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Abstract—In this work, we consider hypothesis testing and
anomaly detection on datasets where each observation is a
weighted network. Examples of such data include brain con-
nectivity networks from fMRI flow data, or word co-occurrence
counts for populations of individuals. Current approaches to
hypothesis testing for weighted networks typically requires
thresholding the edge-weights, to transform the data to binary
networks. This results in a loss of information, and outcomes
are sensitivity to choice of threshold levels. Our work avoids
this, and we consider weighted-graph observations in two situ-
ations, 1) where each graph belongs to one of two populations,
and 2) where entities belong to one of two populations, with
each entity possessing multiple graphs (indexed e.g. by time).
Specifically, we propose a hierarchical Bayesian hypothesis
testing framework that models each population with a mixture
of latent space models for weighted networks, and then tests
populations of networks for differences in distribution over
components. Our framework is capable of population-level,
entity-specific, as well as edge-specific hypothesis testing. We
apply it to synthetic data and three real-world datasets: two
social media datasets involving word co-occurrences from
discussions on Twitter of the political unrest in Brazil, and
on Instagram concerning Attention Deficit Hyperactivity Dis-
order (ADHD) and depression drugs, and one medical dataset
involving fMRI brain-scans of human subjects. The results
show that our proposed method has lower Type I error and
higher statistical power compared to alternatives that need to
threshold the edge weights. Moreover, they show our proposed
method is better suited to deal with highly heterogeneous
datasets.

I. INTRODUCTION

We consider the problem of graph-based hypothesis testing,
which tests whether two sets of graph-valued observation
samples are drawn from the same distribution. This is a
topic of growing interest [2]–[5]; however, there are only
a few studies where the observations are weighted graphs.
In this work, we address this gap, considering the problem
of hypothesis-testing for replicated weighted graph-valued
data. This is a challenging problem, since the average and
atypical behavior of a sample of networks is difficult to
characterize.

Figure 1 illustrates two example domains with populations
of weighted graphs. The top row illustrates the word co-
occurrence networks of two Twitter users in Brazil, one that

1This is the extended version of [1].

is pro-government and one that is anti-government. Here
the entity corresponds to a user on social media, the nodes
in the graph are vocabulary words, and the edges weights
reflect co-occurrences of words in the posts of the users.
The bottom row illustrates brain connectivity networks of
two individuals, one female and one male. Here the entity
corresponds to an individual, the nodes in the graph are
brain regions, and the edges weights represent functional
connectivity strength as measured by functional magnetic
resonance imaging (fMRI). In both cases, we would like to
investigate how populations and entities differ. For example,
whether brain activity differs with respect to sex or whether
word usage differs with respect to political views.

There has been recent work on graph-based hypothesis
testing (see [6] for a good survey). However, much of the
work has focused on testing subgraphs within a larger graph
(e.g., [7]), or on one-sample tests comparing a single graph
to a null model (e.g., [8]). Work focusing on populations
of graphs has received considerably less attention and falls
into one of two categories: that of [9], which introduces a
geometric characterization of the network using the so-called
Fréchet mean, and that of [10], who proposed a Bayesian
latent-variable model for unweighted graphs. We focus on
the latter, which allows us to bring the powerful machinery
of probabilistic hierarchical modeling to the table, allow-
ing noisiness and missingness, and providing interpretable
confidence scores. Unfortunately, existing work along this
second direction is limited to modeling binary graphs, so
that in practice, a threshold must be used to transform counts
or continuous weights to 0/1 values. Such a thresholding
operation discards valuable information about the strength
of the edge-weights, and can also exhibit sensitivity towards
the choice of threshold. Too small a threshold can result in a
graph that is too dense, and too large, too sparse. Often, there
does not even exist a single appropriate threshold across the
entire graph.

In this paper, we address the issues of previous work
and develop a hypothesis testing framework that facilitates
testing over graphs populations with edge-weights, which
can follow any parametric distribution. Specifically, we
propose a Bayesian hypothesis testing framework that uses
a mixture of latent space models for weighted networks to
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Figure 1: Top row: word connectivity networks for two
Brazilian Twitter users, (A) from the pro-government side
and (B) from the anti-government side. Bottom row: brain
connectivity network for two individuals, (C) female and (D)
male.

test for population-differences. Our framework is capable of
population-level, entity-specific as well as edge-specific hy-
pothesis testing. We consider testing in two broad scenarios:

1) When all observations from the same population
follow the same distribution, we can ask: Are the
population distributions identical?

2) When all entities from the same population follow
the same distribution, we can ask: Are the popula-
tion distributions identical? Now, every entity has an
associated set of graph-valued observations which are
identically distributed, but are not exchangeable across
entities.

Observe the first case is equivalent to the second when each
entity has only one associated graph; however the latter
allows heterogeneity among entities in the same population.
For instance an entity in a population that is politically
conservative might frame an issue they discuss from an
economic perspective, while another entity in a population
that is politically liberal might focus on the social aspects
of the same issue. [11] proposed a strongly parametric time-
varying framework to handle this important situation, our
approach is significantly more flexible.

We apply our testing framework to problems from the
types of domains summarized in Figure 1. First, we look
at word co-occurrence network data from Twitter (on the

political crisis in Brazil), as well as Instagram (on side
effects of Adderall and Ritalin usage for Attention Deficit
Hyperactivity Disorder [12]). In both datasets, we investigate
how populations and entities differ based on the way they
communicate—specially in the manner in which the usage
of pairs of key words differs between groups. Standard
methods such as unigram mixture models, latent Dirichlet
allocation (LDA) [13] or N-gram language models [14],
which are based just on word-frequency, do not capture
the kind of contextual information we are interested in.
While these methods can identify words that ‘belong’ to
different groups, in our scenario there is a strong overlap
in key words across groups, and such models will fail to
differentiate between groups which share common themes
and vocabularies. Second, we used functional magnetic reso-
nance imaging (fMRI) data, to investigate how brain activity
differs across populations like sex, age and personality traits
like extroversion, conscientiousness and creativity. In both
tasks, we show that graph-structure as well as graph weights
are crucial to performance, and that we outperform baselines
like latent Dirichlet allocation (LDA) [13], N-gram language
models [14], as well as thresholding methods like [10].

Contributions: Our contribution is a multi-level statistical
hypothesis testing framework for populations of weighted
networks, concerning both the overall graph distributions,
as well as two types of local hypotheses: entity-specific and
edge-specific. The latter are important since a population
might have networks, or a network edges, that are statisti-
cally different, and that might escape detection by a global
test. Our hierarchical Bayesian mixed membership model
allows statistical information to be shared across groups,
increasing accuracy of hypothesis tests without loss of statis-
tical power. This allows practitioners to evaluate anomalies
in a principled manner, using statistical significance. No-
tably, our framework is more robust than previous methods
developed for binary graphs, which require thresholding of
weighted data before application.

II. THE MODEL

We are given a set A of undirected graphs, with graph
Ant belonging to entity n at index t (refered to as ‘time’).
Here n ∈ [1, ..., N ] and t ∈ [1, ..., Tn], with Ant[i, j] giving
the link strength between vertices i and j of entity n at time
t (i, j ∈ [1, ..., V ]). We also observe population information
yn ∈ [1, ..., G] for each entity. For instance, each network
might represent word co-occurrences in a user’s social media
messages over some time period, while the population might
indicate whether the user’s political leanings are ‘Liberal’ or
‘Conservative’.

Underlying our testing framework is a probabilistic model
which we now outline. We assume each observation Ant

comes from one of H clusters or mixture components, with
cluster h having parameter θ(h). Each cluster has a distribu-
tion over graphs which we write as F (θ(h)) (we specify θ(h)



and F in the next paragraph). Clusters and cluster parameters
are shared across populations, however each population y
has its own Dirichlet-distributed probability over clusters,
βy . At a high-level ours is a Bayesian hypothesis-testing
approach which tests whether the βy’s are identical across
populations. For the case of two populations, we place equal
a priori probability on the null hypothesis H0 : β1 = β2

and the alternative H1 : β1 6= β2. Using the machinery of
Bayesian inference, we evaluate the posterior probabilities of
the two hypotheses given observations, and reject the null if
its probability P (H0|−) is less than some specified threshold
(e.g., 0.05 or 0.1).

We now describe the cluster-specific distribution over
graphs, F (θ(h)). For cluster h, θ(h) is a V ×V matrix, whose
(ij)th element parametrizes the probability of the weight on
the edge between nodes i and j. In our applications, we
looked at count-valued edges, and so assumed F

(
θ(h)

)
to be

Binomial or Poisson distributed with parameter θ(h)[i, j] on
edge (i, j). We define θ(h) = f

(
S(h)

)
where f(·) is some

link function (e.g. the logistic or exponential function to
ensure nonnegativity), and constrain S using a low-rank fac-
torization scheme S(h) = X(h)X(h)T . Here X(h) ∈ R|V |×R
and R � |V |, so that X

(h)
v gives the location of node v in

some low-dimension space, and S(h) is the proximity of all
nodes. The number of parameters thus grows linearly, rather
than quadratically with the number of vertices. In equations,
we expand the upper plates in Figure 2(a) and (b), to get

θ(h) = f(X(h)X(h)T ), X(h)
v ∼ NR (0, I) , v = 1 . . . , V

(1)

Each population y has a distribution over clusters βy . With
prior probability half, the null hypothesis is true (we indicate
this with the variable T ), in which case all populations have
the same distribution β. Otherwise, each population g has
its own distribution, βg . Thus,

T ∼ Bern(1/2) (2)
If T = 0 : β1 = . . . ,= βG ∼ Dir(α, ..., α)

Else: βg
iid∼ Dir(α, ..., α) for g = 1 . . . G.

Now, consider the case where each entity has only a
single associated graph. Then the nth entity (belonging to
population Yn) has a graph An distributed as

Cn|Yn ∼ βYn An|Cn ∼ F
(
θ(Cn)

)
(3)

Here Cn refers to the latent variable that identifies the cluster
membership of entity n, which depends on the population
entity n is drawn from.

For the case where we have multiple network observations
per entity, we add a layer to this hierarchical model. Now,
each entity n has their own distribution over clusters πn

centered around the population distribution:

πn ∼ Dir(βYn). (4)

The graph t of this entity is independently distributed as

Cnt|Yn ∼ πn, Ant|Cnt ∼ F
(
θ(Cnt)

)
(5)

Figure (2) summarizes our generative process for both cases.

A. Model Inference

We are given a set of network observations A, each writ-
ten as Ant where n indexes entities and t, ‘time’. For each
Ant, we are also given a population assignment Yn ∈ {1, 2}.
Since we observe the population memberships Y and the
networks A, the inferential task is to learn Cnt, πn, βy

and θ(h). In the next section, we will use these variables as
statistics in our hypothesis tests. For notational convenience,
we will refer to a link between an arbitrary pair of nodes i
and j with l, so that we can write An[i, j] as An[l]. We also
represent the weighted matrix with its vectorized lower trian-
gular component L(An) = (L(Ant)1, ...,L(Ant)V (V−1)/2).
For the general model specified above, we carry out posterior
inference via a Gibbs sampler, whose individual updates we
outline next:

1) Sample the cluster indicator for each graph.
This comes from the multinomial:

P (Cnt = h|−) =

πnh
βh
∏

l P
(
L(Ant)l = al|θ(h)

l

)
∑H

m=1 πnm
βm
∏

l P
(
L(Ant)l = al|θ(m)

l

)
where l ∈ [1, ..., V (V − 1)/2] and al|θ(h)

l ∼[
F (θ(h))

]
l
.

2) Sample the mixing probabilities for each entity n.
With mn a vector of cluster assignment counts of
graphs of entity n

πn ∼ Dir(βYn
+mn)

3) Sample the locations of the nodes for each cluster.
With a Gaussian prior over the locations Xn, and
the weight-distribution parametrized after transform-
ing through a link function f , this is a straightforward
exercise in sampling from the posterior of a Gaussian
with a nonlinear link function. Standard techniques
exist to do this [15], [16], though we followed a recent
idea involving the Polya-Gamma data-augmentation
scheme [17].

4) Sample the testing indicator T ∼ Bern(P (H1)|−).
Since T is the test-statistic central to our methodology,
we discuss this in a bit more detail in the next section.
The update rule is given by Equation 7.

5) Sample the mixing probabilities for each population
y.
If T = 0 then for all y, βy = β ∼ Dir(α+n1, ..., α+
nH) where nh is the number of graphs in cluster h.
If T = 1 then βy ∼ Dir(α + n1y, ..., α + nHy) for
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Figure 2: The graphical models are given by (A) fixed and
(B) with time-varying structures.

each y, where niy counts the number of graphs from
population y in cluster i.

III. WEIGHTED-NETWORK COMPARISON TESTS

For simplicity, we focus on the case where we have
only two populations (G = 2). Under our formulation, the
problem of hypothesis testing amounts to testing whether the
population-level cluster assignment probabilities β1 and β2

are significantly different under the posterior. We elaborate
on this below.

A. Population-level network comparison test

This task involves comparing the posterior probabilities of
the two hypotheses, H0 : β1 = β2 vs H1 : β1 6= β2. Since
H0 being true amounts to T = 1, our MCMC estimate of the
probability equals the fraction of MCMC iterations where
T = 1. We first describe how our Gibbs sampler updates
this variable (step 4 of our Gibbs sampler). At any MCMC
iteration, let my be the vector of cluster assignment counts
for population y, with component c giving the number of
observations from population y assigned to cluster c: my =(∑

n;yn=y

∑
t ICnt=1, ...,

∑
n;yn=y

∑
t ICnt=H

)
. We write

m = m1 +m2 (for the two populations in G, i.e., 1 and 2).
Then, under the two hypotheses, these counts are distributed
as

H0 : m1,m2
iid∼ Mult(β),

β ∼ Dirichlet(α)

H1 : m1 ∼ Mult(β1) and m2 ∼ Mult(β2)

β1,β2 ∼ Dirichlet(α)

(6)

Marginalizing out the β′s, and recalling that both hypotheses
have the same prior probability, we can specify the posterior

P (H1|−) =
P (m1|α)P (m2|α)

P (m|α) + P (m1|α)P (m2|α)

From the Dirichlet-multinomial conjugacy, we can write
down the marginal probabilities of the observations, giving

P (H1|−) =

∏2
y=1

B(α+my)
B(α)

B(α+m)
B(α) +

∏2
y=1

B(α+my)
B(α)

(7)

where B(·) is the multivariate beta function B(x) =∏q
i=1

Γ(xi)
Γ(

∑q
i=1 xi)

. Every Gibbs iteration samples T from this,
with the posterior probability of the alternative hypothesis,
P (H1|−), being the fraction of MCMC samples where T
equals 1. If the estimate from Equation (7) is larger than a
specified threshold (e.g., 0.95), we reject the null hypothesis
and conclude that the populations are significantly different.
We can use this network comparison (NC) test for both
models in Figure 2. When we use the (fixed) model in 2a,
we will refer to it as NC-F and when we use the (mixed-
membership) model in 2b, we will refer to it as NC-M.

B. Entity-specific comparison test

This task refers to do following hypothesis test: Hn1n2
0 :

πn1
= πn2

Vs Hn1n2
1 : πn1

6= πn2
for any two users

n1 and n2. Estimating this from our posterior samples is
straightforward. Assuming multiple networks per entity, let
m̃n be a vector of counts for entity n, giving the number
of observations assigned to each cluster. As mentioned
earlier, the entity-specific distribution over clusters follows
the distribution πn ∼ Dir(β). Following the earlier logic,
Equation 8 gives the posterior probability two given entities
have different cluster assignment probabilities:

P (Hn1n2
1 |−) =

∏2
i=1

B(β+m̃ni
)

B(β)

B(β+m̃)
B(β) +

∏2
i=1

B(β+m̃ni
)

B(β)

(8)

It is important to note that Equation 8 allows pairwise com-
parisons across populations, and therefore it is possible to
have significantly similar entities from different populations
and significantly different entities in the same population.

C. Edge-specific comparison test

This task refers to the following hypothesis test for an
edge l = (i, j), H l

0 : θ1[l] = θ2[l] vs H l
1 : θ1[l] 6= θ2[l]. For

the edge application we use an adjusted version of Cramer’s
V-statistic proposed by [18] given by Equation 9:

p2
l =

2∑
y=1

pY
∑
al

P (L(A)l = al|θ̄yl
)− P (L(A)l = al|θ̄l)

P (L(A)l = al|θ̄l)
(9)

where pY is the sample size proportion of each population,
θ̄y =

∑N
n=1

∑H
h=1 βyhθ

(h)Iyn=y , and θ̄ =
∑2

y=1
θ̄y
2 . If

pl ≈ 1 then there is evidence that edge weights differ across
the populations.



IV. RELATED WORK

Graph-based hypothesis testing and anomaly detection are
topics of growing interest with diverse applications (see e.g.,
[6]). Many applications of hypothesis testing in network
analysis focus on subgraphs within a larger graph (e.g., [7]),
or one-sample tests comparing a single graph to a null model
(e.g., [8]).

Work on populations of graphs can be divided on two
areas: dynamic networks, in which one graph is replicated
over time [19], [20] and [21]; and exchangeable graph
modeling in which each graph is considered to be one
observation for a single entity (see [3], [9], [10], [22]
and [23]).

Our paper generalizes work from the latter category by
allowing within-population heterogeneity, with each entity
having multiple graphs with similar statistical properties.
Both [9] and [3] deal with geometric characterizations of
networks, and while their approaches are mathematically
elegant, they are substantially less flexible than our work.
[23] take a convolution neural network approach for non-
aligned graphs, where there is no known mapping between
nodes in each graph. This, coupled with the fact that their
method requires the presense of node features, makes it
unsuitable for our applications.

Most closely related to ours is the method presented in
[10]. This method, which we will refer to DD, is a special
case of our framework, where there is no within population
variation, and where network edges are binary. For count
or continuous-valued data, one might consider thresholding
the edge weights of each entity and then applying the
DD method. However this discards valuable information
about the strength of the edge-weights, introduces sensitivity
to threshold-level, and can reduce statistical power. Our
method offers the ability to flexibly model such edge-weight
information without any significant additional computational
complexity. In particular, the computational time complexity
of both our method and DD is O(NHR|V |2) per iteration.
Here N is the number of networks, H is the number of clus-
ters, R is the dimensionality of the low rank approximation,
and |V | is the number of nodes in each graph. In practice,
H and R are small constants that do not grow with the
data. In our experiments we compare with DD for different
thresholds.

V. EXPERIMENTS

In order to assess the efficacy of our method, we divided
our analysis into four parts: statistical power and type-
I error analyses, population-level hypothesis tests, edge-
specific hypothesis tests, and additional exploratory analysis.

We start with statistical power and type-I error analyses,
the most important measures of assessing hypothesis tests.
We investigate the efficacy of our (and competing) methods
for varying sample sizes when the ground truth in known.
We show that when the data are generated from a known

two-population setup, our hypothesis testing framework pro-
duces significantly more accurate results and has lower
variance, with respect to type-I error and statistical power,
compared to a number of other baselines. We show that for
time-varying data, the mixed membership extension of our
model is essential for reliable inference. We also study the
sensitivity of the method of [10] (which requires unweighted
graphs) to threshold settings, for population-level hypothesis
tests. We show that for heterogeneous data, the hypothesis-
test decisions are highly sensitive to threshold choice. We
study the edge-specific hypothesis tests qualitatively, by
visualizing the estimated model structure for each approach.
We end by describing some additional insights that that our
method gleans from the data. We start by describing the
datasets.

A. Datasets

We generated synthetic weighted network data for two
settings, the entity-homogeneous version from Figure 2a
(NC-F, where each entity is represented by one graph) and
the entity-heterogeneous version from Figure 2b (NC-M,
where each entity is represented by multiple graphs). We
also applied our framework to three real-world applications:
a Twitter dataset from the political crisis in Brazil, two
datasets about drugs usage on Instagram, and fMRI record-
ings of brains of human subjects.

Synthetic data (Homogeneous): We generate synthetic data
from two populations whose underlying weight probability
matrices θ overlap around the middle set of nodes, but
where population 1 has an elevated pattern of weight values
for the first set of nodes, and population 2 in the final
set. Figure 10 in Appendix VII-A shows this structure. We
simulated 200 entities per population, with 100 nodes for
each network. Given the structure, the weights of the edges
were distributed according to a multivariate Zipf distribution
[24]. See Appendix section VII-A for more details.

Synthetic data (Heteromogeneous): Using the same pop-
ulation structure as above, we also construct a time-varying
dataset where each individual has four time points, resulting
in four different graphs per entity. In this case, we have
50 entities and 100 nodes for each network. Given the
dependency structure, the weights for each entity at each
time point were distributed according to a multivariate Zipf
distribution. Figure 11 in Appendix VII-A shows these
structures. We use this dataset to compare the behavior of
the NC-F and NC-M models under different scenarios.

Real data:
Twitter: Brazil has recently faced the worst eco-
nomic/political crisis of its republic years. People were
largely split into two sides: one who argued for the im-
peachment of the now former president, Dilma Rousseff,
and the opposition who claimed that the process was a
government coup. We crawled public Twitter posts from
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Figure 3: Type I error and statistical power curves for the synthetic (left) and twitter (right) data for increasing sample sizes

April 6th to May 31st 2016, using hashtags from both
sides to collect tweets. The resulting dataset consists of
7, 447 users (entities), 4, 233 for the proposition and 3, 214
for opposition. In order to have appropriate data for the
heterogeneous setting, we also split the dataset into time
intervals, with each user having a network for every two
weeks of tweets. We call this dataset “Twitter time”. In this
dataset, consisting of users with at least 15 days of tweets,
we have a total of 2, 098 users, 1, 255 for proposition and
843 for opposition. Figure 1 shows sample co-occurrence
networks from the two sides: Proposition and Opposition.
Each edge-weight indicates the number of tweets of a user
n containing two words (nodes) in a time interval t.
Instagram: We collected public Instagram comments with
hashtags referring to the two most common drugs to treat
ADHD (Adderall and Ritalin) and Depression (Prozac and
Zoloft). These medications all have additional uses (and
consequently symptoms), for instance, Adderall is known for
loss of appetite, and as an aid for academic performance. Our
dataset consists of 65 users with 44, 408 posts for #adderall,
21 with 17, 466 for #ritalin, 111 with 129, 405 for #prozac,
and 35 with 29, 357 for #zoloft.
fMRI brain images: Functional magnetic resonance imaging
(fMRI) captures activity in the brain by measuring blood
flow from one region of the brain to another. We used the
MRN-111 dataset1 which consists of functional magnetic
resonance images (fMRI) for 114 subjects (entities). As in
[25] we used a total of 68 brain regions, 34 from the left
hemisphere and 34 from the right. Nodes represent brain
regions, and weights, white matter density across nodes.
We compare brain activity across characteristics like Sex
(Male vs Female), and personality traits like creative level
(≤ 90 vs ≥ 111), extroversion (≤ 30 vs ≥ 35). Values for
creative level (CCI) and extroversion are given from a psy-

1http://openconnecto.me/data/public/MR/

chometric scale determined by the corresponding scientific
literature, those thresholds were chosen to illustrate a clear
LowVsHigh setting. Figure 1 shows sample brain networks
of the MRN111 dataset for female and male individuals. We
observe significant variability in these weights, suggesting
that thresholding can lead to loss of information.

B. Baselines

We compared our NC-F and NC-M methods with the
following baselines:

1) LDA (topic modeling) [13]: This treats each entity as
a document made up of ‘topics’ (each corresponding
to a distribution over word-count patterns).

2) N-gram language model [14]: We use observed bi-
grams frequencies to estimate co-occurrence probabil-
ities.

3) DD network model [10]: As stated previously, DD
forms a special instance of our more general frame-
work for unweighted networks. In order to apply
DD, we need first threshold the weighted network
observations. We do so using the following criterion
[26]:

pij =
co-occurances between words i and j

min (counts of words i and j)

Then An[i, j] = 1 if pij > threshold for a chosen
threshold level.

Since N-gram and LDA do not directly allow us to
estimate P (H1), we use a Kolmogorov-Smirnov test on
the words distribution to perform an overall hypothesis test
between populations for the N-gram model, and a chi-square
test for topic assignments across populations for LDA.

C. Hyperparameters tunning

DD and our method require setting the number of clusters
H , the dimensionality of the low-rank factorization R,

http://openconnecto.me/data/public/MR/


the Dirichlet concentration parameters α for β, and the
prior probability of P (H1). For our experiments, we fixed
H = 15, R = 10, α = 1/H and P (H1) = 0.5. We found
that H = 15 was more than enough clusters for all instances,
larger numbers resulting in empty clusters. Most of our
experiments focus on settings with count-valued weights,
and in the case of word co-occurrences, the weight between
words i and j is bounded by the smaller of the number of
occurrences of the two words i and j. For this setting, we
therefore used the logit link and the binomial likelihood. On
the other hand, the Brain dataset has count-valued weights
with unbounded support, and we used Exponential link and
the Poisson likelihood. Our results were fairly robust to
hyperparameters settings. For our MCMC algorithm, we
observed good mixing properties, and used 1300 Gibbs
samples with an extra 200 burn-in samples.

For LDA and N-Gram, we used settings following imple-
mentations from [27] and [28], respectively.

D. Results

Type-I error and statistical power: Type-I errors or false
positives arise when a model incorrectly marks two popula-
tions as different when actually the null hypothesis is true,
i.e., P (H1|H1is false). Ideally, type-I error rates should
be 0.05 or less. Statistical power shows if the models
can correctly determine when the populations are different,
and P (H1|H1 is true) should be close to 1. Measuring
these quantities requires access to ground truth. For the
Brazil dataset, the disparity of political tendencies between
opposition and proposition is clear enough that we treat it
as ground truth (For the other real datasets, we do not have
ground truth available).

We consider four sample sizes for the synthetic data: 50,
100, 200 and 300. For the twitter data, we consider three
sample sizes: 105 (∼5%), 420 (∼20%) and 1049 (∼50%).
For DD which requires thresholding, we used four different
threshold-levels, 0, 25%, 50% and 75%. For all methods,
we compute P (H1|−) under different settings. In order to
estimate variance P (H1|−), we generated 20 datasets for
each sample size.

Figure 3 presents the Type-I error (i.e., P (H1|H1is false))
and power curves (i.e., P (H1|H1is true)) for increasing
sample sizes for each method for synthetic data (left) and
real world data (right). Each data point shown is the mean of
the 20 trials for the respective sample size, we also present
the range of 5% to 95% percentiles. We see that NC-F has
the best overall performance both when H1 is true and for
H1 false in the homogeneous scenario. N-gram has the worst
performance overall so we do not consider this baseline in
the real data. LDA have a good overall power, however it
performs poorly as far as Type I error goes, with the largest
variance. Further, LDA is not able to capture probabilistic
structure underlying the data (we discuss this later). DD’s
performance is not so good for Type I error in the synthetic

data, but it is good overall for power. This is not the case
for the real data though, where power is poor and varies
significantly with threshold. This sensitivity to threshold-
level confirms the original motivation for this work. NC-
M outperformed all other methods for the heterogeneous
data, and NC-F was the second best even though it does not
account for heterogeneity. This is due to the fact that our
method accounts for the weight distributions, and thus can
handle overdispersed counts relatively well.

We also investigate how the number of active users in
the dataset affects the overall power performance. First, we
define “activeness” as a function of number of days a user
tweeted. We created datasets restricting to users with at least
2, 5 and 10 days of tweets. Thus, we assume that in the
dataset with users having at least 10 days of tweets, there are
a significantly larger number of active users than in dataset
with a minimum of 2 days of tweets. Note that we are assess-
ing only statistical power here, therefore we are only looking
to the case that H1 is true, i.e., “PropositionVsOpposition”.
Figure 4 shows the power curve for each these datasets.
As expected, our method needs fewer observations to find
statistical difference between populations with more active
users in the dataset, in other words NC-F has the ability
to differentiate between populations easier as the proportion
of active users increases. DD does not improve with larger
sample size which suggests DD loses the ability to determine
whether populations differ in a higher heterogeneous setting.
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Figure 4: Power curves of NC-F and DD (multiple threshold
levels) for increasing proportion of active users

Population-level hypothesis test: In the previous results, we
had a glimpse of the sensibility of threshold choice in terms
of decision making on the hypothesis testing procedure.
Here, we aim to analyze this further. We estimate the poste-
rior probability of H1 for all observations of all the datasets.
We compare our results with DD for 10 different threshold
levels (0, 10%, 20%, ..., 90%). Note that NC-F and NC-M
do not vary with threshold level. Here, in addition to the
Twitter data, we include results testing the fMRI dataset—
comparing populations based on the creative index (CCI).
[10] found a significant difference in Brain connectivity
between non creative individuals (CCI ≤ 90) vs creative



subjects (CCI ≥ 111). In their tests, the graphs were
thresholded at 0.

Figure 5 shows DD represented as red solid squares, NC-F
and NC-M as blue and green lines, respectively. Again, DD
exhibits sensitivity to the threshold choice making inferences
unreliable. For instance, if we consider testing whether
populations Proposition and Opposition are significantly
different and use a 60% threshold for Twitter time, we
would reject the null, since the posterior of P (H1) ≈ 1.
However, if we slightly change the threshold level to 50%,
P (H1) ≈ 0.5 meaning that there is not enough evidence to
support that they are statistically different and we accept
the null. The same behavior can be seen on the fMRI
dataset where the threshold at 0 is statistical significant
for LowVsHigh, however it is not for any other threshold.
Overall, we found that our methods NC-M and NC-F are
more reliable, since they avoid the need for practitioners to
make sensitive preprocessing choices.
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Figure 5: P (H1|−) across threshold levels for three datasets
for when H1 is false (left column) and H1 is true (right
column). NC-F and NC-M are represented as blue and green
lines, respectively.

Edge-specific level hypothesis test: Another important task
is that of retrieving the structure of the co-occurrences
probabilities. For better visualization, we generated a version
of the synthetic homogeneous with 20 nodes, and we look
at differences between true and predicted edge probability
matrices for both populations, i.e. we compute the estimated

difference θ̄1 − θ̄2 for each model and compared with
the ground truth. In Figure 6, we see that our proposed
framework accurately recovers the structure of the ground
truth. The DD0 also retrieves the structure of population 1,
however it performs poorly for population 2. This is related
to the sensitivity of results to the threshold-level, suggesting
this needs to be chosen carefully across different scenarios.
Our models NC-F and NC-M both do not require such hand-
tuning, and further exploit values of the pre-thresholded
counts for more accurate inference. Unsurprisingly, all the
other models fail to correctly learn the structure used to
simulate the data.

For the Twitter and Instagram datasets, we looked at each
edge, and identified those that are different using a 0.1
significance level. Figure 7 shows that the NC-F model was
able to capture a clear pattern of significantly different use of
words among populations for the Brazil dataset, as opposed
to the other modeling schemes which look almost random.
For the Instagram drug data, the edge-specific hypothesis
testing matrix structure is much more significant compared
with the Twitter case. One reason for this is that there is
a group of Ritalin users that are German, and their words
differ from others.

NC−F DD20 DD80 N−gram

Ground truth DD0 DD50 LDA

Figure 6: Edge-specific probabilities difference

NC−F DD0 NC−F DD0

Figure 7: Edge-specific tests for Twitter (left) and Instagram
(right).

Exploratory analysis: Here, we show some additional
insights that our methods are capable of capturing. One inter-
esting fact of the Brazil political scenario is that many high
frequency words were extensively used across both pop-
ulations, examples being “impeachmentja” (impeachment
now), “lavajato” (carwash), “golpenao” (no coup), “direitos”



(rights). However, using the probability structure θ̄ estimated
from our framework, we can make some interesting insights
about how the two sides frame the issues differently. Figure
8 plots the difference of the link probability for each high
frequency word used in conjunction (co-occurrence) with all
other words, across the two sides—if the value is larger than
zero then it is a ‘proposition expression’, otherwise it is an
‘opposition expression’. For instance, “lavajato” is the name
of the investigation and if it is used with “motivo” (motive)
is a proposition statement where if it is used with “luta”
(fight) then it is a clear opposition one. From Figure 8 it
is clear that the two sides use sets of words (e.g., phrases)
quite differently.

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

impeachmentja lavajato golpenao direitos

Group ● ●Proposition Opposition

Figure 8: Swing words: differences in edge probabilities for
example high frequency terms.

Figure 9 presents additional results for the Instagram and
fMRI datasets. In this case, we look again to the behavior of
P (H1|−) across threshold levels. It is important to highlight
that we do not have a ground truth information to compare
our findings with, however it is an additional set of results
to explore the assessment of significant difference between
two populations, and to note the lack of robustness of DD
wrt threshold choice.

VI. CONCLUSION

This paper presents the first steps towards routine and
systematic hypothesis testing on populations of weighted
networks. Our statistical framework applies both to settings
where entities from each population have single graphs
associated with them, as well as settings where each entity
has associated a set of graphs (we call these without and
with within-population heterogeneity). Through a flexible
and general clustering mechanism for replicated weighted
networks, our framework offers a powerful and accurate
hypothesis testing at three levels: population-level, entity-
specific and edge-specific. We applied our model to study
communication behavior on real social media data (Insta-
gram and Twitter), as well as for brain connectivity data.
We saw that by not relying on a a user-specified threshold,
our proposed method offers robustness over the methodology
of [10], besides outperforming other baselines like LDA, N-
gram language models.
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Figure 9: P (H1|−) across threshold levels for Instagram and
fMRI datasets.
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VII. APPENDIX

A. Synthetic data details

The synthetic data was generated to have the same
construction of the Twitter dataset set, i.e. a set word co-
occurrences networks. In this sense, each node is a word
and each edge is a co-occurrence of two words. Moreover,
each pair of words can co-occur at most the minimum
occurrence of each individual word. In other words, say
words i and j occurred x and y times, respectively, then the
co-occurrence of words i and j is at most min(x, y). Hence,
in order to generate graphs in this setting, we need to have
the individual occurrences of all the words and probability
structure for the co-occurrences. Since Zipf’s law [29] , or
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Figure 11: Structure used to simulate heterogeneous data

discrete Pareto, is almost always used to describe words
frequencies, we used a multivariate Zipf generating process
[24] to generate the individual counts. Equation 10 shows
how to generate multivariate Zipf’s values, Xn ∈ RV is the
vector with all the individual counts of V words for entity n.
In our case, we considered the standard Zipf where λ = 1.

p ∼ Beta(1, λ)

Xn|p
ind∼ Geo(p)

⇒ Xn ∼M (m)Zipf(IV )(0, λ, 1, 1)

(10)
The structures were arbitrarily chosen to have a clear dif-
ference across populations. Figure 10 shows the structure
used to simulate the homogeneous data used on the ex-
periments section and Figure 11 shows the structure used
to simulate for the heterogeneous data. Given the individ-
ual counts and the probability of each edge, we simulate
edge count using Binomial distribution. Formally, Anij ∼
Bin (min (Xni, Xnj) ,θij), where Anij is the co-occurrence
of words i and j, Xni and Xnj are their individual counts
and θij is the probability of i and j co-occur once.
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