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Abstract—To reveal the information hiding in the scholarly
big data, relationship analysis among academic entities has
been studied from different perspectives in recent years. In
this paper, we focus on the problem of collaboration relation-
ship prediction between authors in heterogeneous information
networks, and a new method called MACP, i.e., Meta path
and author Attribute based Collaboration Prediction model, is
proposed to solve this problem. We use a two-phase collabora-
tion probability learning approach. First, topological features
with author attributes are extracted from the network, and
then a supervised learning algorithm is employed to find the
best weight associated with each feature to determine the
collaboration relationship. We present the experiments on a
real information network, namely the APS network, which
shows that our proposed model can generate more accurate
results compared with the method only considering structural
features.

Index Terms—collaboration prediction, meta path, heteroge-
neous information network.

1. Introduction

With the explosive growth of research works and pub-
lications in recent years, scholarly big data has become a
hotspot, and one of the most important components of this
issue is the relationship analysis among different academic
entities. Various types of relationships between authors de-
serve to be studied, for example, friendship, co-authorship,
advisor-advisee relationship and so on. We focus on the
problem of collaboration relationship prediction in this pa-
per, which aims to predict whether two authors that have
never collaborated before will build the collaboration rela-
tionship sometime in the future, rather than predicting how
many times two authors will collaborate in ahead. Learning
about the future collaboration relationship of an author is
helpful to understand the author’s academic circles, whether
the author is a cooperated or an independent researcher,
and the mechanism behind the collaboration relationship
formation.

Collaboration relationship prediction in bibliographic
networks aims to estimate the likelihood that the collab-
oration relationship form between two authors, based on
the observations of existing co-author relationships and the

attributes of the authors. Most of the existing relationship
prediction studies ([1], [2] ,[3]) are conducted on the homo-
geneous networks, which contain only one type of objects
in the networks, such as co-author, citation, as well as
co-citation networks. These networks are either extracted
from original heterogeneous networks or treat objects and
links of different types equally, which can lead to the
loss of comprehensive information in the networks. Recent
researchers turn to study this problem in the heterogeneous
information networks, which consist of multiple types of
objects and links. In [4], [5], [6], Sun et al. propose the meta
path-based method to analyze the heterogeneous information
networks. Along this line, meta path-based methods are
leveraged by some other studies ([7], [8], [9], [10]) to mine
the comprehensive knowledge in the heterogeneous infor-
mation networks. These researches focus on the problem
of similarity and relevance search, as well as relationship
prediction, just on the basis of the features extracted from
the connection situation of the heterogeneous information
networks. However, the collaboration relationship building
between two authors can be influenced by many factors,
such as the evolution of the information networks and the
object attributes. In this paper, we combine the meta path-
based features and some other non-structural attributes to
infer the probability of collaboration formation in the future.
The contributions of this paper are as follows:

• We study the problem of collaboration prediction in
the heterogeneous information networks.

• We propose a new method called MACP, which
incorporates transitive similarity, temporal dynamics
and author attributes into meta path-based topolog-
ical features, and build a logistic regression model
for collaboration prediction.

• Experiments on the real APS heterogeneous infor-
mation network show that the prediction accuracy
can be improved, through considering both the meta
path-based and non-structural features together.

The remaining of the paper is organized as follows.
We introduce the concepts on heterogeneous information
networks and meta paths in Section 2, and then Section 3
describes the proposed features and model in detail. The
dataset, experimental results and discussion are provided
in Section 4. We concludes the paper and suggest future
research in Section 5.



2. Preliminary

In this section, we introduce some basic concepts related
to heterogeneous information networks. A heterogeneous
information network represents an abstraction of the real
world, which either contains multiple types of objects or
multiple types of links. It provides us comprehensive infor-
mation for better understanding the relationships among the
objects in reality.
Definition 1 (Information Network). An information net-

work is defined as a directed graph G = (V,E) with
an object type mapping function τ : V → A and a link
type mapping function φ : E → R, where each object
υ ∈ V belongs to one particular object type τ(υ) ∈ A,
each link type e ∈ E belongs to a particular relation
φ(e) ∈ R, and if two links belongs to the same relation
type, the two links share the same starting object type
as well as the ending object type.

Note that, if a relation exists from type A to type B, de-
noted as ARB, the inverse relation R−1 holds naturally for
BR−1A. R and its inverse R−1 are usually not equal, unless
the two types are the same and R is symmetric. When the
types of objects |A| > 1 or the types of relations |R| > 1, the
network is classified as heterogeneous information network;
otherwise, it is a homogeneous information network.

Furthermore, it is necessary to learn about the meta
level (i.e., schema-level) description of a heterogeneous
information network, for better understanding the various
relationships between different object types and link types.
Therefore, we introduce the concept of network schema to
describe the meta structure of a network.
Definition 2 (Network Schema). The network schema,

denoted as TG = (A,R), is a meta template for a
heterogeneous network G = (V,E) with the object type
mapping τ : V → A and the link mapping φ : E → R,
which is a directed graph defined over object types A,
with edges as relations from R.

The network schema of a heterogeneous information
network specifies type constraints on the sets of objects and
links between the objects, and defines the rules of network
formation. It leads to the exploration of the semantics of
the network. An information network following a network
schema is then called a network instance of the network
schema.
Example 1 (Bibliographic information network). A biblio-

graphic information network, such as American Physical
Society (APS) 1, is a typical heterogeneous information
network. The network schema of APS dataset is shown in
Fig. 1. It contains objects from seven types of entities:
papers (P ), authors (A), affiliations (F ), terms (T ),
subjects (S), periodicals (R), and journals (J) (a jour-
nal includes multiple periodicals, e.g., PRL including
PRL2014, PRL2015). The link types are defined by the
relations between two object types. For example, links

1. http://www.journals.aps.org/datasets
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Figure 1: APS network schema

exist between authors and papers denoting the writing
(write) or written-by (write−1) relations.

In order to distinguish from path semantics and capture
the link type information between two objects, we use the
concept of meta path from [4] in a network schema, which
is formally defined as follows.
Definition 3 (Meta path). A meta path P is a path defined

on the graph of network schema TG = (A,R), and is
denoted in the form of A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1,

which defines a composite relation R = R1◦R2◦· · ·◦Rl

between type A1 and Al+1, where ◦ denotes the com-
position operator on relations.

The length of P is the number of relations in P . For
example, in the APS network schema, the collaboration
relation can be described using length-2 meta path A write−−−→
P

write−1

−−−−−→ A, short as APA, if there is no ambiguity. And
the reverse meta path, denoted as P−1, defines an inverse
relation of the one defined by P . Path instances following
meta path P represent concrete link composition between
objects. Also, two meta paths are concatenable if and only
if the ending object of the first path instance is the same as
the starting object of the second one.

3. The MACP Model

In this section, we introduce the MACP model in detail,
which includes two stages: (1) the meta path and author
attributes based topological feature definition, and (2) the
logistic regression-based collaboration prediction model.

3.1. Topological Features in Heterogeneous Net-
works

Link prediction on the basis of topological features aims
to predict the future connectivity through current topological
situation of the network. Structural features are extracted
from networks, which describe the connectivity properties
of object pairs. Also diverse information can be associated
with information networks in order to aid to infer the future
links, for example, temporal dynamics of the networks, the
similarity of pair objects with the same type, and the own
attributes attached to the objects.



For collaboration prediction in heterogeneous informa-
tion networks, we propose three topological features, which
combine the basic structural connections with the attached
information referred above, which can be extracted from the
networks. We first define the basic structural measures of
meta path, and the personal attributes of the authors, then
we obtain the topological features used for collaboration
prediction.

3.1.1. Measures on Meta Paths. Each meta path defines
a unique structure for a pair of objects, on behalf of a
particular relation. To obtain all the meta paths between two
objects, we make use of traversing methods such as anal-
ogous breadth-first search algorithm on the APS network
schema. For collaboration relation, we extract all the meta
paths with the length-constraint, whose start and end type
are author, and the target relation is described as APA.

The most important component of meta path-based fea-
tures is the measures on different meta paths, once the
structures given by meta paths are obtained. Three basic
measures on meta paths are defined in [5] as follows.

(1) Path count. Path count measures the number of path
instances between two objects following a given meta path,
denoted as PCR, where R is the relation depicted by the
meta path. Path count can be calculated through the products
of adjacency matrices associated with each relation in the
meta path.

(2) Normalized path count. To discount the number of
path counts between two objects through the overall connec-
tivity, normalized path count is defined as NPCR(ai, aj) =
PCR(ai,aj)+PCR−1 (aj ,ai)

PCR(ai,·)+PCR(·,aj)
, where PCR(ai, ·) denotes the to-

tal number of paths following R starting with ai, and
PCR(·, aj) depicts the total number of paths following P
ending with aj .

(3) Symmetric Random Walk. Random walk measure
along a certain meta path, is defined as RWR(ai, aj) =
PCR(ai,aj)
PCR(ai,·) . Symmetric random walk takes the two direc-

tional random walk along the meta path into consideration,
and can be defined as SRWR(ai, aj) = RWR(ai, aj) +
RWR−1(aj , ai).

Given a meta path P = A1A2 · · ·Al, these structural
measures can be computed through the commuting matrix
M , which is defined as M = WA1A2WA2A3 · · ·WAl−1Al

,
where WAiAj is the adjacency matrix between type Ai and
type Aj . Mij denotes the number of paths between objects
ai ∈ A1 and objects aj ∈ Al following meta path P ,
PCR(ai, aj) =Mij , and PCR(ai, ·) =

∑
j

Mij .

3.1.2. Author Attributes. In order to improve the predic-
tion accuracy and generate a more comprehensive feature
space, we introduce some attributes attached to the objects,
such as author attributes, including activity, influence and
collaboration tendency of the starting and ending authors
from the given meta path. We incorporate time-aware factor
into the author attributes, due to the temporal dynamics of
these attributes as authors’ publication and citation vary.

Then we calculate these attributes during a specific period
of time as follows.

(1) Activity. In general, authors prefer to make new
collaborations with active authors. Thus, we assume that
the more active the author is, the more possible the author
can collaborate with others. Activity score is defined in [11],
which quantifies the activity degree of an author.

factivity(a) =

i=0···n∑
[ti,ti+1]

N(a)[ti, ti+1] ∗ exp(−δ(t)) (1)

where t0 and tn denote the start and end time of the data
used for computing the attributes, N(a)[ti, ti+1] is number
of publications by author a during the period [ti, ti+1],
δ(t) = tn − ti depicts the number of years from year ti to
year tn, and ti+1 = ti+period (period represents a sliding
window of time, and various values can be assigned, e.g.
1,2, or 3 years).

(2) Influence. Authors always tend to collaborate with
others who are with high influence, and authors’ impact
is usually displayed by their number of citations. Then we
define the influence of an author in Eq.(2) .

finfluence(a) =

i=0···n∑
[ti,ti+1]

C(a)[ti, ti+1] ∗ exp(−δ(t)) (2)

where C(a)[ti, ti+1] denotes the number of citations of
author a during the period [ti, ti+1], and other parameters
have the same meaning with those explained in Eq.(1).

(3) Collaboration Tendency. The authors who have
coauthored with numerous authors before are more likely
to collaborate with others in the future. Thus we propose
the concept of collaboration tendency, collaboration level
and collaboration degree to describe the probability of an
author to be a collaborator. Collaboration level represents the
ratio of collaborated papers in all the papers published by
the author, and collaboration degree denotes average author
numbers of each paper written by the author. In fact, most of
the papers are collaborated work, hence collaboration level
always approaches 1. We define that collaboration tenden-
cy is the product of collaboration level and collaboration
degree, shown in Eq.(3).

fcolten(a) =

i=0···n∑
[ti,ti+1]

Co(a)[ti, ti+1]

N(a)[ti, ti+1]
∗D(a)[ti, ti+1]

N(a)[ti, ti+1]
∗exp(−δ(t))

(3)
where Co(a)[ti, ti+1] represents the number of collaborated
papers of author a during the period [ti, ti+1], D(a)[ti, ti+1]
denotes the number of distinguished co-authors of author a
during the period [ti, ti+1], and other parameters are the
same with the those explained in Eq.(1).
Normalization: To scale the activity, influence and collabo-
ration tendency of authors as [0, 1], we normalize the values
as follows:

fattribute(a) =
fattribute(a)− min

ai∈A
(fattribute(ai))

max
ai∈A

(fattribute(ai))− min
ai∈A

(fattribute(ai))

(4)



where fattribute(a) represents the author’s own attributes,
which are activity factivity(a), influence finfluence(a) or
collaboration tendency fcolten(a) of author a. These at-
tributes are all positively correlated with collaboration build-
ing. We treat the three attributes as a vector, and obtain the
norm as an argument to represent collaboration probability
of an author.

3.1.3. Topological Features. Diverse information are as-
sociated with information networks, and various attributes
can be attached to the nodes or links in a heterogeneous
information network. For example, temporal information
is often associated with links to reflect the dynamics of
an information network. Also, the similarity between two
objects is helpful to build collaboration, and the inherent
attributes of an author have an influence on the collaboration
formation. Therefore, we combine the three factors with the
structural meta path-based measures as topological features
to predict collaboration, which are path count with temporal
dynamics, normalized path count with transitive similarity,
and symmetric random walk with author attributes.

(1) Path count with temporal dynamics. Heteroge-
neous information networks evolve over time, and two ob-
jects are more probable to establish collaboration relation-
ship if there are more recent connections between them. The
newly building meta path instances give more contribution
for collaboration in the future. Therefore, we differentiate
the impacts of paths formed at different timestamps [7].

Given a meta path P = A1A2 · · ·Al, its commuting
matrix is MP =M t

P1
M t

P2
· · ·M t

Pg
, where M t

Pi
is the com-

muting matrix for meta path Pi with temporal information
incorporated.

∑g
i=1 l(Pi) = l(P ), where l(Pi) is the length

of short meta path Pi. Pi is a meta path on which an event
happens in a particular timestamp. For example, it can be
APR in bibliographic networks which represents an author
published one paper in a periodical in a particular year.
M t

Pi
= MPi

· TPi
, where MPi

is path count matrix on Pi,
and TPi

is the temporal matrix on Pi, with each element
representing the weight of path between the start object
x ∈ As(Pi) and end object y ∈ Ae(Pi), where As(Pi) is
the start object type of meta path Pi and Ae(Pi) is the end
object type of Pi. The weight in temporal matrix is assigned
according to the timestamp of the path formation. We use a
common time decay function to determine the weights, as
f(t) = α(t1−t)(t0 ≤ t ≤ t1), where t0 and t1 represent the
start and end time of data, and α(0 < α < 1) is a variable.

(2) Normalized path count with transitive similarity.
The meta path instances consisting of more similar objects
with the same type are more likely to build collaboration
in ahead. Thus, we put different weights on the meta path
instance considering the transitive similarity between the
start and end objects following the path [7].

Given a meta path P = A1A2 · · ·Al, where there exist
many objects with the same type as the start and the end
objects. Its commuting matrix is MP = Ms

P1
Ms

P2
· · ·Ms

Pd
,

where Ms
Pi

is the commuting matrix for short sym-
metric meta path Pi with transitive similarity integrated.∑d

i=1 l(Pi) = l(P ), where l(Pi) is the length of short

meta path Pi. Pi is a meta path of which the start and
end objects with the same type are transitively similar.
Ms

Pi
= MPi

· SPi
, where MPi

is the path count matrix
on Pi, and SPi

is the transitive similarity matrix on Pi,
with each element representing the similarity between the
start object x ∈ As(Pi) and end object y ∈ Ae(Pi), where
As(Pi) is the start object type of meta path Pi and Ae(Pi)
is the end object type of Pi. We utilize a meta path-based
peer similarity measure PathSim to obtain the transitive
similarity between two objects of the same type x and
y following a symmetric meta path P , and the definition
[4] is: s(x, y) = 2×PCR(x,y)

PCR(x,x)+PCR(y,y) . Then we obtain the
normalized path count with transitive similarity leveraging
the modified normalized path count formula, with path count
with transitive similarity instead of the original path count in
the formula. In the feature matrix of normalized path count
with transitive similarity, each element is gained from the
above commuting matrix with transitive similarity MP .

(3) Symmetric random walk with author attributes.
Authors’ attributes react the probability of building collab-
oration relationship with others to some degree, such as the
influence, activity and collaboration tendency of authors de-
scribed in detail in 3.1.2. Hence, we apply author attributes
to the start and end objects with author type following a
certain meta path.

Given a meta path P , the symmetric random walk
with author attributes is defined as: SRWAAR

(x, y) =
RWR(x, y) ∗AAx +RWR−1

(y, x) ∗AAy, where AAx and
AAy represent the attribute of the start and end objects with
author type, and are calculated from the norm of the attribute
tri-vector above.

For each meta path, we apply any topological mea-
sure on it, and acquire a unique topological feature, which
composes the topological feature sets. Then we use hybrid
topological features in the set to predict the collaboration
relationship.

3.2. Collaboration Prediction Model

We introduce the collaboration relation prediction model
which models the probability of future co-authorship be-
tween pair authors as a function of the topological features
between them. We extract the topological features from the
training author pairs, and build prediction model to obtain
the best coefficients associated with each feature.

The problem of collaboration prediction can be con-
sidered as a binary classification model, which contains
future collaboration or not. We choose the standard binary
classifier, the logistic regression with L2 regularization as
the prediction model, and employ gradient descent algorithm
as the optimization method to obtain the best weight of each
feature, in order to maximize the likelihood of collaboration
formation.

4. Experiments

In this section, we show that our proposed collaboration
prediction model (MACP) can improve the co-authorship
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Figure 2: ROC Curve

prediction accuracy, in comparison with other two model-
s, one of which uses the same topological feature space
in Support Vector Machine (SVM) classification algorith-
m (MACP-SVM), and the other employs basic structural
features in the same logistic regression algorithm, called
PathPredict proposed in [5].

The APS heterogeneous bibliographic information net-
work is used for experiments. We choose two journals with
low impact factor, PRA (2.991 in 2013) and PRB (3.664
in 2013), and one journal with high impact factor, PRL
(7.728 in 2013). Two time intervals are considered for the
network, according to the publication year of each paper:
T0 = [2000, 2006], T1 = [2007, 2013]. We use T0 as
past time interval, and T1 as future time interval. In the
training stage, we find author pairs as positive samples,
which have no relationship in the past time interval and build
collaboration in the future time interval. We also choose an
equal size of negative pairs, to balance the size of positive
and negative samples. The source authors are comprised of
the authors who have published more than 10 papers in the
past time interval. We confine the target authors that are
relatively close to the source authors, to avoid the excessive
computing between the unrelated authors.

TABLE 1: Comparison of different prediction models

Model Accuracy Precision Recall F1-socre AUC

MACP 0.743 0.845 0.704 0.768 0.777
MACP-SVM 0.692 0.777 0.640 0.702 0.717
PathPredict 0.705 0.787 0.657 0.717 0.732

In order to measure the prediction accuracy, we use ten-
fold stratified cross-validation to assess the quality of each
method. Common metrics are used to evaluate the prediction
result, which include accuracy , precision, recall, f1 score,
the precision-recall curve, receiver operating characteristic
curve (ROC curve), and the area under ROC curve (AUC).
We use the meta paths with length constraint 5 and different
measures on each meta path to conduct the experiments. We
choose two contrastive methods, which are SVM learning
method with the same topological features as our MACP
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Figure 3: Precision-recall Curve

model, and the PathPredict model with PC, NPC, RW
and SRW features described in 3.1.1.

The numerical metrics of different prediction models are
shown in Table 1, which shows that our proposed model
obtain the best prediction quality. The MACP-SVM model
has quite lower prediction quality due to the extremely slow
convergence speed and limiting iterations compared to the
logistic regression algorithm, which is fast converged in the
experiments. The ROC curve and precision-recall curve of
the MACP and PathPredict model are displayed in Fig. 2,
Fig.3, which exhibits MACP model beats the PathPredict
models in average, because the topological feature space in
MACP model is the combination of the structural features
and the attached attributes of the objects and links in the
networks, whereas the features in PathPredict model is just
the basic structural features. Different feature spaces lead
to the distinguished prediction precision. It turns out that
considering the attached information of objects and links is
helpful to improve the prediction quality, such as the tran-
sitive similarity, temporal dynamics and author attributes.
And the author attributes such as influence, activity and
collaboration tendency have an effect on the collaboration
relationship formation to some degree. These features can
help to improve prediction accuracy as supplements to meta
path-based feature space.

5. Conclusion and Future Work

In this paper, we study the problem of collaboration
relationship prediction in heterogeneous information net-
works.The presented MACP model is utilized to solve this
problem, which defines the meta path and author attribute
based topological features, and builds logistic regression-
based prediction model. Experiments on APS dataset show
that the prediction accuracy has been improved by consider-
ing the structural topology and author attributes together. In
the future, we attempt to combine the authors’ relationships
in both academic and social networks to analyze more
extensive collaboration relationships between authors.



References

[1] B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller, “Link prediction
in relational data,” in Proceedings of Advances in neural information
processing systems, 2003.

[2] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American society for information
science and technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[3] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspec-
tives and methods in link prediction,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2010, pp. 243–252.

[4] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-
based top-k similarity search in heterogeneous information networks,”
in Proceedings of the VLDB Endowment, 2011, pp. 992–1003.

[5] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han, “Co-author
relationship prediction in heterogeneous bibliographic networks,” in
Proceedings of IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, 2011, pp. 121–128.

[6] Y. Sun, J. Han, C. C. Aggarwal, and N. V. Chawla, “When will it
happen?: relationship prediction in heterogeneous information net-
works,” in Proceedings of the fifth ACM international conference on
Web search and data mining, 2012, pp. 663–672.

[7] J. He, J. Bailey, and R. Zhang, “Exploiting transitive similarity and
temporal dynamics for similarity search in heterogeneous informa-
tion networks,” in Proceedings of Database Systems for Advanced
Applications, 2014, pp. 141–155.

[8] C. Shi, X. Kong, P. S. Yu, S. Xie, and B. Wu, “Relevance search
in heterogeneous networks,” in Proceedings of the 15th international
conference on extending database technology, 2012, pp. 180–191.

[9] X. Yu, Q. Gu, M. Zhou, and J. Han, “Citation prediction in hetero-
geneous bibliographic networks.” in SDM, 2012, pp. 1119–1130.

[10] C. Luo, R. Guan, Z. Wang, and C. Lin, “Hetpathmine: A novel
transductive classification algorithm on heterogeneous information
networks,” in Advances in Information Retrieval, 2014, pp. 210–221.

[11] T. Huynh, A. Takasu, T. Masada, and K. Hoang, “Collaborator
recommendation for isolated researchers,” in Proceedings of IEEE
International Conference on Advanced Information Networking and
Applications (AINA), 2014, pp. 639–644.


	Introduction
	Preliminary
	The MACP Model
	Topological Features in Heterogeneous Networks
	Measures on Meta Paths
	Author Attributes
	Topological Features

	Collaboration Prediction Model

	Experiments
	Conclusion and Future Work
	References

