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ABSTRACT
Predicting the popularity of online content in social networks
is important in many applications, ranging from ad cam-
paign design, web content caching and prefetching, to web-
search result ranking. Earlier studies target this problem by
learning models that either generalize behaviors of the entire
network population or capture behaviors of each individual
user. In this paper, we claim that a novel approach based
on group-level popularity is necessary and more practical,
given that users naturally organize themselves into clusters
and that users within a cluster react to online content in
a uniform manner. We develop a novel framework by first
grouping users into cohesive clusters, and then adopt tensor
decomposition to make predictions. In order to minimize
the impact of noisy data and be more flexible in capturing
changes in users’ interests, our framework exploits both the
network topology and interaction among users in learning
a robust user clustering. The PARAFAC tensor decomposi-
tion is adapted to work with hierarchical constraint over user
groups, and we show that optimizing this constrained func-
tion via gradient descent achieves faster convergence and
leads to more stable solutions. Extensive experimental re-
sults over two social networks demonstrate that our frame-
work is scalable, finds meaningful user groups, and signifi-
cantly outperforms eight baseline methods in terms of pre-
diction accuracy.
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1. INTRODUCTION
With the enormous amount of data generated on the In-

ternet today, predicting the popularity of online content,
such as videos, news articles, or posts on social networks,
is increasingly important in many different applications. In
particular, given the set of users who have reacted (i.e., com-
mented, liked, shared or retweeted) to a content from time t0
(when it was created) to time t1, can we predict how many
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and which users will react to it until time t2 > t1? If this
question can be efficiently answered, we can filter informa-
tion for users to cope with data overload, or prefetch web
content to reduce latency and improve user experience. We
can also design more effective ad campaigns to increase prod-
uct popularity and maximize profit.

Several studies have focused on predicting the popularity
of various online network-contents, and they can be gen-
erally grouped into two categories: (i) user-level popular-
ity [22, 23, 36–38] that predicts (at a low level) which users
will react to a content; (ii) population-level popularity [10,11,
20, 27, 29] that predicts (at a high level) how many users in
total will react to a content. While each approach is reason-
able to use in certain situations, we claim that a group-level
popularity approach, which predicts the popularity within
user groups, is more practical given the noise and the in-
trinsic heterogeneity in the network data. The user-level
information cascades, on one hand, are often susceptible to
missing data, sensitive to users’ emotions, and also often
costly to learn [7]. The population-level popularity, on the
other hand, is only able to provide a very coarse view, los-
ing most essential information on user behaviors, and thus
lacks flexibility in tailoring information for different users’
interests. We observe that in many social networks (specifi-
cally Twitter.com and Behance.net in this paper) that users
naturally organize themselves into groups, reflecting their
interests, communities or locations. Within a group, users
are fairly consistent in how they react to content. Thus,
group-level prediction provides a great trade-off between the
cost in model learning and prediction quality. Compared to
the user-level, a group-level popularity is much less noisy
and more compact, while it is more detailed and cohesive
than that at the population level. In addition, a group-level
incurs a significantly smaller computational cost than the
user-level predictions.

Example 1. Behance.net is a social network where users
share their creative projects for others to see. The popularity
of a project at a timestamp t can be defined as the total
number of users who have pressed the“appreciate”button on
this project. In Fig. 1a, we show the number of new reactions
(appreciations) at each timestamp (a period of 4 hours each)
for one project, while Fig. 1b shows its cumulative form.
Each color stripe corresponds to one cohesive group of users
(based on our later proposed solution). It can be seen that
most users who appreciated this project are from one group
corresponding to the yellow stripe in Fig. 1a-b, suggesting
that the interests and behaviors of users are similar within
each group and different across different groups. Finally,
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Figure 1: An example project from Behance.net where each color
stripe represents one user group: (a) Number of new reactions per
4-hour time periods; (b) Cumulative number of reactions; Predic-
tions of popularity made at time t1 = 18 (marked by the vertical
red line) for (c) user level [23] (then aggregated by groups), (d)
population level [27], and (e) group level (our solution).

given the observation over this project from time 0 to 18
(first 3 days), we predict its popularity from time 19 to 60
(the next 7 days). Fig. 1c-e respectively show the prediction
results of user-level [23], population-level [27], and group-
level popularity. Clearly, our group-level solution makes the
best predictions for both the number of appreciating users
in total and within each individual group.

We develop in this paper a novel framework for predicting
the group-level of online content: Given the set of users re-
acting to a content from time t0 to time t1, how many users
in each group will react to that content until time t2 > t1?
We first group users into robust and cohesive clusters, and
then perform tensor decomposition coupled with a hierarchi-
cal structure among groups to make predictions. Improve-
ment in either of these two steps will lead to an improvement
in the overall prediction accuracy. The proposed framework
not only ensures scalability in dealing with large-scale social
networks but also promises a high prediction accuracy. In
order to minimize the impact of noise and be more flexible
in capturing the changes in user interests, we exploit both
the network topology among users and their interaction ac-
tivities in learning a robust partition over all users. The
PARAFAC tensor decomposition is further adapted to work
with the hierarchical constraint over user groups, and we
show that optimizing this constrained function via gradient
descent achieves faster convergence and leads to more stable
solution, as compared to other matrix factorizations. Here
are our contributions:
• We propose to combine users’ historical activities and the

network structure into a network-constrained popularity
graph. By clustering this graph, we put users into ro-
bust and meaningful groups that capture the evolution of
online content’s popularity over time.
• We add a novel hierarchical constraint to coupled tensor

decomposition in order to simultaneously predict popular-
ity at the group and population levels. We further prune
data using top-k similarity queries to improve accuracy
and reduce computational cost.
• We evaluate our framework, which we name GPOP (Group-

level POpularity Prediction), on two real-world datasets
collected from Twitter and Behance social networks: GPOP
scales linearly with its parameters, and outperforms all
baseline methods significantly in terms of accuracy. Our
code and data are available online1.

2. PROBLEM DEFINITIONS
Let us denoteG = (V,E) a network where V = {v1, v2, . . . ,

vn} is the set of nodes, each representing a user, and E ⊆
V × V is the set of edges representing the (undirected) con-

1Code and data: http://cs.ucsb.edu/~mhoang/gpop.tar.gz

nections among users. Let pi be a content (e.g. a hashtag
in Twitter) being broadcast in the network.

Definition 2.1 (User-level popularity) A user-level pop-
ularity of a content pi at time t is defined by the vector
sit = (Sit1, . . . ,Sitn), where Sitj ∈ [0,+∞) is the number
of times user vj has reacted to content pi after the first t
timestamps since pi was created. We call Sitj the state of
user vj at timestamp t w.r.t. content pi.

In Definition 2.1, the popularity is a non-decreasing quantity
over time: Sitj ≤ Sit′j ∀i, j and t′ > t. If users are no
longer interested in that content, its popularity will stay
the same. We define the popularity to be the cumulative
number of reactions instead of the number of new reactions
at each timestamp since the latter in practice is very noisy,
as visualized in Fig. 1a. Additionally, all timestamps are
relative to the creation time of each content.

Problem 1 (User Clustering) Given a network G, a set
of contents P = {p1, p2, . . . , pm}, and the number of clusters
l, find a partition of the users C = {C1, C2, . . . , Cl} that
reflects the spread of the popularity of contents in P , where
Cj ∩ Cj′ = ∅, ∪lj=1Cj = V .

Definition 2.2 (Group-level popularity) Given C as an
optimal solution for Problem 1, the group-level popularity of
a content pi at timestamp t is the vector xit = (Xit1, . . . ,Xitl),
where Xitj is the total number of times users in group Cj
have reacted to pi after the first t timestamps since pi was
created, that is, Xitj =

∑
vh∈Cj

Sith. For brevity, we call

Xitj the state of group Cj at timestamp t w.r.t. pi. Finally,
in case C = {V }, we have the population-level popularity.

Problem 2 (Group-level Popularity Prediction) Given
a network G, a set of historical contents P = {p1, p2, . . . , pm}
(each content was observed over q timestamps), a set of user
groups C = {C1, C2, . . . , Cl}, and the group-level popularity
of a new content pm+1 during its first t1 timestamps (t1 <
q), predict the group-level popularity of pm+1 during time pe-
riod [t1 + 1, q], that is, given {xm+1,1, xm+1,2, . . . , xm+1,t1},
predict {xm+1,t1+1, . . . , xm+1,q}.

We solve Problem 1 in Section 3 and Problem 2 in Section 4.
Example 2. For a project in Behance, we want to predict

how many users in total and in each user group would ap-
preciate it. Fig. 2a shows the group-level popularity of the
same project in Fig. 1b (normalized by the total number of
appreciating users at time t1). Fig. 2c shows our popularity
prediction for this project using its top-3 similar projects in
Fig 2d. Our prediction is very close to the ground truth.

3. USER CLUSTERING
For Problem 1, we first discuss the four goals, G1-G4, of

clustering users, and then propose how to achieve the goals.

3.1 Clustering goals
G1: Group users with similar interests and be-

haviors. First, the behaviors and interests of users should
be similar within the same group and different across dif-
ferent groups, leading to meaningful and useful groups for
real-world applications. For example, an ad campaign may
choose to target only a few relevant groups, knowing that
the users in these groups will react to the advertised prod-
ucts instead of wasting money on other irrelevant groups.
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Figure 2: Example top-3 similarity query and prediction after the
first 3 days (marked by the vertical line at t1 = 18) for Behance.
Popularity is normalized by the population-level popularity at t1.

Similarly, web content can be prefetched in batches to only
groups of users that are more likely to react to that content,
avoiding unnecessary bandwidth and storage cost.

G2: Capture future changes in user interests. Us-
ing past user behaviors to cluster users is prone to overfit-
ting: the obtained groups are good for historical contents,
but may fail to capture a change of user interests on unob-
served future content for two reasons. First, the spread of a
content in a network is highly random and noisy, especially
at the user level [7]. Fitting the clusters too tightly to the
historical data would thus capture this noise. Second, many
users are not active and react to few contents. Such users
can be put in any group without incurring a significant cost
in the clustering objective, making the cluster membership
more random and less powerful in modeling future events.

G3: Capture the paths of information spread. There
are two main ways a user gets exposed to a new content,
which may in turn trigger him/her to react to that con-
tent: (i) via the network structure, or (ii) via an external
source. For example, on Twitter, a user can learn about
a new hashtag either (i) by reading his/her friends’ tweets,
or (ii) via other websites. Similarly, in Behance.net, a user
will be exposed to a new project either (i) if his/her friends
have performed some actions on that project, or (ii) if s/he
actively searches for the project using some side information.

G4: Avoid imbalanced user groups. In clustering
users, we may obtain groups of largely varying sizes while
still optimizing some clustering objective. For example, sim-
ply minimizing the edge cut in a graph among users may lead
to one group with almost all users and many tiny groups with
only a few users. Such a partition of the users is hardly useful
for reducing cost in a targeted ad campaign or group-based
web-content caching/prefetching. Thus, we propose to find
groups with comparable sizes.

3.2 Clustering network-constrained popular-
ity graph

For goal G1, users vi and vi′ should be more likely to be in
the same group if they tend to react to the same contents at
the same times, i.e., ∃t, pj s.t. Sitj > 0 and Si′tj > 0. This
is equivalent to clustering the following popularity graph GS

into separate groups of vertices to minimize the edge cut.

Definition 3.1 (Popularity graph) Given a user set V =
{v1, . . . , vn}, and the user-level popularity S over q times-
tamps of m historical contents P = {p1, . . . , pm}, denote the
popularity vertex set S = {s11, . . . , sit, . . . , smq} as the set

(a) GS (b) G*

User vertices V

Popularity vertices S

Network edges
Popularity edges

vj
sit

…

……

v1 v2 vj vn

s11 s12 smqsit

…

……

…v1 v2 vj vn

s11 s12 smqsit

…

Figure 3: (a) Popularity graph GS and (b) network-constrained
popularity graph G∗

of all combinations of m contents and q timestamps. The
popularity graph GS = (V S , ES , NS ,WS) is then defined
as a weighted undirected bipartite graph (see Fig. 3a) with
vertex set V S = V ∪ S, edge set ES = {(vj , sit)|Sitj >
0}, vertex weights NS , and edge weights WS , such that
∀vj , vj′ ∈ V ; sit, si′t′ ∈ S: NSvj = 1;NSsit = 0; WSvj ,sit =

WSsit,vj = Sitj ;WSvj ,vj′ = 0; and WSsit,si′t′ = 0.

GS captures past user behaviors but it does not help us
with goals G2 and G3. Fortunately, even if future user in-
terests are different from those obtained from historical data,
a new content must still spread via the network structure G
unless users actively approach this content via some exter-
nal sources. Thus, the network structure can be included
in the clustering framework to deal with this change. In
other words, we claim that clustering the following network-
constrained popularity graph G∗, which is the union of G
and GS , will help us satisfy both goals G2 and G3.

Definition 3.2 (Network-constrained popularity graph)
Given a graph G = (V,E) and its popularity graph GS =
(V S , ES , NS ,WS), we define the network-constrained popu-
larity graph (Fig. 3b) as G∗ = (V ∗, E∗, N∗,W ∗) with vertex
set V ∗ = V S , edge set E∗ = ES ∪ E, vertex weights N∗ =
NS , and edge weights W ∗, such that ∀vj , vj′ ∈ V ; sit, si′t′ ∈
S: W ∗vj ,sit = W ∗sit,vj = Sitj ; W ∗vj ,vj′ = max(Ajj′ , Aj′j); and

W ∗sit,si′t′ = 0, where A is the adjacency matrix of G.

By using G∗, the cluster membership of an inactive user
can be decided more effectively: s/he is more likely to be
in the same cluster with her/his friends, rather than some
random users that are very far away in G but coincidentally
active at the same time.

Finally, goal G4 will be satisfied if we cluster G∗ with
a balancing criteria: we would like to obtain a partition
C = {C1, . . . , Cl} of V , such that |Cj | ≈ |Cj′ | ∀Cj , Cj′ ∈ C.
However, in clustering G∗, we actually obtain a partition
C∗ = {C∗1 , . . . , C∗l } of V ∗, such that C∗j ∩ C∗j′ = ∅, ∪jC∗j =
V ∗. We can easily convert C∗ into C by choosing Cj =
C∗j ∩ V ∀1 ≤ j ≤ l. Moreover, define the weight w(C∗j ) of
each group C∗j as the sum of all vertex weights in C∗j , then:

w(C∗j ) =
∑
vi∈C∗j ∩V

N∗vi +
∑
sit∈C∗j ∩S

N∗sit = |Cj |

Thus, the balancing criteria on C can be translated into a
balancing criteria on C∗, i.e., w(C∗i ) ≈ w(C∗j ) ∀C∗i , C∗j ∈ C∗.

Clustering objectives: Based on the above intuitions,
we cluster G∗ with two objectives to satisfy all goals G1-G4:

1. Weighted edge cut minimization:

minC∗
∑
u∈C∗i ,v∈C

∗
j ,i6=j

W ∗u,v

2. Group balancing:

w(C∗j )

n/l
≤ 1 + β, ∀C∗j ∈ C∗ (1)

where β > 0 is a predefined imbalance factor.
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Algorithm 1 Find-User-Groups

Input: Network G = (V,E). Number of user groups l
Historical contents P = {p1, . . . , pm}. Imbalance factor β

Output: C = {C1, . . . , Cl}
1: S ← Network state tensor of P
2: G∗ ← Network-constrained popularity graph(G,S)
3: C∗ ← Part-Graph-K-way(G∗, l, β)
4: C ← {C∗j ∩ V |j = 1, . . . , l}
5: return C

The first objective assures that each user group is homoge-
neous since it tries to minimize the amount of weighted edges
between different groups. The second objective guarantees
that group sizes do not deviate too far from the average size
n/l, where l is the desired number of groups.

Clustering algorithm: We use the multilevel k-way par-
titioning algorithm [17] (Part-Graph-K-way) for graph clus-
tering since it is scalable and supports our two objectives.
The final clustering procedure is summarized in Algorithm 1.
Example 3. Fig. 4a shows the average group sizes over 5-
fold cross validation clustering for our Behance data: the
groups clearly have similar sizes. Fig. 4b shows the group-
level popularity of one example project in the testing set
(one fold) given three different partitions of users obtained
by clustering G∗, G, and GS on the training data (the other
four folds). Clearly, combining G and GS to get G∗ makes
the obtained user groups more homogeneous on testing data.

4. HIERARCHICAL PREDICTION
For Problem 2, we find the top-k similar contents at group

and population levels for pm+1, and then perform coupled
tensor decomposition on these top-k contents with a novel
hierarchical constraint to predict pm+1’s future popularity.

4.1 A baseline approach
Once the groups C = {C1, . . . , Cl} are defined, we can

create a group-level popularity tensor X for P ∪ {pm+1} as
shown in the left hand side of Fig. 5, where Xitj is defined
as in Definition 2.2, and Xm+1,t,j is missing for all t > t1.
We can perform tensor completion to fill in these missing
values and predict pm+1. In particular, we decompose X
into three matrices D ∈ R(m+1)×R, J ∈ Rq×R, F ∈ Rl×R
using PARAFAC [19] such that, for all observed entries:

Xitj =
∑R
r=1DirJtrFjr (2)

or equivalently, X = [[D, J, F ]], where D is the factor matrix
for contents in P ∪ {pm+1}, J is the factor matrix for q
timestamps, F is the factor matrix for l groups, and R is
the number of latent dimensions. To learn D, J , and F , we
minimize this objective function using gradient descent [4]:

L = 1
2
‖M ∗ (X − [[D, J, F ]])‖2F + λ

2
(‖D‖2F + ‖J‖2F + ‖F‖2F )

(3)
where “∗” is the element-wise tensor product, ‖.‖F is the
Frobenius norm, λ > 0 is a regularization factor to avoid
overfitting, and M is a mask tensor of the same size as
X , indicating observed entries in X , i.e., Mitj = 0 iff i =
m+ 1, t1 < t ≤ q, and Mitj = 1 otherwise.

Drawbacks: (i) P can be large and contains contents
vastly different from pm+1, causing unnecessary computa-
tional cost and degrading accuracy. (ii) M is a dense ten-
sor, leading to huge memory and computational costs if X
is large.

(b) Popularity with groups from different graphs(a) Group size
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Figure 4: Behance data: (a) Group sizes (for G∗, 5-fold cross
validation); (b) Group-level popularity of an example project.

4.2 Finding Top-k Similar Contents
Due to the drawbacks in Section 4.1, we claim that includ-

ing only the top-k contents in P that are similar to pm+1 in
tensor X makes X smaller and more relevant.

In Equation 2, predicting pm+1 is equivalent to learning
the (m+1)th row of D. If J , F and the first m rows of D are
fixed, this task is equivalent to representing row (m + 1)th
as a linear combination of the first m rows in D. Thus, the
best candidate for predicting the (m+ 1)th row is some row
i1 in D, if it exists, such that Dm+1,r = βDi1,r ∀1 ≤ r ≤ R
for some β ∈ R. This is because we then need to learn only
a single parameter β to make a perfect prediction for pm+1:

Xm+1,t,j =
∑R
r=1 βDi1rJtrFjr = βXi1tj

for ∀1 ≤ t ≤ q; 1 ≤ j ≤ l. Therefore, we propose to find top-
k similar contents for pm+1 in a normalized space: given the
training time period [1, t1], we normalize each content in X
by its population-level popularity at time t1 as follows:

X̃itj = Xitj/
∑
j Xit1j ∀i, t, j (4)

We then define the distance at timestamp T between pm+1

and another content pi as the Euclidean distance:

δT (pi, pm+1) =
√∑

t=1,...,T ;j=1,...,l(X̃itj − X̃m+1,t,j)2 (5)

The top-k similar contents are then the contents with the
smallest distance to pm+1 at time t1.

Outliers: The top-k contents may be similar to pm+1

at time t1, but very different from pm+1 in the future due
to some unforeseeable events after t1. For example, on Be-
hance.net, a project could be promoted by the website and
becomes popular even though it was barely noticed before.
Similarly, in Twitter, some real-world events outside the so-
cial network may boost the usage of some hashtags suddenly.
Therefore, we reduce the impact of such a historical outlier
by including an outlierness score defined as the average dis-
tance at time q between it and the rest of the historical
contents. The new distance δoutT at time T is defined as:

δoutT (pi, pm+1) =
δT (pi,pm+1)

m−1
×

∑
j=1,...,m;j 6=i δq(pi, pj) (6)

Example 4. Fig. 2(b, d) show an example top-k query
using δ and δout. Since δ does not penalize outliers, it returns
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sor X using PARAFAC [19]. All timestamps are relative to the
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Figure 6: Hierarchical prediction using coupled tensor factorization. P g (and Pa) are the top-k contents with similar group-level (and

population-level) popularity as pm+1 over the time period [1, t1]. MT J contains the first t1 rows of J ; ~1TF is the sum of rows of F .

the top-k contents (Fig. 2b) that are very different from the
querying content (Fig. 2a) after time t1. Whereas, δout gives
us significantly better top-k results (Fig. 2d).

Algorithm 2 summarizes the procedure for finding top-k
similar contents given historical data and user groups.

4.3 Tensor-based Hierarchical Prediction
Since the population level is less noisy, we borrow its

strength to make better predictions for the group level in
a hierarchical prediction framework.

Algorithm 3 summarizes how to hierarchically predict a
new content pm+1. First, in Lines 1-2, we use Algorithm 2
to find its top-k similar contents in P during time [1, t1] at
group level (P g) and population level (P a). The latter is a
special case of the former, where C = {V }. In line 3, we
next build four tensors T , Y, Z, Q as shown in Fig. 6:

T ∈ Rk×q×l;Y ∈ Rk×q×1;Z ∈ R1×t1×l;Q ∈ R1×t1×1

Titj =
∑
vh∈Cj

Sith ∀pi ∈ P g; 1 ≤ t ≤ q; 1 ≤ j ≤ l (7)

Yit1 =
∑
v∈V Sith ∀pi ∈ P

a; 1 ≤ t ≤ q (8)

Z1tj =
∑
vh∈Cj

Sm+1,t,h ∀1 ≤ t ≤ t1; 1 ≤ j ≤ l (9)

Q1t1 =
∑
vh∈V

Sm+1,t,h ∀1 ≤ t ≤ t1 (10)

T and Y store the group-level and population-level popu-
larity of contents in P g and P a respectively. Z and Q store
the group-level and population-level popularity of pm+1 dur-
ing time [1, t1] respectively. In line 4, we decompose these
tensors into five factor matrices (Fig. 6) as detailed here:
D ∈ Rk×R;H ∈ Rk×R;K ∈ R1×R; J ∈ Rq×R;F ∈ Rl×R

T ≈ [[D, J, F ]] = T ∗ (11)

Y ≈ [[H, J,~1TF ]] = Y∗ (12)

Z ≈ [[K,MTJ, F ]] = Z∗ (13)

Q ≈ [[K,MTJ,~1TF ]] = Q∗ (14)

Algorithm 2 Top-k

Input: Historical contents P = {p1, p2, . . . , pm}
Partially observed content pm+1

Maximum observed timestamp t1 < q
User groups C = {C1, C2, ...}. Number of top items k

Output: Top-k content IDs
1: Construct tensor X for P ∪ {pm+1} & C (Definition 2.2)

2: X̃ ← Normalize X at time t1 using Equation 4
3: for i := 1 to m do
4: di ← δoutt1

(pi, pm+1) {Equation 6}
5: end for
6: return Top-k indices with the smallest values in d

where R is the chosen number of latent dimensions; ~1 is an
all-one column vector with l elements; and M is a q × t1
mask matrix to extract the first t1 rows of matrix J , i.e.,

Mii = 1 ∀i and Mij = 0 ∀i 6= j (15)

To predict pm+1 (Lines 5-10), we use K, F , and the last
q − t1 rows of J (corresponding to time period [t1 + 1, q]).

Intuitively, the rows of D and H represent the contents
in P g and P a respectively; the rows of J represent the q
timestamps; K has only one row representing the new con-
tent pm+1; and the rows of F represent l user groups in C.
Additionally, ~1TF is the sum of the rows in F , representing
the population-level popularity; while MTJ are the first t1
rows of J , representing the observed time period [1, t1].

Equations 11 and 12 capture the latent representations at
the group and population levels using the historical contents
respectively; whereas Equations 13 and 14 map pm+1 to the
same latent space as that of the historical contents by shar-
ing the factor matrices for time J and groups F . Since data
for pm+1 is incomplete, only the observed part MTJ of J
is shared. Finally, by sharing factor matrix F in these four
equations, we effectively learn a hierarchical model at both
the group and population levels simultaneously.

Why coupled tensor decomposition? While Y and Z
can be represented as matrices, and Q can be represented as
a vector instead of tensors, we choose to use tensors in our
formulation because of two reasons. First, PARAFAC de-
compositions are often unique, leading to more stable results
and faster convergence compared to other matrix factoriza-
tions (which are often not unique, except for SVD) [19].
Second, the hierarchical structure of the user groups are nat-
urally reflected in the decomposition when Y, Z and Q are
represented as tensors. In particular, Y and Q are simply
the collapsed versions of T and Z along the group (3rd)
dimension respectively. Thus, the factor along the 3rd di-

Algorithm 3 GPOP (Group-level POpularity Prediction)

Input: Partially observed content pm+1 during time [1, t1].
Historical contents P = {p1, . . . , pm}. User groups C =
{C1, ..., Cl}. Number of latent dimensions R

Output: Prediction of pm+1: {xm+1,t1+1, . . . , xm+1,q}
1: P g ← Top-k(P, pm+1, t1, C){group level}
2: Pa ← Top-k(P, pm+1, t1, {V }){population level}
3: Create T ,Y,Z,Q using Equations 7-10
4: D,H,K, J, F ← Factorize-Tensors(T ,Y,Z,Q, R)
5: J∗ ← Rows (t1 + 1) to q of J
6: Q∗ ← [[K, J∗, F ]]
7: xm+1,t1+i ← {Q∗1,i,j |j = 1, . . . , l} ∀i = 1, . . . , q − t1
8: return {xm+1,t1+1, . . . , xm+1,q}
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Algorithm 4 Factorize-Tensors

Input: Tensors T ,Y,Z,Q as in Equations 7-10
R: Number of latent dimensions

Output: Factor matrices D,H,K, J, F
Compute L using Equation 16

1: while not converged do
2: Compute step length α
3: Compute the gradients ∇DL,∇HL,∇KL,∇JL, ∇FL us-

ing Equations 17-21
4: D ← D − α∇DL; H ← H − α∇HL; K ← K − α∇KL
5: J ← J − α∇JL; F ← F − α∇FL
6: Compute L using Equation 16
7: end while
8: return D,H,K, J, F

mension of Y and Q is also the sum of the rows in the factor
for T and Z along the 3rd dimension.

Optimization solution: Algorithm 4 shows how to find
the five factor matrices by using gradient descent to mini-
mize the following objective function:

L = 1
2
‖T − [[D, J, F ]]‖2F + 1

2
‖Y − [[H, J,~1TF ]]‖2F

+ 1
2
‖Z − [[K,MTJ, F ]]‖2F + 1

2
‖Q − [[K,MTJ,~1TF ]]‖2F

+ λ
2

(‖D‖2F + ‖J‖2F + ‖F‖2F + ‖H‖2F + ‖K‖2F ) (16)

where λ > 0 is a regularization factor to avoid overfitting.
The gradients of L are:

∇DL =(T ∗(1) − T(1))(F � J) + λD (17)

∇HL =(Y∗(1) − Y(1))(~1
TF � J) + λH (18)

∇KL =(Z∗(1) −Z(1))(F � (MTJ))

+ (Q∗(1) −Q(1))(~1
TF � (MTJ)) + λK (19)

∇JL =(T ∗(2) − T(2))(F �D) + (Y∗(2) − Y(2))(~1
TF �H)

+M(Z∗(2) −Z(2))(F �K)

+M(Q∗(2) −Q(2))(~1
TF �K) + λJ (20)

∇FL =(T ∗(3) − T(3))(J �D) + ~1(Y∗(3) − Y(3))(J �D)

+ (Z∗(3) −Z(3))(M
TJ �K)

+ ~1(Q∗(3) −Q(3))(M
TJ �K) + λF (21)

where T(i) denotes the mode-i matricization of T , and “�”
denotes the Khatri-Rao product as defined in [19].

5. EXPERIMENTS
5.1 Datasets

We use two real-world datasets for evaluation: Behance [1]
and Twitter [21, 35] (see Table 1). Behance.net is a social
network where users can share their creative works (projects)
and appreciate each other’s projects. Twitter is a micro-
blogging platform where users post short messages (tweets)
that may include hashtags. There is a directed following re-
lationship among users in both these social networks. Since
we only care if two neighboring users are active at the same
time, we convert these networks into undirected networks.
A content is a project in Behance or a hashtag in Twitter.
The popularity of a project is the number of users who have
appreciated it; whereas the popularity of a hashtag is the
number of times it has been tweeted by users. We only use
contents with at least 100 reacting users, and also remove
users with less than 10 tweets on Twitter.

Table 1: Datasets

Datasets Behance Twitter
Data time range June, 2014 Sep-Dec, 2009
#Users 85092 22255
#Edges (follows) 13428465 575819
#Contents 1326 projects 1015 hashtags
#Timestamps 60 24
Timestamp bin size 4 hours 4 hours

Prediction task
History length t1 18 (3 days) 12 (2 days)
Future length (q − t1) 12 (2 days) 12 (2 days)

Comprehensive experimental analyses for both Twitter
and Behance can be found in our technical report [2].

5.2 Quality of user clustering
We evaluate the quality of user groups in Problem 1 us-

ing entropy. A smaller entropy means more homogeneous
groups. Given a content pi, and a timestamp t, we define the
active probability of users in a group Cj as the proportion
of users with non-zero states, i.e., pact = |{vh ∈ Cj |Sith >
0)}|/|Cj |. Then, the entropy of C = {C1, . . . , Cl} w.r.t. a
set of historical contents P during a time period [1, q] is:

h(C) =
∑l
j=1

|Cj |
|V |

1
mq

∑
pi∈P ;1≤t≤q h(Cj , pi, t) (22)

where h(Cj , pi, t) = −pact log pact − (1− pact) log (1− pact)
Effect of network structure: Fig. 7(a, b) show the

average entropy over 5-fold cross validation as the number of
groups varies when G, GS and G∗ are clustered for Behance.
Obviously, the higher the number of clusters, the smaller the
entropy. More importantly, the effect of overfitting can be
seen clearly. Clustering the tensor graph GS provides the
best groups on the training sets; but the obtained groups fit
the testing sets very poorly. On the contrary, the qualities
of groups obtained from the network G are similar for both
the training and testing sets, suggesting that the effect of
the network structure is consistent across different contents.
Finally, groups obtained from G∗ have comparable quality
to those from GS on training sets, while superior to both
the groups obtained from G and GS on the testing sets.

Number of user groups: We use the elbow method [25]
to choose the best number of clusters for each dataset: 12
for Behance (see Fig. 7a), and 11 for Twitter. Fig. 8 further
shows the word clouds of users’ topics of interest (the tags of
appreciated projects) in 8 of the 12 user groups in Behance.
Clearly, users’ interests are consistent within each group.

5.3 Usability of top-k similarity queries
For the top-k prediction strategy in Section 4.2 to work,

the distances between two contents should be consistent over
time. Fig. 7c shows the Pearson correlations between the
distances computed at two different timestamps (t1 = 12,
t2 ∈ [19, 60] for Behance, t2 ∈ [19, 24] for Twitter). Though
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Figure 7: (a,b) 5-fold clustering results for Behance. The best
number of clusters chosen by the elbow method [25] is marked by
a blue circle in figure (a). (b) Pearson correlation of distances at
time t1 and t2 v.s. (t2 − t1)
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Figure 8: Word clouds of project tags for 8 user groups (Behance).

the correlations decrease as the time differences increase for
both Behance and Twitter, the correlations remain high (>
0.89). Using top-k for prediction is thus a reasonable choice.

5.4 Quality of hierarchical prediction
5.4.1 Settings

Baselines: All compared methods are listed in Table 2
and divided into four groups: (i) GPOP and its variants,
(ii) other tensor decomposition approaches for popularity
prediction, (iii) hierarchical time series prediction, and (iv)
population-level prediction only. We also note in Table 2 at
which levels the predictions are performed for each method
(user, group, and population levels).

Parameter setting: We set R as 50 for group-level and
100 for user-level predictions; imbalance factor β = 0.03;
k = 10; λ = 0.1 (chosen using cross validation). t1 and q are
chosen as in Table 1. To cope with the instability of ran-
dom initialization for gradient descent, we run each tensor
decomposition three times, and choose the best results. Pre-
dictions are done for 5-fold cross validation. Experiments are
run on a Debian machine with Intel i7, 3.50GHz CPU and
15GB RAM. Codes are written in Matlab, using the Tensor
Toolbox [5], Poblano Toolbox [8] and METIS library [16].

Evaluation: We define the Relative mean Error for the
group (REG) and population (REP) levels as below:

REG = 1
m

∑
i

√∑
t>t1,j(Xitj−X̂itj)2√∑

t>t1,j X2
itj

× 100%

REP =
∑

i,t>t−1 |
∑

j Xitj−
∑

j X̂itj |∑
i,t>t1,j Xitj

× 100%

where X̂ contains the predicted group-level popularity.

5.4.2 Quantitative Performance
The prediction results for all compared methods are shown

in Table 3: our GPOP framework consistently outperforms
all baselines. We next discuss the results in more details.

Choice of clustered graphs: The first three rows of
Table 3 show the prediction errors for user groups obtained
from G∗, G, and GS respectively. Since the clusters from G∗

are the most homogeneous, they produce the smallest errors
for groups as well as smaller errors for population.

Variants of GPOP: We verify the effectiveness of GPOP’s
two components: top-k similarity query, and tensor-based
hierarchical prediction. As shown in Table 3, GPOP out-
performs GPOP-NoTop, which uses all historical contents
instead of just the top-k similar contents, proving the ben-
efit of top-k prediction. GPOP is also better than GPOP-
NoNorm, i.e., computing top-k on the normalized popular-
ity X̃ (Equation 4) is better than on the raw data X . Next,
GPOP is far superior to naively taking the average of the
top-k similar contents (Group-Avg). Predicting each group
separately (GroupSep) and ignoring the relationship among
groups is also significantly worse than GPOP, confirming the

Table 2: Baselines, with notes on three levels of prediction: (?)
Group, (†) Population, (‡) User.

Methods Descriptions
GPOP ?† top-k + hierarchical prediction

Variants of GPOP
GPOP-NoTop ?† GPOP that uses all historical contents in-

stead of top-k similar content
GPOP-NoNorm ?† GPOP where top-k is computed on X instead

of X̃ as in Equation 4
Group-Avg ? Weighted average of top-k similar content
GroupSep ? top-k + separate predictions for each group

using GPOP with Y and Q
GPOP-User †‡ GPOP with each user as a group

Other tensor-based approaches
CMTF [4] ‡ Coupled matrix-tensor factorization (S & G)

TriMine [23] ‡ Co-evolving time-series prediction of S
CP-wopt [3] ? PARAFAC tensor completion (Eqn. 3)

Hierarchical time series prediction [13]
ARIMA-COMB ? ARIMA + optimal combination

ARIMA-BU ? ARIMA + bottom-up
ETS-COMB ? Exponential smoothing + opt. combination

ETS-BU ? Exponential smoothing + bottom-up
Population-level popularity prediction only

MRBF [27]† Multivariate linear & Radial Basis Function

Table 3: Relative prediction errors (%). (*) marks experiments
that did not finish after 1 day.

Behance Twitter
REP REG REP REG

G
P
O
P GPOP in G∗ 6.95 10.99 11.86 15.14

GPOP in G 6.92 11.21 12.14 16.73
GPOP in GS 6.95 10.99 12.04 15.47

O
th

e
r
b
a
se

li
n
e
s
fo
r
G
∗

GPOP-NoTop 7.81 12.57 12.57 33.38
GPOP-NoNorm 7.37 12.15 11.78 16.7

Group-Avg 7.48 11.44 12.05 15.73
GroupSep 12.15 68.13 12.26 15.29

GPOP-User (*) (*) 324.68 297.44
CMTF (*) (*) 13343 20787
TriMine 25.00 13.28 12.65 23.10
CP-wopt 73.47 53.92 19.51 23.26

ARIMA+COMB 9.52 16.70 34.72 37.54
ARIMA+BU 9.36 16.05 33.15 35.96
ETS+COMB 9.14 16.13 25.42 30.28

ETS+BU 8.44 15.60 24.22 29.60
MRBF 27.04 - 24.50 -

advantages of hierarchical prediction. Finally, predicting at
the group level is much easier than at the noisy user level,
as shown by the extremely high errors of GPOP-User.

Other tensor-based approaches: We test three dif-
ferent options. First, coupled matrix-tensor factorization
(CMTF [4]) uses both the tensor S and the adjacency ma-
trix of G to predict at user level. Here, we naively set the
same weights for S and G in its objective function. The
noise and high number of latent dimensions to be learned
lead to extremely high errors. The network G thus actu-
ally makes it even more difficult for CMTF to converge to
a good solution. Second, we test a probabilistic tensor de-
composition method named TriMine [23], which is oblivious
to the network G, and only uses the time period [1, t1] in
tensor S for learning and predicting. It also predicts at the
user level, and thus is prone to noise, leading to a much
higher error compared to GPOP. Finally, we evaluate tensor
completion for the group-based tensor X using PARAFAC
(CP-wopt [3]), as discussed in Equation 3. We only test
CP-wopt for X (group-level) because it does not scale for
S (user-level)—the mask tensor M in Equation 3 is huge
and dense for our data. Our results show that CP-wopt is
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Table 4: Prediction errors (%) as q − t1 and k vary for Behance

q − t1 6 12 18 24 36 42
REP 3.91 6.95 9.49 11.62 15.09 16.7
REG 7.07 10.99 13.8 16.03 19.03 20.45

k 1 5 10 15 30 50
REP 7.75 7.07 6.95 6.91 6.94 6.97
REG 11.46 11.04 10.99 11.01 11.12 11.08

much less stable than coupled tensor decomposition, and of-
ten gets stuck at sub-optimal solutions, causing high errors.

Hierarchical time series prediction: We test two clas-
sic time series prediction approaches: ARIMA, and Expo-
nential Smoothing (ETS). We also use two different ways
of combining their predictions hierarchically, i.e., bottom-
up and optimal combination [13], leading to 4 baselines for
hierarchical time series prediction (see Table 2). Here each
time series corresponds to a user group. As shown in Ta-
ble 3, GPOP outperforms all these 4 baselines significantly.

Population-level prediction only: MBRF [27] pre-
dicts the population-level popularity of Youtube videos by
learning a multivariate linear model. Clearly, GPOP is su-
perior to MBRF, both in terms of accuracy (Table 3) and
the details of popularity at group level.

Future length and k: Table 4 shows the prediction er-
rors of GPOP for Behance as the future periods [t1, q] and k
vary (t1 = 18). Clearly, the farther the future is, the harder
it is to predict, leading to higher errors. As k increases,
accuracy initially increases, but when k is too high, useless
information is incorporated and increases the error.

5.4.3 Qualitative Performance
Fig. 9 shows the predictions of the next 7 days given the

observations from the first 3 days for 4 example projects in
Behance. As can be seen, GPOP makes good predictions
for a variety of cases: typical projects p1 and p2 that are
popular mostly in one user group; a project p3 that are
popular across all groups, possibly due to an unforeseen drift
of users’ interests w.r.t. the training data; and a project p4
that ceased being popular after t1.

5.5 Running time
Fig. 10 further shows that the average running time of

GPOP (clustering and predicting) is linear in l, m, n, and
k, making our solution scalable. On average, GPOP took
1.58 seconds for Behance, and 1.53 seconds for Twitter to
predict one content. CMTF took more than 4 hours to finish
one decomposition for Twitter, and did not finish after 1 day
for Behance. TriMine finished predicting all content within 5
minutes but with much worse accuracy compared to GPOP.
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Figure 9: GPOP predictions for 4 example projects p1-p4 in Be-
hance at time t1 = 18 (3rd day, marked by the vertical red lines).
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Figure 10: Running time for Behance (seconds) as l, m, n, k vary.

6. RELATED WORK
Popularity prediction: Since predicting the popular-

ity of online content before publication is prone to large
errors [6, 34], most earlier works focus on predictions af-
ter publication. Among these works, many papers simply
use linear (or log-linear) regression to predict the aggre-
gate (population-level) popularity of different types of con-
tents [15,18,27,29–32], which often produces large errors [29,
33]. Thus, some papers adopt a classification approach to
obtain higher accuracy at the loss of details: predict the
range of popularity instead of the exact count [11, 14]. [20]
uses the average of top-k similar tweets to predict a new
tweet in Twitter, while [10] performs hierarchical prediction
with ARMA model, obtaining good short-term but poor
long-term predictions. [26, 28] combine data from different
domains (websites) for prediction. Instead of treating user
equally, several works also model behaviors of individual
users (user-level popularity). For example, [22, 36] model
users’ behaviors to classify if a content would become pop-
ular; [38] proposes a probabilistic model based on Bayesian
inference to predict the popularity of Twitter messages; [37]
uses survival theory to predict the progression of an informa-
tion cascade. These methods perform well for classification
tasks but create large error for popularity count. We in-
stead hierarchically predict popularity at group level, which
is more fine-grained than the aggregate network level while
less noisy than the individual user level.

Group-level information cascades: [9] and [39] solve
the influence maximization and immunization problems for
predefined groups respectively. [12] extracts community-level
diffusion of retweets on the Weibo network but does not fo-
cus on predicting the future. We instead design the groups
specifically for the task of predicting their future while also
gaining insights into the group-level spread of information.

Time series modelling: Auto-regression and SIRS mod-
els have been added to tensor decomposition to model [24]
and predict [23] time series (TriMine). Please see [13] for
a survey of hierarchical time series prediction where predic-
tions at different levels are combined in different ways.

7. CONCLUSION
In this paper, we developed a novel framework that ad-

dresses the important problem of online content prediction
from a group-level popularity perspective. Our framework
consists of two steps that first group users into clusters and
then predict content popularity via a novel constrained ten-
sor decomposition technique. Both network topology and
interaction activities among users are exploited to learn a set
of user clusters. Such a clustering solution is imposed as the
hierarchical constraint in the PARAFAC tensor decomposi-
tion and we showed that optimizing its constrained function
via gradient descent achieves faster convergence and leads
to better prediction accuracy. Extensive empirical results
demonstrate the effectiveness of our framework against eight
baseline methods not only in terms of effectiveness but also
of prediction accuracy, thus providing a better understand-
ing about the spread of online content over social networks.
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