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ABSTRACT
The rapid growth of social media services brings a large amount

of high-dimensional social media data at an unprecedented rate.

Feature selection is powerful to prepare high-dimensional data by

finding a subset of relevant features. A vast majority of existing

feature selection algorithms for social media data exclusively focus

on positive interactions among linked instances such as friendships

and user following relations. However, in many real-world social

networks, instances may also be negatively interconnected. Recent

work shows that negative links have an added value over positive

links in advancing many learning tasks. In this paper, we study a

novel problem of unsupervised feature selection in signed social

networks and propose a novel framework SignedFS. In particular,

we provide a principled way to model positive and negative links

for user latent representation learning. Then we embed the user

latent representations into feature selection when label information

is not available. Also, we revisit the principle of homophily and

balance theory in signed social networks and incorporate the signed

graph regularization into the feature selection framework to capture

the first-order and the second-order proximity among users in

signed social networks. Experiments on two real-world signed

social networks demonstrate the effectiveness of our proposed

framework. Further experiments are conducted to understand the

impacts of different components of SignedFS.
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1 INTRODUCTION
With the rise of online social networks such as Facebook and Twit-

ter, social network analysis has gained increasing attention in recent

years. Huge volumes of data are user-generated at an unprece-

dented speed. For example, over 500 terabyte is are generated on

*
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Facebook every day and around 6000 tweets are tweeted on Twit-

ter every second. The massive amount of high-dimensional social

media data (e.g., posts, images, videos) presents challenges to tradi-

tional data mining and machine learning tasks due to the curse of

dimensionality [8]. As a traditional way to reduce the dimension-

ality of data, feature selection shows its effectiveness by selecting

a subset of relevant features for a compact and accurate repre-

sentation [4, 19, 23, 27]. In addition to the rich source of feature

information of high dimensionality, social media data is inherently

linked, which contradicts the widely adopted data i.i.d. assumption

of conventional feature selection algorithms. Also, in social net-

works, features and links are not independently presented but are

strongly correlated, and the root cause of the correlations can be

explained by some social science theories such as social influence

and the principle of homophily [7, 30]. These theories are helpful

in identifying relevant features in feature selection, especially in

cases when label information is costly to obtain.

A vast majority of existing feature selection methods for social

media data mainly leverage positive links among users to assess

feature relevance. However, in addition to positive links, many

real-world social networks may also contain negative links, such

as the distrust relations in Epinions
1
and the foe links in Slashdot

2
.

Recent work shows that negative links have additional value over

positive interactions [32], which could be used to advance a variety

of applications such as recommendation [31], sentiment analysis [5]

and community detection [17, 25]. Recent advances of signed social

network analysis motivate us to investigate if negative links can

help us find relevant features for users in signed networks when

label information is not available.

The existence of negative links in signed social networks not only

brings potential opportunities but also presents great challenges

for feature selection. First of all, without label information, existing

feature selection methods mainly extract latent representations

from positive links and then employ these latent representations

to guide feature selection on the content space. However, negative

links are distinct from positive links with unique properties. It

is a difficult task to accurately model latent representations from

negative links for feature selection. Secondly, most existingmethods

perform feature selection based on social theories for unsigned

social networks. Yet, such theories may not be directly applicable to

signed social networks. Therefore, the above mentioned challenges

make feature selection in signed social networks a nontrivial task

that needs further investigation.

In this paper, we study a novel problem of unsupervised feature

selection in signed social networks, which has not been studied

previously. In particular, we focus on answering the following two

questions: (1) how to employ and adapt existing social science

theories for feature selection in signed social networks? (2) how to

1
http://www.epinions.com/

2
https://slashdot.org/

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

777

https://doi.org/10.1145/3097983.3098106
https://doi.org/10.1145/3097983.3098106


mathematically model both positive and negative links for feature

selection? To answer these two questions, we propose a novel

unsupervised feature selection framework - SignedFS. The main

contributions of this paper are summarized as follows:

• We verify the existence of user first-order proximity and

second-order proximity in signed social networks;

• We propose an unsupervised feature selection framework

SignedFS, which embeds the latent representation learning

from positive and negative links into feature selection;

• We provide an effective alternating optimization algorithm

for the proposed SignedFS framework;

• We evaluate the effectiveness of the proposed SignedFS

framework on real-world datasets.

The rest of the paper is organized as follows. In Section 2, we for-

mally define the problem of unsupervised feature selection in signed

social networks. We introduce the datasets and conduct preliminary

data analysis in Section 3. In Section 4, we present our proposed

SignedFS framework for unsupervised feature selection in signed

social networks. In Section 5, we provide an effective alternating

optimization algorithm for the proposed SignedFS framework. Sec-

tion 6 gives the experimental evaluation on two real-world signed

social networks. Section 7 briefly reviews related work and Section 8

concludes the whole paper with future work.

2 PROBLEM STATEMENT
In this section, we first present the notations and then formally

define the problem of unsupervised feature selection in signed

social networks. We use bold uppercase characters for matrices

(e.g., A), bold lowercase characters for vectors (e.g., a), normal

lowercase characters for scalars (e.g., a). Also, We represent the i-th
row of matrix A as Ai∗, the j-th column as A∗j , the (i, j )-th entry

as Ai j , transpose as A′, trace as tr (A) if A is a square matrix. For

any matrix A ∈ Rn×d , its Frobenius norm is defined as ∥A∥F =√∑n
i=1

∑d
j=1

A2

i j , its ℓ2,1-norm is ∥A∥2,1 =
∑n
i=1

√∑d
j=1

A2

i j . In
denotes the identity matrix of size n-by-n.

Let U = {u1,u2, ...,un } be the set of n users in a signed social

networkG.G can be decomposed into a positive componentGp and

a negative componentGn in whichAp ∈ Rn×n is the corresponding

adjacency matrix for the positive component Gp such that Ap
i j = 1

if ui has a positive link to uj , and Ap
i j = 0 otherwise. Similarly,

An ∈ Rn×n denotes the adjacency matrix of Gn where An
i j = 1

if ui has a negative link to uj , and An
i j = 0 otherwise. Let F =

{ f1, f2, ..., fd } be a set of d features and X ∈ Rn×d denotes the

feature information of all n instances. With these notations, the

problem of unsupervised feature selection in signed social networks

can be formally stated as follows:

Given: feature set F , feature matrix X and a signed social net-

work G with positive links encoded in the adjacency matrix Ap

and negative links encoded in the adjacency matrix An
;

Select: a subset of most relevant features S ⊆ F by exploiting

both feature matrix X and signed network structure encoded in the

adjacency matrix Ap
and the adjacency matrix An

.

Table 1: Statistics of the used datasets.

Datasets Epinions Wiki-rfa

# of Users 7,140 7,096

# of Features 15,069 10,608

# of Classes (Ground Truth) 24 2

# of Positive Links 13,569 104,555

Density of Positive Links 2.7e(-4) 2.1e(-3)

# of Negative Links 3,010 23,516

Density of Negative Links 5.9e(-5) 4.7e(-4)

3 ANALYSIS OF SIGNED SOCIAL NETWORKS
In this section, we first introduce two real-world signed social

networks used in this study and then investigate the first-order and

the second-order proximity among users in signed social networks.

3.1 Datasets
Weuse two real-world datasets from Epinions

3
andWiki-rfa

4
which

include both positive and negative links.

Epinions: Epinions is a customer review website where users

share their reviews about products. Users can both trust or distrust

other users. Users can also write reviews for products from different

categories. We collect positive and negative links between users to

construct the signed social networks. For each user, features are

formed by the unigram model based on all review comments posted

by the user. To be specific, each feature denotes the frequency that

a particular word appears, and the words that appear less than 10

times have already been removed. The major categories of reviews

by users are taken as the ground truth of class labels.

Wiki-rfa: Wikipedia Requests for Adminship is a who-votes-

for-whom network where a signed link indicates a positive or a

negative vote by one user on the promotion of the other one. Each

vote is typically accompanied by a short comment. Similarly, for

each user, features are formed by the unigram model based on all

comments posted by the user. The person voted by the user could

be rejected or accepted, which is taken as the ground truth of labels.

In order to better understand the distributions of positive and

negative links, we further explore the degree distributions of these

two types of links in Figure 1 and Figure 2. As can be observed from

the figures, both positive and negative links present a power-law

distribution, which is typical in most social networks [1].

Detailed statistics of these two datasets are presented in Table 1.

With these two datasets, we now study the first-order user proxim-

ity and the second-order user proximity in signed social networks.

3.2 Analysis
Social science theories such as the principle of homophily [28] and

balance theory [14] suggest the correlations between user similar-

ity and user positive/negative interactions. Hence, these theories

are widely adopted in social network analysis. For example, the

principle of homophily looks at all observed links, and implies that

positively connected users are more likely to be similar to each

3
http://jiliang.xyz/trust.html

4
https://snap.stanford.edu/data/wiki-RfA.html
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Figure 1: Power-law distribution of the Epinions dataset: (a)
degree distribution of positive links; (b) degree distribution
of negative links.
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Figure 2: Power-law distribution of the Wiki-rfa dataset: (a)
degree distribution of positive links; (b) degree distribution
of negative links.

other than two randomly selected users. Second, balance theory

looks at two-hop users’ interactions and the observations are that

“friends of friends are friends" and “enemies of enemies are friends".

In this subsection, we revisit the principle of homophily and the

balance theory in signed social networks and show how user simi-

larity is correlated with the first-order and the second-order user

proximity in signed social networks.

3.2.1 First-order Proximity. The principle of homophily indi-

cates that users are similar to each other when they are intercon-

nected. However, it is not appropriate to apply the principle directly

on signed social networks [34] as instances may also be negatively

connected. To explore the first-order user proximity in signed social

networks, we revisit the principle of homophily by attempting to

answering the following question: are users with positive relations

tend to be more similar than users with negative relations?

To answer the question, we first define the similarity score be-

tween two users ui and uj as simi j = ∥yi − yj ∥2, where yi ∈ R1×c

and yj ∈ R1×c
are the ground truth of labels for users ui and uj ,

respectively. c denotes the number of user labels.

With the definition of user similarity, we construct two vectors

p1 and n1 of the same length to denote the user similarity between

positively connected users and negatively connected users, respec-

tively. To be specific, elements in p1 denote the similarity score

between two users (ui ,uj ) with positive relations, and elements

in n1 denote the similarity score between two users (ui ,uj ) with
negative relations. We sample 500 pairs of users for both vectors

Table 2: The p-values of the t-test, where p̄1, n̄1, p̄2, n̄2 and r̄
denote the sample mean of the corresponding vectors.

Hypothesis Epinions Wiki-rfa

H0: p̄1 >= n̄1; H1: p̄1 < n̄1 2.3974e (−7) 8.3255e (−4)

H0: p̄2 >= r̄; H1: p̄2 < r̄ 1.3614e (−6) 9.8577e (−7)

H0: n̄2 >= r̄; H1: n̄2 < r̄ 5.5854e (−5) 1.3126e (−12)

p1 and n1 and conduct two sample t-test on these two vectors. The

null hypothesis is rejected at the significance level of α = 0.01 with

a p-value shown in Table 2. Therefore, we verify the assumption

that users with positive relations are more similar to each other

than users with negative relations.

3.2.2 Second-order Proximity. Balance theory in signed social

networks suggests that "a friend of my friend is my friend" and "an

enemy of my enemy is my friend". Based on the balance theory, we

would like to investigate the correlation between user similarity

and the second-order user proximity in signed social networks.

Specifically, we aim to answer the following two questions: (1) are

friends of my friends tend to be similar to me? (2) are enemies of

my enemies tend to be similar to me?

With user similarity defined in section 3.2.1, we construct an-

other three vectors p2, n2 and r to denote the user similarity be-

tween two users with a shared friend, two users with a shared

enemy and two randomly selected users, respectively. For exam-

ple, each element in p2 denotes the similarity score between two

users ui and uk . Both ui and uk have a friend uj . The element in

n2 denotes the similarity score between two users ui and uk . Both
ui and uk have an enemy uj . And the element of r represents the
similarity score between ui and another randomly selected user ur .
We also sample 500 pairs of users for all these three vectors p2, n2
and r and then conduct two sample t-test on these three vectors.

The null hypothesis is rejected at the significance level of α = 0.01

with p-values shown in Table 2. From the table, we can conclude

that both the friends of my friends and the enemies of my enemies

are more similar to me than a randomly selected user.

4 THE PROPOSED FRAMEWORK
In this section, we illustrate our proposed framework SignedFS for

unsupervised feature selection in signed social networks in details.

As shown in Figure 3, it consists of three components: first, we

show how to learn user latent representations from both positive

and negative links (Section 4.1); second, we show how to embed the

user latent representations into feature selection when we are lack

of label information (Section 4.2); third, we show how to employ

the first-order and the second-order user proximity in signed social

networks to make the learned user latent representations consistent

with the user proximity in signed social networks via a signed graph

regularization (Section 4.3).

4.1 Modeling Positive and Negative Links
In social media, a user establish relations with others due to a va-

riety of hidden factors. These hidden factors can be the hobbies,

geographical locations, religions, etc. It has been widely studied
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Figure 3: Illustration of the proposed SignedFS framework.

in previous research that both positive and negative links are rele-

vant to these hidden factors [34]. According to the recent research,

negative links possess some unique characteristics against positive

links. For example, networks with negative links often exhibit dis-

tinct topological properties such as lower clustering coefficients

compared with networks with only positive links [33]. Thus, we

attempt to model positive and negative links independently to learn

user latent representations (phase 1 in Figure 3). Let U ∈ Rn×c be
the user latent representations where Ui∗ ∈ R1×c

denotes user

latent representation of ui and c is the number of user latent fac-

tors. It should be noticed that in real-world signed social networks,

each user only has a limited number of interactions with others,

which results in a sparse and low-rank network structure. There-

fore, we employ low-rank matrix factorization to learn user latent

representations. Specifically, to capture the distinct properties of

positive and negative links, we collectively factorize Ap
and An

into a unified low-rank representation U via solving the following

optimization problem:

min

U,Vp,Vn
β+∥Op⊙ (Ap−UVpU′)∥2F+β

−∥On⊙ (An−UVnU′)∥2F , (1)

where β+ and β− balance the contribution of positive links and

negative links in learning user latent representations, respectively.

Op
and On

are defined as follows:

Op
i j =




1, if Ap
i j = 1

0, otherwise
, (2)

On
i j =

{
1, if An

i j = 1

0, otherwise
. (3)

In the above formulation, we approximate the positive link from

ui to uj with UiVpU′j where V
p ∈ Rc×c captures the correlations

among user latent representations for positive links. ⊙ is Hadamard

product (element-wise product) where (X ⊙ Y)i j = Xi j × Yi j for
any two matrices X and Y of the same size. The Hadamard product

operator is imposed since we only use observed positive links to

learn user latent representations. Similarly, we approximate neg-

ative links with UVnU′. Since negative links are also related to

user latent representations, we factorize An
into the same low-rank

space U. The correlation matrix Vn is used to capture the unique

properties of negative links.

4.2 Modeling Feature Information
After we model user latent representations, we now show how to

make use of them to guide feature selection (phase 2 in Figure 3).

Typically, in social media platforms, label information of users are

costly and labor intensive to obtain. Without label information, it

would be difficult to assess feature relevance. Fortunately, these

latent representations encode the signed network structure which

selected feature should preserve. Hence, we leverage the user latent

representationsU to guide feature selection via a multivariate linear

regression model with a ℓ2,1-norm sparse regularization term [22]:

min

W
∥XW − U∥2F + α ∥W∥2,1, (4)

whereW ∈ Rd×c is a feature weight matrix and each row ofW, i.e.,

Wi∗, measures the importance of the i-th feature. The ℓ2,1-norm

regularization term is imposed on W to achieve a joint feature

sparsity across c different dimensions of user latent representations.

The parameter α controls the sparsity of the model.

4.3 Modeling User Proximity
In Section 3, we revisit the principle of homophily and balance

theory. We verify the existence of the first-order and second-order

user proximity in signed social networks. In this subsection, we

introduce how to model the first-order and the second-order user

proximity for unsupervised feature selection in signed social net-

works (phase 3 in Figure 3).

In particular, we have the following two important findings: (1)

first-order proximity: two users with positive relations tend to be

similar to each other than two users with negative relations; (2)

second-order proximity: the friends of my friends and the enemies

of my enemies are more similar to me than a randomly selected

user. We first construct a user proximity matrix by employing

both the first-order and the second-order user proximity. Given the
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adjacency matrix of a signed network A where Ai j = 1, Ai j = −1

and Ai j = 0 denote positive, negative and missing links from ui
to uj respectively, the first-order proximity matrix P1 is defined

as P1 = A, where P1i j = 1 indicates that uj is a friend of ui while
P1i j = −1 indicates thatuj is a foe ofui . The second-order proximity

matrix is defined as P2 = O ⊙ A2
, where O is defined as follows:

Oi j =

{
0, if P1i j , 0 or P2i j < 0

1, otherwise
. (5)

In the above formulation, we capture the second-order proximity

from ui to uk by (A2)ik =
∑n
j=1

Ai jAjk . To show that A2
can

capture the second-order user proximity, the proof is as follows: (1)

to verify that A2
can capture the proximity between a friend of my

friend and me, we should prove that if both ui and uk have a friend

uj , ui and uj should be similar to each other in the second-order

proximity matrix. In other words, if sдn(Ai j ) = 1 and sдn(Ajk ) = 1,

we should prove that sдn(Aik ) = 1, which is obvious in the above

formulation; (2) to verify thatA2
can capture the proximity between

an enemy of my enemy and me, we should prove that if both ui
and uk have an enemy uj , ui and uk should be similar to each other

in the second-order proximity matrix. That is if sдn(Ai j ) = −1 and

sдn(Ajk ) = −1, we should prove that sдn(Aik ) = 1, which is also

true in the above formulation. Though the second-order proximity

(balance theory) may not always hold in signed networks [32],

in an aggregate sense, the second-order proximity from network

structure should be maximally preserved. Thus (A2)ik > 0 can

capture the second-order proximity from ui to uk . The Hadamard

product operator is imposed to avoid the confliction between the

first-order proximity and the second-order proximity. In this way,

the user proximity matrix can be constructed by P = P1 + θP2. The
parameter θ controls the weight of the first-order and the second-

order proximity matrices in the model. In this paper, we empirically

set the weight θ = 0.1.

To integrate user proximity in feature selection, the basic idea is

to make latent representations Ui∗ and Uj∗ of two users as close as

possible if ui and uj are similar while as far as possible if ui and uj
are dissimilar. It could be mathematically formulated by the signed

graph regularization [17]:

1

2

n∑
i=1

n∑
j=1

|Pi j | × ∥Ui∗ − sдn(Pi j )Uj∗∥
2

2
= tr (U′LU), (6)

where sдn(Pi j ) denotes the sign of Pi j . L = D − P is a signed

Laplacian matrix [17] constructed from P and the signed degree

matrix D ∈ Rn×n is a diagonal matrix with Dii =
∑n
j=1
|Pi j |.

With the modeling of user proximity by signed graph regulariza-

tion, the final objective function of the proposed SignedFS frame-

work is formulated as follows:

min

W,U,Vp,Vn
∥XW − U∥2F + α ∥W∥2,1 +

γ

2

tr (U′LU)

+
β+

2

∥Op ⊙ (Ap − UVpU′)∥2F

+
β−

2

∥On ⊙ (An − UVnU′)∥2F ,

(7)

where γ is a regularization parameter for the modeling of user

proximity in signed social networks.

5 OPTIMIZATION
In this section, we introduce an effective alternating optimization

algorithm for solving the optimization problem of the proposed

SignedFS framework with a convergence analysis.

5.1 Alternating Optimization Algorithm
In Eq.(7), the coupling between U, Vp , Vn and W makes it difficult

to find the global optimal solutions for all four variables simultane-

ously. Therefore, we propose to employ an alternating optimization

scheme to solve it which has been widely adopted for a variety

of real-world problems. First, we fix U, Vp and Vn and updateW.

Specifically, when U, Vp and Vn are fixed, the objective function

is convex w.r.t. the feature weight matrix W. We take the partial

derivative of objective function w.r.t. W and set it to be zero:

2X′(XW − U) + 2αHW = 0, (8)

where H ∈ Rd×d is a diagonal matrix with its i-th diagonal element

as:

Hii =
1

2∥Wi∗∥2
5. (9)

It can be noticed that X′X is a positive semidefinite matrix and

αH is a diagonal matrix with positive entries which is positive

semidefinite as well. Therefore, their summation should also be

positive semidefinite. Hence, W has a closed-form solution:

W = (X′X + αH)−1X′U. (10)

By substituting the above solution of W into Eq.(7), we have:

min

U,Vp,Vn
J (U,Vp ,Vn )

= tr (U′U) − tr (U′XM−1X′U) +
β+

2

∥Op ⊙ (Ap − UVpU′)∥2F

+
β−

2

∥On ⊙ (An − UVnU′)∥2F +
γ

2

tr (U′LU)

= tr (U′(In − XM−1X′)U) +
β+

2

∥Op ⊙ (Ap − UVpU′))∥2F

+
β−

2

∥On ⊙ (An − UVnU′))∥2F +
γ

2

tr (U′LU),

(11)

where M = X′X + αH.
Similarly, we fix other variables to update U, Vp and Vn iter-

atively. Since their closed-form solutions are hard to obtain, we

employ the gradient descent method to update them. In particular,

the partial derivative of the objective function w.r.t. U, Vp and Vn

can be calculated as follows:

5
In practice, ∥Wi∗ ∥2 could be close to zero. Thus, we makeHii =

1

2∥Wi∗ ∥2+ϵ
, where

ϵ is a very small constant.
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∂J

∂U
= (In − XM−1X′)U + (In − XM−1X′)′U

+β+ (−(Op ⊙ Op ⊙ Ap )UVp ′ − (Op ⊙ Op ⊙ Ap )
′UVp

+(Op ⊙ Op ⊙ UVpU′)UVp ′

+(Op ⊙ Op ⊙ UVpU′)′UVp )

+β− (−(On ⊙ On ⊙ An )UVn ′ − (On ⊙ On ⊙ An )′UVn

+(On ⊙ On ⊙ UVnU′)UVn ′

+(On ⊙ On ⊙ UVnU′)′UVn ) + γLU, (12)

∂J

∂Vp
= β+ (U′(Op ⊙ Op ⊙ UVpU′)U

−U′(Op ⊙ Op ⊙ Ap )U), (13)

∂J

∂Vn
= β− (U′(On ⊙ On ⊙ UVnU′)U

−U′(On ⊙ On ⊙ An )U). (14)

Algorithm 1: The proposed SignedFS framework.

Input : {X,Ap ,An , c,α , β+, β−,γ ,θ }
Output : ranking of features in a descending order

1 Initialize U, Vp and Vn randomly;

2 Initialize H as an identity matrix;

3 A = Ap − An
, P1 = A, P2 = O ⊙ A2

, P = P1 + θP2;
4 L = D − P;
5 while not converge do
6 Set M = X′X + αH;
7 Calculate

∂J
∂U ,

∂J
∂Vp and

∂J
∂Vn ;

8 Update U← U − λu ∂J
∂U ;

9 Update Vp ← Vp − λp ∂J
∂Vp ;

10 Update Vn ← Vn − λn ∂J
∂Vn ;

11 Update W← M−1X′U;
12 Update H through Eq.(9);

13 end
14 Rank features according to the values of ∥Wi∗∥2 in a

descending order;

With these equations, the detailed algorithm of the proposed

SignedFS framework is illustrated in Algorithm 1. At first, we ini-

tialize U, Vp , Vn , H and calculate user proximity matrix and signed

Laplacian matrix. From line 5 to 13, we update U, Vp , Vn and W
alternatively until achieving convergence. In each iteration, we

first calculate M, the computation cost of M is O (nd2). After ob-
taining M, we fix W and update U, Vp and Vn with the gradi-

ent descent method. λu , λp , λn are the step size for the update U,
Vp and Vn , respectively. These step sizes can be determined by

line search according to the Armijo rule. The computation cost of

updating U, Vp and Vn are O (nd2) + O (n2d ) + O (n2c ) + O (nc2),
O (nc2)+O (n2c )+O (n3) and O (nc2)+O (n2c )+O (n3), respectively.
Then we employ Eq.(10) to update W, the computational cost of

updatingW is O (nd2) + O (dn2) + O (d3) + O (d2c ) + O (ncd ). After
we obtain the local optimal solution of W, we rank the features in

a descending order according to the values of ∥Wi∗∥2.

5.2 Convergence Analysis
In this subsection, we show the alternating optimization algorithm

monotonically decreases the value of the objective function and it

is guaranteed to converge. We start the convergence analysis with

the following lemma.

Lemma 5.1. The following inequality holds if (Wi∗)
k and (Wi∗)

k+1

are non-zero vectors (i = 1, 2, ...,d ), where (Wi∗)
k and (Wi∗)

k+1

denote the update of Wi∗ in the k-th and (k + 1)-th iteration, respec-
tively [29]:

∥ (W)k+1∥2,1 −
∑
i

∥ (Wi∗)
k+1∥2

2

2∥ (Wi∗)k ∥2

≤∥ (W)k ∥2,1 −
∑
i

∥ (Wi∗)
k ∥2

2

2∥ (Wi∗)k ∥2
.

(15)

Theorem 5.2. The value of the objective function in Algorithm 1
monotonically decreases in each iteration.

Proof. As described by Algorithm 1, we update U, Vp and Vn

by the gradient descent method. Thus, the following inequality

condition holds:

J ((U)k+1, (Vp )k+1, (Vn )k+1, (W)k )

≤ J ((U)k+1, (Vp )k+1, (Vn )k , (W)k )

≤ J ((U)k+1, (Vp )k , (Vn )k , (W)k )

≤ J ((U)k , (Vp )k , (Vn )k , (W)k ),

(16)

where (U)k , (Vp )k , (Vn )k , (W)k and (U)k+1
, (Vp )k+1

, (Vn )k+1
,

(W)k+1
denote the update of U, Vp , Vn , W in the k-th and (k + 1)-

th iteration, respectively.

After that, we fix (U)k+1
, (Vp )k+1

and (Vn )k+1
to updateW. As

can be observed in Eq.(7), (W)k+1
is the optimal solution of the

following objective function:

min

W
J (W) = ∥XW − (U)k+1∥2F + α tr (W′(H)kW). (17)

Thus, we obtain the following inequality:

∥X(W)k+1 − (U)k+1∥2F + α tr ((W)k+1
′

(H)k (W)k+1)

≤ ∥X(W)k − (U)k+1∥2F + α tr ((W)k
′

(H)k (W)k )

.

(18)

It is equivalent to:

∥X(W)k+1 − (U)k+1∥2F + α ∥ (W)k+1∥2,1

−α (∥ (W)k+1∥2,1 −
∑
i

∥ (Wi∗)
k+1∥2

2

2∥ (Wi∗)k ∥2
)

≤ ∥X(W)k − (U)k+1∥2F + α ∥ (W)k ∥2,1

−α (∥ (W)k ∥2,1 −
∑
i

∥ (Wi∗)
k ∥2

2

2∥ (Wi∗)k ∥2
).

(19)

According to LEMMA 5.1, we obtain the following inequality

condition:

∥X(W)k+1 − (U)k+1∥2F + α ∥ (W)k+1∥2,1

≤∥X(W)k − (U)k+1∥2F + α ∥ (W)k ∥2,1.
(20)
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Therefore, integrating the inequality condition in Eq.(16), we

have the following:

J ((U)k+1, (Vp )k+1, (Vn )k+1, (W)k+1)

≤ J ((U)k+1, (Vp )k+1, (Vn )k+1, (W)k )

≤ J ((U)k+1, (Vp )k+1, (Vn )k , (W)k )

≤ J ((U)k+1, (Vp )k , (Vn )k , (W)k )

≤ J ((U)k , (Vp )k , (Vn )k , (W)k ),

(21)

which completes the proof. □

6 EXPERIMENTS
In this section, we perform experiments on real-world signed social

networks to validate the effectiveness of the proposed SignedFS

framework. We begin by introducing the experimental settings.

After that, we present the comparison results between SignedFS

and the state-of-the-art unsupervised feature selection methods.

Finally, we discuss the impact of various components of SignedFS

and the effects of model parameters.

6.1 Experimental Setting
Following a commonly adopted way to assess unsupervised feature

selection, we evaluate the proposed SignedFS in terms of clustering

performance. To be specific, after we obtain the selected features,

we employ K-means clustering based on the selected features. Since

K-means may converge in local minimal, we repeat it 20 times and

report the average clustering results. Two clustering evaluation

metrics, clustering accuracy (ACC) and normalized mutual infor-

mation (NMI) are used. The higher the ACC and NMI values, the

better the selected features are.

SignedFS is compared with the following state-of-the-art unsu-

pervised feature selection algorithms.

• Laplacian Score [13] selects features based on their ability

to preserve data manifold structure.

• SPEC [38] evaluates features by spectral regression.

• NDFS [26] selects features by a joint nonnegative spectral

analysis and ℓ2,1-norm regularization.

• LUFS [36] utilizes social dimension extracted from links to

guide feature selection.

• NetFS [22] embeds latent representations extracted from

links into feature selection.

Among these baseline methods, Laplacian Score, SPEC and NDFS

are traditional unsupervised feature selection methods which only

use feature information X. LUFS and NetFS are unsupervised fea-

ture selection algorithms for unsigned networks with only positive

links. To fairly compare different methods, we set the parame-

ters for all methods by a grid search strategy from the range of

{0.001,0.01,...,100,1000}. Afterwards, we compare the best clustering

results of different unsupervised feature selection methods.

6.2 Quality of Selected Features by SignedFS
In this subsection, we compare the quality of features selected by

SignedFS and aforementioned baseline algorithms. The number

of selected features are varied among {400,800,...,1800,2000}. In

SigendFS, we have four regularization parameters α , β+, β− and

γ . We empirically set these parameters as {α = 1, β+ = 10, β− =
1000,γ = 1000} in Epinions and {α = 1, β+ = 1, β− = 100,γ =
1000} in Wiki-rfa. The comparison results of various feature selec-

tion algorithms on Epinions and Wiki-rfa datasets are shown in

Table 3 and Table 4, respectively. We make the following observa-

tions from these two tables:

• SignedFS outperforms traditional feature selection algorithms

LapScore, SPEC and NDFS on both datasets with significant

clustering performance gain in most cases. We also perform

pairwise Wilcoxon signed-rank test between SignedFS and

these three traditional unsupervised feature selection meth-

ods, it shows SignedFS is significantly better (p-value=0.05).
The superiority of SignedFS can be attributed to the utiliza-

tion of additional link information while traditional methods

are mainly based on the data i.i.d. assumption.

• SignedFS also obtains better clustering performance than

the other two feature selection methods LUFS and NetFS

on linked data. The major reason is that LUFS and NetFS

only exploit positive links while SignedFS incorporates both

positive links and negative links into a coherent model to

obtain better features. It indicates the potential of using

negative links for feature selection.

• We can see that when we gradually increase the number

of selected features from 400 to 2000, the clustering perfor-

mance in terms of clustering accuracy and NMI does not

vary a lot. In particular, when a small number of features are

selected, SignedFS already gives us very good performance.

A small number of selected features is very appealing in

practice as it significantly reduces the memory storage costs

and computational costs for further learning tasks.

6.3 Further Analysis
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Figure 4: The impact of different components of SignedFS
on Wiki-rfa.

In this subsection, we conduct experiments to further analyze

the impact of each component in SignedFS for feature selection. As

can be shown in the objective function of SignedFS in Eq.(7), the

base model of our framework is ∥XW − U∥2F + α ∥W∥2,1. Upon the

base model, we derive four different variants as follows:

• base w/β+: We use the positive links for user latent repre-

sentations learning (β− = 0, γ = 0).

• base w/ β−: We use the negative links for user latent repre-

sentations learning (β+ = 0, γ = 0).
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Table 3: Clustering performance of different feature selection algorithms on Epinions.

Accuracy (%)

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 11.48 11.34 10.95 11.79 12.54 11.61 11.29 11.19 12.79

SPEC 21.10 16.93 17.73 17.96 17.91 18.73 18.75 18.57 17.38

NDFS 12.18 11.29 11.92 12.16 12.32 12.14 11.92 13.19 11.78

LUFS 16.23 17.02 18.47 17.44 17.54 19.10 19.29 17.63 18.54

NetFS 18.59 19.62 19.21 18.80 18.43 18.77 17.82 19.76 19.98

SignedFS 23.24 21.76 21.69 22.11 21.27 21.88 20.04 20.64 21.20
NMI (%)

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 2.74 2.72 2.68 3.68 2.68 2.73 2.75 2.63 2.67

SPEC 1.66 1.75 1.74 2.41 2.50 2.53 2.64 2.62 2.60

NDFS 1.49 1.47 1.46 1.46 1.46 1.46 1.46 1.46 1.46

LUFS 1.61 1.60 1.76 1.82 1.86 1.89 1.91 1.72 1.99

NetFS 1.80 1.90 2.28 1.75 1.79 1.11 1.56 1.47 2.08

SignedFS 3.82 3.68 3.84 3.87 3.72 3.84 4.00 3.86 3.79

Table 4: Clustering performance of different feature selection algorithms on Wiki-rfa.

Accuracy (%)

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 70.92 70.94 70.93 70.31 70.52 70.89 70.92 71.13 71.37

SPEC 71.76 72.11 72.02 71.76 71.76 71.90 71.76 71.83 71.56

NDFS 72.94 72.73 72.94 72.75 72.78 72.94 72.94 72.94 72.94

LUFS 75.55 75.55 73.79 74.11 74.14 73.24 73.21 73.28 73.89

NetFS 72.81 72.91 72.94 72.73 72.68 72.70 72.97 72.97 72.97

SignedFS 78.10 78.52 77.59 77.15 77.18 77.63 78.27 78.94 78.63
NMI (%)

400 600 800 1000 1200 1400 1600 1800 2000

LapScore 0.24 0.22 0.23 0.26 0.26 0.26 0.26 0.26 0.26

SPEC 0.70 1.05 0.83 0.45 0.29 0.30 0.26 0.26 0.26

NDFS 0.26 0.30 0.28 0.25 0.26 0.26 0.27 0.26 0.26

LUFS 0.14 0.14 0.07 0.04 0.05 0.07 0.07 0.08 0.11

NetFS 0.44 0.38 0.36 0.36 0.38 0.38 0.37 0.37 0.37

SignedFS 1.54 1.57 1.49 1.47 1.40 1.56 1.81 3.37 3.34

• base w/(β+ + γ ): We use the positive links for user latent

representations learning, and consider user proximity in

terms of both positive and negative links (β+ = 0).

• base w/(β+ + β−): We use both positive and negative links

for user latent representations learning (γ = 0).

We compare these four variants with the original SignedFS frame-

work. The comparison results are shown in Figure 4. Due to space

limit, we only show the results on the Wiki-rfa dataset as we have

the similar observations on the Epinions dataset. We have several

interesting observations from the figure:

• The variant base w/β+ outperforms base w/β− consistently.

It indicates that positive links are more useful than negative

links for feature selection. Also, negative links are not as

useful as positive links in learning informative latent repre-

sentations for feature selection.

• The variant base w/(β+ + β−) obtains better clustering per-

formance than base w/(β+). It indicates that negative links
have some added values over positive links, and can help

finding more relevant features.

• The variant base w/(β+ + γ ) outperforms base w/(β+), and
SignedFS outperforms base w/(β+ + β−). It implies that user

proximitymodeling term is very helpful and could contribute

to obtain better clustering performance.

• The proposed SignedFS framework achieves the best clus-

tering results, showing the necessities of both user latent

representation modeling and user proximity modeling.

6.4 Parameter Analysis
The proposed SignedFS has four important parameters. Among

them, α controls the sparsity of the model; β+ and β− balances

the contribution of positive and negative links in learning user

latent representations; γ controls the modeling of the first-order

and the second-order user proximity in signed social networks

for feature selection. We study the effect of each parameter by

fixing the others to investigate how it affects the performance of

unsupervised feature selection. Since we make similar observations

on both datasets, we only report the experimental results w.r.t.

clustering accuracy on Wiki-rfa dataset to save space. First, we fix
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Figure 5: Parameter analysis of SignedFS on Wiki-rfa.

{
β+ = 10, β− = 10,γ = 100

}
and varyα among {0.01, 0.1, 1, 10, 100}.

As shown in Figure 5 (a), the clustering performance first increases

and then reaches the peak values when α = 0.1. If we contin-

uously increase the value of α , the clustering performance de-

creases. Therefore, we could empirically set α among the range

of 0.01 to 0.1. Second, to investigate how β+ affects the cluster-

ing performance, we vary β+ among {0.01, 0.1, 1, 10, 100} by fixing

{α = 0.1, β− = 10,γ = 100}. The result is presented in Figure 5

(b). Similarly, the clustering performance first increases, reaches

its maximal value when β+ = 10 and then degrades. Next, to study

the impact of β−, we set {α = 0.1, β+ = 10,γ = 100}, and vary

β− among {0.01, 0.1, 1, 10, 100}. The result is presented in Figure 5

(c). The performance variation w.r.t. β− has a similar trend as the

variation of β+, which suggests that negative links are also very

important in finding relevant features in signed social networks.

Finally, we fix {α = 0.1, β+ = 10, β− = 10} and vary γ among

{0.01, 0.1, 1, 10, 100} to investigate the effect of γ . As depicted in

Figure 5 (d), with the increase of γ , the clustering performance grad-

ually increases and then keeps stable. The clustering performance

is relatively more sensitive to the number of selected features than

these regularization parameters, which is still an open problem in

unsupervised feature selection.

7 RELATEDWORK
In this section, we briefly review related work from three aspects:

(1) traditional feature selection; (2) feature selection in networks;

and (3) signed social network analysis.

7.1 Traditional Feature Selection
Feature selection algorithms can be either supervised or unsuper-

vised according to the availability of labels [19]. Supervised feature

selection algorithms take advantage of the class labels to evaluate

feature relevance by its ability to distinguish instances from dif-

ferent classes, which can be broadly divided into three categories:

wrapper methods [16] which evaluate feature by its predictive ac-

curacy of a predetermined learning algorithm, filter methods [12]

which select features according to the general characteristics of

the training data and embedded methods [2, 29] which embed fea-

ture selection into the learning algorithms. Since most real-world

data is usually unlabeled, unsupervised feature selection received

increasingly attention in recent years. Due to the lack of label in-

formation, these methods exploit different criteria such as data

similarity [2, 13, 38], local discriminative information [26, 37] and

data reconstruction error [9, 24] to define feature relevance.

7.2 Feature Selection in Networks
Feature selection methods for networked data are distinct from

traditional feature selection methods as traditional methods as-

sume that data is independent and identically distributed. In [10],

a supervised feature selection algorithm FSNet was proposed for

networked data. FSNet captures the correlation between content

information and class labels by a linear classifier and it incorporates

link information via graph regularization. Distinct from traditional

networked data, social media data present its unique characteristics

with the existence of complex linkage structure such as CoPost,

CoFollowing, CoFollowed and Following. Motivated by these ob-

servations, Tang and Liu [35] made the first attempt to perform

feature selection for social media data. Since networked data is

usually costly to label, an unsupervised feature selection frame-

work LUFS was proposed in [36]. In particular, LUFS extracts social

dimensions from link information to help select relevant features.

However, link information may contain a lot of noise and itself may

be incomplete [3]. In order to alleviate the negative impacts from

noisy and incomplete links, Li et al. [22] proposed a robust unsuper-

vised feature selection framework for networked data. The authors

further studied how to perform feature selection on networks with

streaming features [21] and dynamic network structure [20].

7.3 Signed Networks Analysis
Even though mining signed graph is still in its early stage, some

problems in signed networks have already been well studied, such

as link prediction, community detection and genetic association

analysis. Existing link prediction methods on signed social net-

work include both supervised methods, which usually leverage

local topology features [18] and features derived from long cy-

cles [6] for link prediction, and unsupervised methods, which pre-

dict signs of links according to the topological properties of signed

networks [11]. Community detection is another fundamental prob-

lem in signed social network analysis. In [25], the authors extended

modularity maximization to signed networks. A spectral clustering

algorithm for signed social networks was proposed in [17]. It is the

first attempt to define a signed laplacian matrix which can separate

users with negative links far away and force users with positive

links to be close. In addition, signed networks are also used to rep-

resent quantitative trait network for unraveling the causal genetic

variations [15]. However, since the signed network structure is

over the output variables instead of input instances, it is inherently

different from our work.
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8 CONCLUSIONS
Feature selection has shown its effectiveness in preparing high-

dimensional social media data for many learning tasks. A vast ma-

jority of existing efforts only consider positive interactions among

connected instances while negative links are also prevailing in

real-world social networks. In this paper, we attempt to perform

unsupervised feature selection in signed social networks by leverag-

ing both positive and negative interactions among linked instances.

Methodologically, we propose a principled framework SignedFS.

It first models both positive and negative links for a unified user

latent representation. Then it embeds the user latent representation

learning into feature selection. In addition, we revisit the principle

of homophily and balance theory to model user proximity by a

signed graph regularization. Also, we conduct experiments on two

real-world datasets, the results show that SignedFS significantly

improves the clustering performance and further experiments show

the impacts of various components of SignedFS.

Future work can be focused on two aspects. First, in addition to

social media data, other networks such as gene networks also have

implicit negative interactions. We would like to investigate how to

adapt SignedFS to different kinds of signed networks based on their

unique characteristics. Second, as shown in [32], negative links can

be predicted from explicit positive user interactions. Therefore, we

would like to apply the SignedFS framework to social networks

when negative links are not explicitly available.
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