In many cases, similar to the frequent updates on the

network structure, node attributes also change naturally [30, 31], a

typical example is the modification of online user posts. We refer

such kind of networks with both topology and attribute changes as

dynamic attributed networks.
As per the fact that node attributes are complementary for link

prediction while both network structure and node attributes ex-

hibit high dynamics, we investigate a novel problem of streaming
link prediction on dynamic attributed networks in this paper. The

following five challenges have to be addressed simultaneously.

• Near Real-Time Prediction: Dynamic attributed networks

are characterized by streaming nodes/edges of high velocity.
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Figure 1: An illustrative example of streaming link prediction on dynamic attributed networks. As shown in the figure, at each
time stamp, each node in the network is affiliated with five features (f1, ..., f5). Edges and nodes are continuously arriving in a
streaming fashion. Meanwhile, the attributes of a certain number of nodesmay change accordingly. Streaming link prediction
attempts to infer the missing links in parallel with the rapid changes of the dynamic attributed networks. For example, given
the observations at time stamp t0, t1 and t2, it predicts whether there exists a link between u2 and u3 in the near future.

Also, the evolution of networks is often mixed with the

changes of node attributes at an unsynchronized rate. As

changes are essential components of the system and could

occur at any time, link prediction algorithms require to be

efficient and are performed in a streaming fashion to predict

missing links in close to near real-time.

• One-Pass of the Data: The entire size of the network and

affiliated node attributes are often unknown at a particular

moment and could even be infinite in the worst case. Hence,

the streaming link prediction algorithms need to be pass-

efficient to make only one pass of the data as the further

passes are either expensive or naturally impossible.

• Space Efficiency: Data is continuously being generated, the
huge volume of data makes the dynamic attributed network

hard to be materialized in memory, which necessitates the

design of a cost-effective data synopsis with limited memory

overhead to summarize the ever-increasing network struc-

ture and node attributes.

• Concept Drift: With the accumulation of new nodes/edges

and the changes of node attributes, the underlying network

topology and the content patterns of nodes continuously

evolve over time, resulting in the emerging of unseen pat-

terns and the fading of existing patterns, which may signifi-

cantly impact the link prediction performance. This phenom-

enon is often referred as concept drift in data stream mining.

In this regard, link prediction algorithms should be able to

tackle the issue of concept drift.

• Data Heterogeneity: We examine the link prediction prob-

lem in the case of attributed networks and this kind of net-

works are notoriously difficult tomine due to the bewildering

combination of heterogeneous data sources. Even though in

the most cases that network structure and node attributes are

presented in different modalities, they are often not mutually

independent and could influence each other. Link prediction

algorithms are supposed to seize the inherent interconnec-

tions for accurate prediction.

In this paper, we study a novel problem of streaming link predic-
tion on dynamic attributed networks. An illustrative example of the

studied problem is shown in Figure 1. Concretely, given a network

that is characterized by fast-evolving links and node attributes, we

attempt to propose an effective yet efficient (in terms of both time

and space) model to enable the prediction of missing links on the fly.

The main contributions of this paper are summarized as follows.

• We formally define a novel problem of streaming link predic-

tion on dynamic attributed networks and identify its connec-

tion with many real-world applications. To our best knowl-

edge, this is the first attempt to study link prediction in a

dynamic and attributed environment.

• We propose a novel link prediction framework - SLIDE that

is able to predict the missing links in an online fashion when

the attributed network is characterized by both structural

and attribute changes. By consuming limited memory, the

proposed method leverages a cost-effective data sketch to

tackle the concept drift of the underlying attributed networks

with only one pass of the data.

• We theoretically prove that the proposed streaming link

prediction framework SLIDE achieves similar performance

as a costly offline method which stores and uses the whole

historically observed data for link prediction.

• Extensive experiments on various real-world dynamic attrib-

uted networks reveal the effectiveness and efficiency of the

proposed streaming link prediction framework.

2 PROBLEM STATEMENT
We use bold uppercase characters for matrices (e.g., A), bold lower-

case characters for vectors (e.g., a), and normal lowercase characters

for scalars (e.g., a). Also, we represent the i-th element of vector

a as ai , the i-th row of matrix A as Ai∗, the j-th column as A∗j ,
the (i, j )-th entry as Ai j , the transpose of A as AT , the trace of

A as tr (A). For any vector a ∈ Rn , ∥a∥2 =
√∑

i a2i denotes its

Euclidean norm. For any matrix A ∈ Rn×m , its Frobenius norm is

∥A∥F =
√∑

i, j A2

i j , its spectral norm is ∥A∥ = max∥x∥2=1 ∥Ax∥2.

The singular value decomposition (SVD) of A ∈ Rn×m is denoted

as svd(A) = UΣVT , U is a n × n orthogonal matrix with the rows

being left singular vectors [u1, u2, ..., un], V is a m × m orthog-

onal matrix with the columns being the right singular vectors

[v1, v2, ..., vm], Σ = diag(σ1, ...,σn ) is a n × m diagonal matrix,

where σ1 ≥ σ2 ≥, ..., ≥ σr are the singular values of A and r is

the rank of matrix A. The best rank-k (k ≤ r ) approximation of

matrix A ∈ Rn×m is Ak = argmin
rank(X)≤k ∥A − X∥F and it can
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be computed as Ak = UkΣkVTk =
∑k
i=1 σiuiv

T
i , where Uk , Σk ,

Vk are the truncated matrices consisting of the top-k left singular

vectors, singular values, and right singular vectors, respectively. I
is an identity matrix.

Definition 2.1. (Dynamic Attributed Networks): A dynamic

attributed networkG = (Gt0 ,Gt1 ,Gt2 , ...) spans across various time

stamps {t0, t1, t2, ...}. At a particular time stamp t , the corresponding
attributed network Gt = (Vt , Et ,Xt ) consists of Vt

: the set of

nodes (nt = |V
t |); Et ⊆ Vt ×Vt

: the set of edges; and the node

attributes Xt = [x1, x2, ..., xnt ]T , where xi ∈ Rd (i = 1, ...,nt ) is
the attribute information of the i-th node.

The problem of streaming link prediction problem on dynamic

attributed networks can be formally defined as follows:

Problem 1. Given a dynamic attributed networkG = (Gt0 ,Gt1 , ...)
with fast-evolving node/edge streams and changes of node attributes
across multiple time stamps (t0, t1, ...). At a particular time stamp t ,
the streaming link prediction problem aims to predict if there ex-
ists an edge e = (u,v ) for a pair of nodes (u,v ) that are not connected
previously before time stamp t .

An illustration of the studied problem is shown in Figure 1.

The streaming link prediction problem supports the prediction of

missing links in an online fashion. For example, as shown in the

figure, given a dynamic attributed network at three different time

stamps t0, t1 and t2 with both network structure and node attribute

changes, the streaming link prediction problem predicts the missing

links that may appear at time stamp t , where t > t2.

3 THE PROPOSED FRAMEWORK - SLIDE
In this section, we present the proposed framework of Streaming

Link predIction for Dynamic attributEd networks - SLIDE. The ba-

sic idea is to maintain and update a low-rank sketching matrix with

limited memory overhead to summarize the currently observed

links and node attributes. Then given the attributes of a pair of

unconnected nodes, we leverage the low-rank sketching matrix to

determine if there exists a link between these two end nodes in

the future. The low-rank sketching matrix is continuously being

updated when new links and new node attributes are observed. The

overall workflow of the proposed streaming link prediction frame-

work - SLIDE is shown in Figure 2. As can be observed from the

figure, the proposed framework consists of three essential compo-

nents: (1) maintain and update a sketching matrix to summarize the

currently observed data, including all the observed links and node

attributes; (2) predict missing links on the fly with the up-to-date

sketching matrix; (3) calculate and update the threshold which is

used to determine the existence of links.

3.1 Summarization with Matrix Sketching
On a typical dynamic attributed network, a massive amount of

edges are continuously arriving at a fast pace. Meanwhile, node

attributes also change naturally such that new content patterns may

emerge and outdated content patterns will fade. To explicitly store

such a dynamic attributed network at a particular time stamp t , we
need O (n2t + ntd ) space in the worst case (d is often much smaller

than nt ), where nt is the number of nodes in the network until t

and d is the dimensionality of node attributes. The materialization

of the attributed networks becomes infeasible when nt is very large.
Hence, it is of vital importance to use cost-effective data synopsis to

summarize all observed data including the links and node attributes.

Nonetheless, designing a full streaming model with limited and

constant memory space is a challenging problem and most of the

existing efforts on graph streams are devoted to the so-called semi-
streaming models [15, 42], which requires O (ntpolylog(nt )) space.
These semi-streaming models are intractable if the available mem-

ory is not proportional to the number of nodes nt in the network.

In addition, due to the heterogeneity of two information sources

in attributed networks, the resulted data synopsis is expected to

summarize both information sources simultaneously.

Motivated by the recent advances in full streaming models for

conventional data streams, we propose to use the frequent direc-

tions algorithm [38] to maintain a low-rank sketching matrix (with

limited memory overhead) to make a structural summary of the

currently observed data. One major merit of the frequent directions

algorithm is that it operates in a streaming fashion and makes only

one pass of the data. However, the frequent directions algorithm

cannot be directly applied on dynamic attributed networks for a

low-rank approximation in real-time. The reason is that frequent

directions algorithm is proposed to summarize conventional data

streams where columns of the input matrix are added incrementally

and the row of the input matrix is fixed. On dynamic attributed

networks, even though the node attributes are presented as a data

stream (if the number of node attributes is fixed), the changes of

the underlying network structure (often encoded in an adjacency

matrix), per se, cannot be simply generalized as a conventional data

stream. To this end, we propose to represent the dynamic attributed

networks as the feature representation based on the observed links.

The similar feature representation mechanism is also widely used

in many other learning tasks, such as factorization machines [46]

and contextual-bandit collaborative filtering [35, 52].

Definition 3.1. (Feature Representation of Dynamic Attrib-
uted Networks): Given a dynamic attributed network across mul-

tiple time stamps G = (Gt0 ,Gt1 , ...), its feature representation at a

particular time stamp t is represented Ft ∈ R2d×|E
t |
. Each column

f ∈ R2d in the feature representation Ft corresponds to an edge

in Gt
. Now assume that two end nodes of the edge is ui and uj

(i < j), then the corresponding feature representation, i.e., f , can be

represented as f = [Xt
i∗,X

t
j∗]

T
, where Xt

is the node attributes of

the dynamic attributed network at time stamp t .

By transforming the dynamic attributed networks into feature

representations, the changes in the underlying attributed network

can be presented as new columns in a conventional data stream. In

particular, new columns are introduced in two scenarios: (1) the ar-

rival of new edges; and (2) node attribute information changes. The

first scenario is straightforward and easy to understand. Regarding

the second scenario, if the node attributes change, then the feature

representations of edges that these nodes involved in should also

change, and we represent these changes as new columns in the data

stream. Now we assume that we can store all the historically gener-

ated data, and the feature representation of the dynamic attributed

networks until time stamp t is stored in a matrix Gt ∈ R2d×ct ,
where ct is the number of columns in Gt

, and ct ≥ |E
t |. It should
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Figure 2: The workflow of the proposed streaming link prediction framework - SLIDE.

be noted that the similar technique is also applied on the dynamic

recommendation problem recently [26]. However, it is different

from the proposed framework as we focus on the streaming link

prediction problem and consider the changes of both network struc-

ture and node attributes. While on the other hand, [26] only models

the new ratings (with contextual information) as a data stream and

fails to consider the changes of contextual information.

Even though we have reformulated the changes in the dynamic

attributed networks as new columns in a data stream, the num-

ber of columns in Gt
are still too large to be stored in memory,

especially when the number of edges is in the scale of billion or

trillion. Instead of storing the feature representations of the un-

derlying dynamic attributed network, the frequent directions algo-

rithm is employed to maintain a low-rank sketching matrix, and

the sketching matrix can well summarize the observed data with a

theoretical guarantee. Specifically, the low-rank sketching matrix

Bt ∈ R2d×l (l is often small) approximates the matrix Gt
well such

that Bt (Bt )T ≈ Gt (Gt )T . More accurately, the approximation error

is bounded by the conditions that: (1) Gt (Gt )T ⪰ Bt (Bt )T ; and (2)

∥Gt (Gt )T − Bt (Bt )T ∥ ≤ 2∥Gt ∥2F /l [38].

Let Dt ∈ R2d×mt
denotes the new columns generated between

time stamp t − 1 and the following time stamp t such that Gt =

[Gt−1,Dt
], where mt is the number of new columns generated

between time stamps t − 1 and t . As mentioned above, the gen-

eration of new columns pertains to the arrival of new edges or

the changes of node attributes. Here the challenges center around

how to maintain and update the sketching matrix Bt based on the

newly generated data in Dt
. At the very beginning, the sketching

matrix Bt (t = 0) is set to be empty, then new columns presented

in a data stream are continuously being inserted into the sketch-

ing matrix Bt until there are no empty columns anymore. Then

frequent directions algorithm “shrinks" l orthogonal vectors by
the same amount to make space for new data in the future. Con-

cretely, a computation of singular value decomposition (SVD) is

necessary each time when the sketching matrix Bt is full. The orig-
inal frequent directions algorithm assumes that one column arrives

at each time stamp, [23, 24] further extended it to tackle the case

when more than one columns arrive at each time stamp. As we

have more than one column in Dt
in most cases, we leverage this

Algorithm 1 Maintain and update the sketching matrix Bt

Input: Sketching matrix Bt−1 ∈ R2d×l , new data Dt ∈ R2d×mt
.

Output: New sketching matrix Bt ∈ R2d×l , and Ũtl ∈ R
2d×l

.

1: Ct = [Bt−1, Dt ] ∈ R2d×(l+mt )
;

2: [Ũtl , Σ̃
t
l , Ṽ

t
l ] = svdl (Ct );

3: Σ̂tl = diag(
√
σ̃ 2

1
− σ̃ 2

l ,
√
σ̃ 2

2
− σ̃ 2

l , ...,
√
σ̃ 2

l−1 − σ̃
2

l , 0);

4: Bt = Ũtl Σ̂
t
l ;

general solution to maintain and update the low-rank sketching

matrix Bt , upon which the patterns in the observed links and node

attributes can be summarized accurately. The detailed pseudo code

of the summarization phase using matrix sketching is presented in

Algorithm 1. As the number of new columnsmt is much smaller

than the number of columns in Gt
, we only need to perform SVD

on a low-rank matrix (Line 2); its computation is efficient with

a complexity of O (2d (mt + l )l ). Also, it is space efficient with a

maximum overhead ofO (2d (maxt {mt } + l )) across all time stamps.

All in all, the summarization phase makes only one pass of the data

and is both computational and space efficient.

3.2 Infer Missing Links with Sketching Matrix
The aforementioned low-rank sketching matrix Bt makes a struc-

tural summarization of the up-to-date observed data on dynamic at-

tributed networks. Hence, we can leverage it to predict missing links

on the fly. To show the underlying mechanism of the link prediction

phase, we first assume that the feature representation Gt
of the

dynamic attributed network until time stamp t is available (which
actually not). The original feature representation Gt

could be very

noisy, containing a certain amount of noisy and irrelevant attributes

which may degrade the link prediction performance [32, 51]. On

top of that, the link information in networks may also be noisy

and even erroneous from a network analysis perspective [16]. To

alleviate the negative impacts from these noisy attributes and noisy

links, we propose to use principal component analysis (PCA) to

reduce the noise hidden in the data stream. Formally, PCA projects

the data inGt
onto several principal components such that the total

data variance is minimized, and these principal components corre-

spond to the top-k eigenvectors of the estimated covariance matrix
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1

ct G
t (Gt )T , which is also equivalent to find the top-k left singular

vectors of the matrix Gt
. Here, we denote the concatenation of the

top-k eigenvectors as Utk ∈ R
2d×k

, and the principal components

Utk is often regarded as a good rank-k basis to reconstruct all the

data in the original representation Gt
. In addition, by using the

linear combination of columns in Utk to represent columns in Gt
,

the noisy information contained can be greatly reduced. As Utk
provides a noise-resilient abstraction of patterns of connected node

pairs, we can leverage the orthogonal basis to predict missing links

for unconnected node pairs. In particular, let y ∈ R2d denotes the

feature representation of an unconnected node pair for testing, if y
is close to the space composed of columns inUtk , mostly likely there

will be a link between the starting node and the ending node of y;
otherwise, if y cannot be well reconstructed by the orthogonal basis

Utk , it implies that y deviates from the patterns of connected node

pairs and the possibility that the two end nodes of y connected in

the near future is low [23]. The residual error of the reconstruction

phase is ∥I − Utk (U
t
k )
T y∥2

2
. It can be observed that to obtain the

residual error for each pair of unconnected nodes, only low-rank

matrix multiplication operations are involved, and the computation

cost is low, with a complexity of O (2dk ). Afterwards, we can take

advantage of the residual error to predict whether there exists a

link between a pair of unconnected nodes. Specifically, the smaller

the residual error of a pair of unconnected nodes, the higher the

chance that these two nodes will be linked in the near future.

The above phase assumes that the feature representation Gt
is

readily available before the link prediction takes place and the or-

thogonal basis Utk is the top-k left singular vectors of Gt
. However,

as mentioned in the previous subsection that the storage of the

whole feature representation Gt
is intractable when the underlying

attributed network is large; while on the other hand, the sketch-

ing matrix Bt is not only a low-rank matrix with light memory

overhead, but also can approximate the original matrix Gt
well. In

this regard, we attempt to perform SVD on the low-rank matrix

Bt instead of Gt
to obtain the orthogonal basis, i.e., the top-k left

singular vectors. Here, we denote these k left singular vectors of

Bt as Ũtk ∈ R
2d×k

. And according to Algorithm 1, the sketching

matrix Bt can be efficiently maintained and updated, and its top-l
left singular vectors are Ũtl . In this way, the approximation of the

top-k left singular vectors of Gt
can be directly obtained from Ũl

as long as the condition of k ≤ l is satisfied. And the residual error

of the feature vector y is ∥I − Ũtk (Ũ
t
k )
T )y∥2

2
.

3.3 Threshold Determination
For the above phase, the potential links between unconnected nodes

can be determined by verifying if the residual error is below a

threshold. One simple solution to specify the threshold is to set it

as a fixed value. Nonetheless, with the accumulation of new edges

and new node attributes in a data stream over time, the intrinsic

patterns of data change over time, and this phenomenon is often

referred as concept drift in data stream mining [50]. To this end,

it is more appealing to continuously update the threshold value

for link prediction such that the up-to-date patterns of data can

be well captured. Concretely, we propose to obtain the threshold

automatically from the presented data stream instead of manually

Algorithm 2 SLIDE to predict missing links at time t

Input: Sketching matrix Bt−1 ∈ R2d×l and its top-l left singular vectors
Ũt−1l , new data Dt ∈ R2d×mt

, residual error threshold ϵ t−1, feature
representation y of an unconnected node pair.

Output: If there exists a link between the two end nodes of y.
1: Obtain the new sketching matrix Bt and its top-l left singular vectors

Ũtl by Algorithm 1;

2: Obtain the top-k singular vectors Ũtk from Ũtl (k ≤ l );
3: Calculate the residual error of links in Dt ;
4: Update the residual error threshold ϵ t ;
5: Calculate the residual error of y by ∥I − Ũtk (Ũ

t
k )
T )y∥2

2
;

6: if error of y≤ ϵ t then
7: There exists a future link between the two end nodes of y;
8: else
9: The two end nodes of y will not be connected;

10: end if

setting it up. For each observed link, i.e., a column in Gt
, we calcu-

late its residual error, where Ũtk can be obtained by the top-k left

singular vectors of the current sketching matrix Bt (Algorithm 1).

Let us denote the collection of residual errors of links in Gt
as

R = {error1, error2, ..., errorct }, then the residual error threshold

that is used to check the existence of new links can be determined as

the largest error among R. In this way, we do not need to manually

specify the threshold value and it can be automatically determined

from the observed links.

Hence, the whole procedure of streaming link prediction on

dynamic attributed networks is summarized in Algorithm 2.

3.4 Theoretical Analysis of SLIDE
Next, we perform a theoretical analysis of the proposed streaming

link prediction framework - SLIDE. In the proposed SLIDE frame-

work, to calculate the possibility of connection between a pair of

previously unconnected nodes at time stamp t , we make use of Ũtk ,
which is the top-k left singular vectors of the sketching matrix Bt .
Now we compare the error bound of Ũtk against Utk , where U

t
k is

obtained from the original feature representation Gt
, i.e., the top-k

left singular vectors of Gt
. Specifically, motivated by the analysis

of the frequent directions algorithm [18] and matrix perturbation

theory [47], we show that the Frobenius norm of the difference

between Ũtk and Utk is bounded.

First, we define the k-conditional number of Gt
as κ = σ1/σk ,

where σi is the i-th singular value of Gt
. Next, we define α as:

α =
κ2∥Gt

k ∥
2

F − ∥B
t
k ∥

2

F

∥Gt
k ∥

2

F − ∥B
t
k ∥

2

F
. (1)

Lemma 3.2. [19] For any unit vector x ∈ R2d , the following in-
equality holds ∥ (Gt )T x∥2

2
≥ ∥ (Bt )T x∥2

2
.

Lemma 3.3. The inequality of ∥Gt
k ∥

2

F ≥ ∥B
t
k ∥

2

F holds.

Proof. Assume that a1, ..., ak are the top-k left singular vectors

of Gt
, b1, ..., bk are the top-k left singular vectors of Bt . Then, we

have ∥Gt
k ∥

2

F =
∑k
i=1 ∥ (G

t )T ai ∥2
2
≥
∑k
i=1 ∥ (G

t )T bi ∥2
2
. According

to Lemma 3.2,

∑k
i=1 ∥ (G

t )T bi ∥2
2
≥
∑k
i=1 ∥ (B

t )T bi ∥2
2
. Therefore,
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∥Gt
k ∥

2

F ≥
∑k
i=1 ∥ (B

t )T bi ∥2
2
= ∥Btk ∥

2

F , which completes the proof.

□

As ∥Gt
k ∥

2

F ≥ ∥B
t
k ∥

2

F , and κ ≥ 1, we have α ≥ 1. In addition, as κ

is a bounded number [47], we have α = O (1). Now, we define β as:

β =
κ2 − ∥Bt ∥2/∥Gt ∥2 + 2

κ2 − ∥Bt ∥2/∥Gt ∥2
. (2)

According to the definition of the sketchingmatrix, we haveGt (Gt )T ⪰
Bt (Bt )T . Thus, ∥Gt ∥2 ≥ ∥Bt ∥2. Therefore, we have β = O (1).

Theorem 3.4. [23] If the size of the sketching matrix l is:

l = Ω(

√
2dκ2αβk ∥Gt ∥2∥Gt − Gt

k ∥
2

F

T 2
),

where T = mini,j |λi − λj | > 0, and λi is the i-the eigenvalue of
the matrix Gt (Gt )T . Then the Frobenius norm difference between ˜Utk
and Utk is bounded by the following term:

∥ ˜Utk − U
t
k ∥F ≤

√
2T√

T + 8κ2∥Gt ∥2 4

√
T 2 + 16κ4∥Gt ∥4

.

The above l can further be simplified to l = Ω(

√
2dk ∥Ft ∥2 ∥Ft−Ftk ∥

2

F
T 2

)

as 0 < κ ≤ O (1), α = O (1) and β = O (1).
The above theorem suggests that as long as the size of the sketch-

ing matrix l is set within a reasonable range, then the resulted

orthogonal basis Ũtk from the sketching matrix Bt approximates

the orthogonal basis Utk from the whole observed data Gt
.

4 EXPERIMENTS
In this section, we perform experiments on real-world dynamic

attributed networks to validate the effectiveness and efficiency of

the proposed SLIDE framework for streaming link prediction.

4.1 Datasets
We collect three real-world dynamic attributed networks for experi-

mental validation, these datasets range from social media networks

to coauthor networks. The detailed descriptions of these three dy-

namic attributed networks are listed below.

Epinions: Epinions is a product review site in which users build

trust relationships to seek advice from others and share their re-

views about products. We take each user as a node and regard

his/her reviews as node attributes. In particular, we first use the

bag-of-words model to extract features from user reviews and then

employ state-of-the-art unsupervised feature selection methods for

networked data [32] to find the top 100 important features closely

hinged with the network topology. Both the network structure and

the node attributes are evolving over time. In the collected dataset,

there are 25 time stamps (with an interval of one month), the total

number of nodes is 14,180 and the total number of edges is 308,136.

DBLP: DBLP is an extracted coauthor network for the authors

who publish at least three papers from the year of 1995 to 2011. In

the network, each author corresponds to a node. And similar to

Epinions, we apply the bag-of-words model and feature selection

on the title of their publications to find the most relevant 100 node

attributes, i.e., words. As authors gradually form new coauthor rela-

tions and their research interests evolve over time, the underlying

network is naturally a dynamic attributed network. The resulted

dataset has 100,924 nodes and 764,392 edges over 17 time stamps.

ACM: ACM is a similar coauthor network as DBLP. We extract

a subgraph consisting of the authors who publish at least three

papers in the year of 1995 and 2015, and apply the same mechanism

as before to extract 100 important node attributes. Therefore, we

obtain a dynamic attributed network with a total amount of 122,567

nodes and 1,551,554 edges over 16 different time stamps.

4.2 Baseline Methods
To verify the effectiveness and efficiency of the proposed SLIDE

framework, we compare SLIDE with the following baseline link

prediction methods from three different categories: (1) with only

network structure; (2) with only node attributes; and (3) with both

sources of information.

• Common Neighbors (CN) [37]: CN quantifies the number of

common users between node pairs for link prediction.

• Jaccard Coefficient (JC) [37]: JC calculates the similarity of

pairs of nodes for link prediction with Jaccard coefficient.

• Adamic-Adar (AA) [37]: AA is an extension of CN which

penalizes the common neighbors with high node degrees.

• Rooted PageRank [49]: It performs random walk with start

from a root node and then determines the scores of links,

i.e., node proximity, to other nodes from the root node.

• NMF [40]: It conducts non-negative matrix factorization on

the adjacency matrix of the network to calculate the scores

of unconnected node pairs.

• SimAttr [53]: It calculates cosine similarity on node attributes

and uses the similarity score to rank links.

• FactLog [44]: It adopts matrix factorization and incorporates

both network structure and node attributes in a joint frame-

work for link prediction.

• AttriRank [22]: It performs PageRank on the attributed net-

works and then the score of each node pair is determined as

the product of the PageRank scores of two end nodes.

Among them, CN, JC, AA, Rooted PageRank and NMF belong to

the first category by using only network information; SimAttr on

the other hand only takes advantage of node attribute information

for link prediction; FactLog, AttriRank and the proposed SLIDE are

in the third category by combining both sources of information

together for link prediction.

4.3 Experimental Settings
In the experiments, we attempt to answer two research questions:

(1) how accurate is the proposed SLIDE framework in predicting

missing links; (2) how efficient is the proposed streaming algorithm

when measured against other offline methods.

We first investigate the effectiveness of the proposed framework

SLIDE. Given a dynamic attributed network with T different time

stamps, for each time stamp t (1 ≤ t ≤ T ), in the training phase,

we first perform link prediction with the attributed network Gt
,

and then test the link prediction performance on Gt+1
. It should

be noted that as most of these baseline methods cannot handle

cold-start nodes, we choose to predict the missing links for the

nodes that appear in both Gt
and Gt+1

. More investigation on the

link prediction for cold-start nodes will be presented later. As a
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final result, we output the average link prediction performance

over T − 1 test periods. In the experiments, we set the number of

columns in the sketching matrix l according to the suggestions

of [23]. Meanwhile, we specify the parameter k the same as l .
Suppose the number of new links for testing between time stamp

t and t + 1 is et , all these baseline methods can be regarded as a

ranking model which returns the top et possible links from Gt
and then compares with the ground truth links in Gt+1

. To make

a fair comparison between SLIDE and baseline methods, in the

evaluation, we do not use the residual error threshold ϵ , instead,
we rank the candidate links according to the residual errors. Three

commonly used evaluation metrics are used to compare the link

prediction performance of different methods. They are area under
the curve (AUC) [9], mean average precision (MAP) [36], half-life
utility (HLU) [45]. The higher the values of AUC, MAP and HLU

are, the better the prediction performance is. Specifically, at each

time stamp during the testing phase, we treat all the et links that
will happen at the next time stamp t + 1 as positive samples, and

the other links as negative links.

Different from SLIDE that only makes one pass of the data to

predict missing link on the fly, all baseline methods are offline

methods that require the access of the whole historical data each

time when changes occur. In other words, they need to explicitly

materialize the whole attributed networks in memory before link

prediction takes place. To have a fair comparison between SLIDE

and the baselinemethods in terms of efficiency, we allow the storage

of the historical data for baseline methods in memory and compare

their cumulative running time over all time stamps.

4.4 Effectiveness of the Proposed SLIDE
First, we investigate the effectiveness of the proposed SLIDE frame-

work by comparing its link prediction performance with the afore-

mentioned baseline methods. The average link prediction results

over multiple time stamps are presented in Figure 3. We make the

following observations from the figure.

• The proposed streaming link prediction framework SLIDE

outperforms all baseline methods in almost all cases. We

also perform a pairwise Wilcoxon signed-rank test between

SLIDE and these baseline methods. The comparison results

indicate that the proposed SLIDE framework is significantly

better than others, with a significance level of 0.05.

• CN, AA, JC, Rooted PageRank and NMF only leverage net-

work structure for link prediction, and their performance is

superior to SimAttr which relies on node attributes to infer

missing links. It implies that the link prediction performance

is influenced more by the network structure rather than the

node attributes.

• The link prediction methods FactLog, AttriRank and SLIDE

that leverage two sources of information achieve better link

prediction performance than methods with only one source

of information. The observation supports the assumption

that node attribute information compliments to network

structure for link prediction.

• We do not report the link prediction results of NMF and

FactLog onDBLP andACMdatasets as we run out of memory

for these two methods. The reason is that these two methods
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Figure 3: Link prediction performance comparison.

are both matrix factorization based methods and cannot be

easily scaled to large-scale networks.

4.5 Efficiency of the Proposed SLIDE
Now we investigate the second research question about the effi-

ciency of the proposed SLIDE framework. Specifically, we report

the cumulative running time of different methods across all time

stamps in Table 1. As all the baseline methods mentioned are de-

signed for static networks by assuming the materialization of the

network structure in memory, we have to rerun these baseline

methods repeatedly each time when there are changes on the at-

tributed networks. As can be observed from the table, our proposed

SLIDE framework is significantly faster than all baseline methods.

The overall running time of SLIDE on Epinions, DBLP and ACM

are 25.67 seconds, 291.31 seconds and 689.93 seconds, respectively.

Specifically, SLIDE is 49×, 243×, 58×, 12×, 30×, 10×, 278×, and 81×

faster than CN, AA, JC, Rooted PageRank, NMF, SimAttr, FactLog,

AttriRank, respectively in Epinions. On DBLP and ACM datasets,

the cumulative running time of all baseline methods cost more than

3 hours while our method finishes within minutes. In addition to

that, as our proposed SLIDE framework maintains and updates a
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Table 1: Running time comparison of different methods.

Epinions DBLP ACM

CN 1245.41s > 3 hours > 3 hours

AA 6243.32s > 3 hours > 3 hours

JC 1489.81s > 3 hours > 3 hours

Rooted PageRank 305.41s > 3 hours > 3 hours

NMF 774.7s > 3 hours > 3 hours

SimAttr 259.09s > 3 hours > 3 hours

FactLog 7140.18s > 3 hours > 3 hours

AttriRank 2081.53s > 3 hours > 3 hours

SLIDE 25.67s 291.31s 689.93s

Table 2: Link prediction results for new users in Epinions.

Metrics AUC MAP HLU

SimAttr 0.6828 0.0286 3.60

AttriRank 0.7067 0.0409 4.29

SLIDE 0.7532 0.0523 4.94

low-rank sketching matrix with light memory overhead, it is also

much more space efficient than most baseline methods. All in all,

SLIDE achieves promising link prediction performance within a

favorable amount of running time with limited memory costs.

4.6 Link Prediction of SLIDE for New Users
It has been widely known that in conventional link prediction prob-

lems, new users often suffer from the cold-start problems since

we often do not have any data about newly joined users. Fortu-

nately, the rich node attributes can help mitigate this critical issue

when link information is not available. To investigate how well the

proposed SLIDE framework handles new users for cold-start link

prediction problem, we compare SLIDE with SimAttr and Attri-

Rank, as these two methods can also handle the cold-start problem

by leveraging node attributes. We focus on the Epinions dataset to

investigate the cold-start problem as in DBLP and ACM datasets,

authors create coauthor relations with other scholars the same

time when they publish a paper and is therefore not suitable for

cold-start problem study. In particular, in Epinions, users can first

write reviews about products and then build trust relations with

others, and we predict missing links for these new users by using

their attribute information before they build any trust relations.

The link prediction performance comparison in terms of these new

users is illustrated in Table 2. It can be shown that SLIDE obtains

better link prediction performance than SimAttr and AttriRank for

the cold-start problem. The reason is that SLIDE summarizes the

connectivity patterns of linked nodes in the sketching matrix; the

orthogonal basis from the sketching matrix is noise resilient and

can help us predict missing links more accurately.

5 RELATEDWORK
In this work, we review related work from three perspectives: (1)

link prediction on networks; and (2) mining streaming networks.

5.1 Link Prediction
The past decade has witnessed the development of a great number

of link prediction methods [7, 8, 11, 13, 20, 33, 37, 44, 48, 54, 55]. The

vast majority of existing link prediction methods can be broadly cat-

egorized into two classes - unsupervised methods and supervised

methods. A family of unsupervised methods are heavily based on

different similarity measures such as the number of common neigh-

bors, Kartz, Jaccard coefficient and Adamic/Adar to measure the

node proximity [37, 54]. Another prevalent choice of unsupervised

methods is to investigate low-rank matrix techniques to approxi-

mate the initial adjacency matrix of the network structure [13, 27].

Supervised methods, on the other hand, treat link prediction as a

classification task [6, 39, 44]. Typically, they first extract features

from positively labeled instances (existing links) and negatively

labeled instances (non-existing links), and then build a classification

model to infer the missing labels of a pair of unconnected nodes.

The link prediction problem on dynamic networks is also studied

in [14, 57]. However, these methods have to store all historical data

and cannot be supported in a streaming fashion.

Recent studies imply the existence of autocorrelation between

the attributes of connected nodes. To this end, the exploitation of

the autocorrelation could advance many mining tasks on attrib-

uted networks such as link prediction. For example, [20, 53] first

proposed to integrate network structure and node attributes into a

joint augmented network and then employ random walk based ap-

proaches. Barbieri et al. [7] presented a stochastic generative model

to joint factorize social connections and node attributes. The re-

sulted model provides accurate prediction performance and related

topical explanations to support the made predictions. Wei et al. [51]

further investigated the link prediction problem on networks with

partially observable links and node attributes.

5.2 Mining Streaming Networks
Many real-world networks are not static but are presented in a

streaming fashion such that a massive amount of interactions

among nodes are continuously being received. Such high-velocity

edge streams necessitate near real-time analytical methods. In many

cases, the size of edge stream could be massive and cannot be easily

stored, which further exacerbates the consequent learning tasks.

Hence, most of the existing efforts are dedicated to designing effec-

tive data structures to summarize the observed network structure in

real-time. For example, Aggarwal et al. [4] first proposed to cluster

a small graph (or a collection or edges) in a streaming fashion by

using the hash-based compression techniques. The similar sketch-

ing mechanism is extended to the scenario when node attributes

are attached to the continuously generated nodes [56]. In [3], a

reservoir sampling method is presented to maintain the structural

summary of the underlying network stream for clustering and out-

lier detection. In terms of classification, Aggarwal [2] employed

a min-hash based approach to model the dependencies between

the sketched subgraphs and the class labels. Some other efforts

tried to leverage the embedding or hashing techniques with kernel

methods for classification in streaming networks [21, 25]. In addi-

tion, some fundamental graph mining problems such as counting

triangles [12], graph matching [41] and eigen-tracking [10] are

also extensively studied and a comprehensive overview of these

problems could be referred to [1].

6 CONCLUSIONS
A vast majority of existing link prediction algorithms are designed

for static networks and assume that the whole network structure is

materialized in memory before link prediction happens. However,
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many real-world networks are naturally dynamic and are charac-

terized by frequent updates. The updates are often transient and

could even be infinite, which puts the applicability of conventional

link prediction algorithms in jeopardy. In addition to that, rich

node attributes are prevalent and often have a strong connection

with the network topology, and they may also change adaptively

over time. It remains a daunting task to support the link prediction

on such dynamic attributed networks in an online fashion due to

some unique challenges. In this paper, we study the novel prob-

lem of streaming link prediction on dynamic attributed networks

and propose a sophisticated link prediction framework - SLIDE. In

particular, we leverage a cost-effective matrix sketching technique

to make a summarization of the current observed data by making

only one pass of the data, and the sketching matrix, in turn, is used

to infer the missing links. Theoretical analysis indicates that our

method achieves a similar performance as a cost offline method

which stores all historical data. We also perform empirical experi-

mental evaluations on real-world datasets, the results imply that

SLIDE not only can predict the missing links more accurately but

also is much more computationally efficient than competitors.
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