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Abstract Traditional learning-to-rank problem mainly focuses on one single type of
objects. However, with the rapid growth of the Web 2.0, ranking over multiple interrelated
and heterogeneous objects becomes a common situation, e.g., the heterogeneous academic
network. In this scenario, one may have much training data for some type of objects (e.g.
conferences) while only very few for the interested types of objects (e.g. authors). Thus, the
two important questions are: (1) Given a networked data set, how could one borrow supervi-
sion from other types of objects in order to build an accurate ranking model for the interested
objects with insufficient supervision? (2) If there are links between different objects, how
can we exploit their relationships for improved ranking performance? In this work, we first
propose a regularized framework called HCDRank to simultaneously minimize two loss
functions related to these two domains. Then, we extend the approach by exploiting the
link information between heterogeneous objects. We conduct a theoretical analysis to the
proposed approach and derive its generalization bound to demonstrate how the two related
domains could help each other in learning ranking functions. Experimental results on three
different genres of data sets demonstrate the effectiveness of the proposed approaches.

Keywords Cross-domain ranking · Heterogeneous network · Latent space ·
Learning to rank

1 Introduction

With the emergence and rapid proliferation of web applications, ranking over heterogeneous
data sources is becoming more and more important for many applications. And we often
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110 B. Wang et al.

encounter the problem that we have very few data in the target domain, while we have much
labeled data in the existing domains. For example, to predict the users’ rating scores based on
product reviews, one may have much training data (rated reviews) of existing products, but
little or no training data for a new product; in social networks, we may have much training
data for movie recommendation, but very few for recommending friends or web communi-
ties. Thus, one basic question is how to make use of the labeled information from existing
(source) domain(s) to build an accurate ranking model for the target domain.

Although quite a few related studies have been conducted, for example, transfer learn-
ing [7,3,19,55], domain adaptation [8,9], multi-task learning [3,10], learning to rank
[13,28], there are only a few theoretical studies on the heterogeneous cross-domain
(HCD) ranking problem [52]. The major difference between the HCD ranking problem
and learning to rank is that HCD ranking needs to consider how to borrow the prefer-
ence orders from the source domain (as the supervision information) to the target domain
for learning a better ranking model. The main differences between the HCD ranking
problem and previously proposed transfer learning methods are as follows. First, the
main focus of previous methods is on classification problems where the objective is to
minimize classification error, while the proposed HCD ranking problem focuses on pref-
erence orders of multiple interested objects and there is no direct and obvious relation-
ship between classification error and preference order-based loss functions. Second, the
proposed HCDRank approach takes full advantage of the non-independent and identi-
cally distributed (i.i.d.) topological order of objects that are incorporated into the problem
formulation.

1.1 Motivating application

Figure 1a shows an example of heterogenous academic search. The objective is to learn
functions that can rank different objects for a given query. Figure 1b shows an example of
query-dependent cross-domain ranking. For the term “query-dependent”, we mean that the
ranking results are specific to a query, and for different queries, the ranking results may be
different. For the query “data mining”, the rank levels of conferences are relatively easy
to obtain (e.g., from several online resources1), while collecting the training data for the
papers/authors would not be obvious. In this problem, we try to exploit the correlations
between conferences and papers/authors for transferring knowledge from conference rank-
ing to help learn good ranking functions for papers/authors. Figure 1c shows an example
of query-dependent cross-domain ranking in heterogeneous network. In the right panel, the
larger the author’s icon is, the more authoritative he/she is. Besides many preference con-
straints over conferences under different queries, and very limited preference constraints over
experts, we may also have the following relationships: coauthor relationship, author writes
paper, paper publishes on a conference, and paper cites paper. In this problem, we try to
exploit the network structure to learn a better ranking function. Intuitively, we hope that an
approach can take advantage of the available supervision information (labeled conferences)
and the correlation between conferences and papers/authors in the academic network to help
learn the ranking functions for papers and authors. Further, if we have the information about
the network structure, how can we exploit the links between heterogeneous objects for better
knowledge transfer?

1 For example, http://www.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html.
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(a) (b)

(c)

Fig. 1 Example of query-dependent cross-domain ranking in heterogeneous network

1.2 Summaries

The challenges of query-dependent cross-domain ranking in heterogeneous network are as
follows:

1. Domain correlation. As the types of objects in the HCD ranking problem may be different
or even heterogeneous, the first challenge is how to capture the content correlation
between these two different domains.

2. Transfer ranking. It is necessary not only to transfer the knowledge from the source
domain to the heterogeneous target domain, but also to preserve the preference order
with the learnt ranking model.

3. Efficiency. Generally, a ranking problem needs thousands (or millions) of training
examples. It is important to develop methods that can scale well to large data sets.

4. Network structure. There are also different kinds of links between objects, so how to
efficiently exploit the structure information for better knowledge transfer is important.

To address the first three challenges, we propose a unified cross-domain ranking model,
named HCDRank, which simultaneously models the correlation between the source domain
and the target domain, as well as learning the ranking functions. In particular, HCDRank
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Table 1 List of notations

Notation Description

G The heterogenous network

GS , GT Subgraphs for two domains

V, E All the nodes/edges in the network

I Index set of different types of nodes

IS , IT Index sets of objects in two domains

VS , VT Node sets for two domains

XS , XT Instance spaces for two domains

YS , YT Rank level sets for two domains

LS , LT Labeled data in two domains

A Unlabeled test set in target domain

o, o′ Cardinality of the rank level set in two domains

nS , nT , n # Queries of the training sets in two domains and test set

xi Associated attribute vector of node vi

The following are important notations used in later Sections

pi j The transition probability from node vi to node v j

fS , fT Ranking functions for two domains

wS , wT Weight vectors for two domains

α1, α2 Weight vectors for two domains in latent space

n1, n2 # Instance pairs in source and target domains

||W ||2,1 (2,1)-Norm of matrix W

uses a “latent feature space” defined over both the source and target domains to measure
their correlation. Examples from both domains are mapped onto the new feature space via a
projection matrix, where a common (sparse) feature space is discovered. HCDRank adopts
a regularization method to simultaneously minimize two loss functions corresponding to the
two domains, and supervision from the source domain is transferred to the target domain
via the discovered common feature space. An efficient algorithm has been developed and a
generalization bound is discussed. Regarding the fourth challenge, we propose another model
called Net-HCDRank which first encodes the network structure into Markov random walk
representations and then use it to augment the node-specific attribute features. Experimental
results on three different types of data sets verify the effectiveness of the proposed methods,
in particular when the target domain has very few labeled examples. The proposed framework
is general and allows us to utilize many different algorithms to learn the ranking function.

2 Problem formulation

For ease of reading, hereafter we will denote the problem “query-dependent cross-domain
ranking in heterogeneous network” by “heterogenous cross-domain ranking problem (HCD
Ranking)”. The HCD ranking problem can be formalized as follows. For clarity, Table 1
summarizes the notations.

Two inputs are required for our HCD ranking problem: (1) the structure of the heteroge-
neous network; (2) the preference constraints over a subset of the nodes.
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Table 2 Three baseline methods

RSVM RSVMt MTRSVM HCDRank

Training data LT LS
⋃LT LS

⋃LT LS
⋃LT

Test data A A A A

2.1 Heterogeneous network

In a heterogeneous network (e.g. academic social network), there are � types of objects,
let I = {1, 2, . . . , �} denote the type index set and Vi be the set of objects of i-th type,
then the network can be represented as a graph G = (V, E), where V = ⋃

i∈I Vi is the
set of heterogeneous nodes (e.g. author, paper and conference) and E ⊂ V × V is the set
of directed/undirected links between nodes including inter-type links and intra-type links
(e.g. author publishes papers in the conferences or the coauthor relationship). For each node
vi ∈ V , there is an associated attribute vector xi ∈ R

d which is query-dependent. For
each edge ei j ∈ E , there is an associated weight ωi j which indicates the importance of the
relationship (e.g. the total number of coauthor relationship) between vi and v j and � = [ωi j ].

Let IS denote the set of object types which can be relatively easily labeled and IT denote
the set of interested object types for which we can only collect little supervision information.
From IS , we can induce a subgraph GS = (VS, ES) where VS = ⋃

i∈IS
Vi and ES ⊂ E

which consists of the relationships between the nodes in VS . Similarly, we can also define
the subgraph GT = (VT , ET ).

2.2 Query-dependent cross-domain ranking

Let XS ∈ R
dS be the instance space for the source domain where dS is the number of features,

YS = {rS1 , rS2 , . . . , rSo } denote a set of rank levels where o is the number of rank levels.
The rank levels satisfy rS1 � rS2 � . . . � rSo , where � denotes the preference relation-
ship. The preference constraints on the subgraph GS (the source domain) are denoted by
LS = {

(qk
S, xk

S, yk
S)
}nS

k=1, where nS is the number of queries in the source domain. That is,

for query qk
S, vk

S ⊆ VS is the related node collection with xk
S = {xk

Si
}N k

S
i=1 as the associated

attribute vector collection and yk
S as the corresponding labels where xk

Si
∈ XS, yk

Si
∈ YS ,

and N k
S is the total number of nodes related to this query. Further, for the subgraph GT (the

target domain), let XT ∈ R
dT be the instance space for the target domain where dT is the

number of features, YT = {rT1 , rT2 , . . . , rTo′ } be the set of rank levels where o′ is the number
of rank levels. There are two parts of data in this subgraph: A = {

(qk, xk)
}n

k=1 represents
the unlabeled test data in which xk

i is the attribute vector associated with node vk
i ∈ VT , and

LT = {
(qk

T , xk
T , yk

T )
}nT

k=1 represents the labeled data where xk
Ti

∈ XT is the attribute vector

associated with node vk
Ti

, yk
Ti

∈ YT and nT is the number of queries in the target domain.

2.3 Query-dependent cross-domain ranking in heterogeneous network

The HCD ranking problem can be defined as: given the network structure G = (V, E),
sufficient preference constraints LS on the subgraph GS = (VS, ES), the limited num-
ber of preference constraints LT and a large number of unlabeled data A on the subgraph
GT = (VT , ET ), the goal is to learn a ranking function f ∗

T for predicting the rank levels of the
unlabeled data in the subgraph GT with the help of supervision on both subgraphs GS and GT .
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Fig. 2 Basic idea of HCD Ranking for a given query. We take the ranked conferences as the source domain
and the partially ranked authors as the target domain. By using the transformation function φ, we can map all
of them onto the latent space which can be utilized for knowledge transfer across domains

There are several key issues: (1) there exist inter-type and intra-type link structures of the
two subgraphs GS and GT , and we need to exploit the structure information for transferring
knowledge; (2) the nodes in two subgraphs may have different attribute feature distributions
or even different feature spaces (e.g., different types of objects); (3) the number of rank
levels in the two subgraphs can be different; (4) the number of preference constraints in two
different subgraphs may be very unbalanced.

3 HCD ranking

3.1 Assumption

In HCD Ranking problem, the objects in two domains may have different feature spaces,
so we first map them into a unified feature space to make them comparable. After that, the
marginal distributions p(X S) and p(XT ) of two domains may be still different, where X S

and XT are constructed by the feature vectors of the nodes in VS and VT , respectively. So
our assumption is that there exists a low-dimensional latent feature space determined by
the transformation function φ, in which the marginal distributions p(φ(X S)) and p(φ(XT ))

from two domains are similar.
We conduct further analysis on the heterogeneous academic data set. The conferences

and experts may have different feature spaces, but both of them may focus on similar topics.
That is, the research topics of an expert will have some overlaps with the target topics of the
conferences. Thus, these overlapping topics will act as the low-dimensional latent space for
knowledge transfer.

3.2 Basic idea

In HCD ranking, we aim at transferring preference information from an interrelated (heter-
ogeneous) source domain to the target domain by exploiting the correlation between them.
Figure 2 intuitively shows how our approach works for a given query. We take the ranked
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conferences as the source domain and the partially ranked authors as the target domain. After
feature extraction, all the examples with different distributions in two domains will be the
inputs for the transformation function φ. After mapping them onto the latent space, we can
find the correlation between the examples in two domain by which the knowledge can be
transferred from the source domain to the target domain.

First of all, because the feature spaces of the source and target domains may be different,
we use a simple way for mapping them into a unified one. Specifically, let Fc denote the set of
overlapping features across domains, F+ denote the set of features only in the target domain,
F− denote the set of features only in the source domain and d = |Fc|+ |F+|+ |F−|, then the
instances xS and xT from the source and target domains in the unified feature space can be
represented by xS = 〈Fc, F−, 0+〉 and xT = 〈Fc, 0−, F+〉, respectively, where 0+ ∈ R

|F+|
and 0− ∈ R

|F−| are two zero vectors. Following this way, we can map the different feature
spaces (RdS vs. R

dT ) from the two domains into a unified space (Rd ).
More specifically, as the feature distributions and the objects’ types may be different

across domains, the first challenge is how to quantitatively measure the correlation between
the different domains, which reflects what kind of information can be transferred across the
domains. On the other hand, our ultimate goal is to obtain a higher ranking performance.
Based on these considerations, we have two main ideas: First, we assume there is a common
feature (latent) space between the two domains. Examples (e.g., x) from the two domains can
be mapped onto the latent space through a transformation function φ(x). Such a common
latent space provides a potential way to quantify the correlation between the two domains.
Second, in the target domain, we aim to learn a ranking model that can minimize the error
(loss) on the unlabeled test data while preserving the preference orders in the labeled training
data. When transferring the supervision information from the source domain, we also desire
to preserve its original preference orders, equivalently minimizing the loss in the source
domain. Therefore, we propose a general framework (HCDRank), in which we use a latent
space to bridge the two domains (i.e., the source domain and the target domain) and define two
loss functions, respectively, for the two domains. We further propose an efficient algorithm
to optimize the two loss functions and learn the latent space simultaneously.

3.3 The general framework: HCDRank

Given the labeled training data from the target domain LT = {
(qk

T , xk
T , yk

T )
}nT

k=1, we aim
to learn a ranking function fT for predicting the preference relationships between instances
for each query qk

T , i.e., fT (xk
Ti

) > fT (xk
Tj

) : ∀yk
Ti

� yk
Tj

. For ranking, based on the learnt
ranking function fT , we can predict the rank level of a new instance. To learn the ranking
function, we can consider to minimize the following loss function:

min
fT

O( fT , LT ) = R( fT , LT ) + ηE( fT )

=
nT∑

k=1

∑

yk
Ti

≺yk
T j

I

[
fT

(
xk

Ti

)
> fT

(
xk

Tj

)]
+ ηE( fT )

(1)

where I[π] is the indicator function returning 1 when π is true and 0 otherwise; R( fT , LT )

counts the number of mis-ranked pairs in the target domain; η is a parameter that controls
the tradeoff between the empirical loss (the first term R) and the penalty (the second term E)
of the model complexity.

When transferring the supervision from the source domain, we hope to preserve the pref-
erence orders between instances from the source domain. For bridging instances from the
two heterogeneous domains, we define a transformation function φ : R

d → R
d ′

to map
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instances from both domains to a d ′-dimensional common latent space. Then, we can define
a general objective function for the HCD ranking problem as follows:

min
fS , fT ,φ

Rφ( fS, LS) + C Rφ( fT , LT ) + λJφ( fS, fT ) =
nS∑

k=1

∑

yk
Si

≺yk
S j

×I

[
fS

(
φ
(

xk
Si

))
> fS

(
φ
(

xk
S j

))]

+C
nT∑

k=1

∑

yk
Ti

≺yk
T j

I

[
fT

(
φ
(

xk
Ti

))
> fT

(
φ
(

xk
Tj

))]

+λJφ( fS, fT ) (2)

where Jφ( fS, fT ) is a penalty for the complexity of the HCD ranking model, λ is a param-
eter that balances the empirical losses and the penalty, and C is a parameter to control the
imbalance of labeled instances across domains.

The problem now is to find the best parameters for fS, fT , and φ that minimize the objec-
tive function (Eq. 2). In the following section, we give an instantiation of the framework and
present a preferred solution.

3.4 The proposed solution

In HCDRank, we do not simply want to learn the ranking function fT , fS for the two domains
but also learn the transformation function φ. In addition, it is desirable to leave out features that
are not important for transferring knowledge across domains and result in a sparse solution.

3.4.1 Instantiation of the HCDRank framework

For simplicity, fT is assumed to be a linear function in the instance space: fT (x) = 〈wT , x〉,
where wT are parameters (feature weights) to be estimated from the training data and 〈·〉
indicates the inner product. By plugging it into Eq. 1, we have

O( fT , LT ) =
nT∑

k=1

∑

yk
Ti

≺yk
T j

I

[〈
wT , xk

Ti
− xk

Tj

〉
> 0

]
+ ηE( fT ) (3)

The loss function R( fT , LT ) is not continuous, so we just use Ranking SVM hinge loss to
upper bound the number of mis-ranked pairs [11].

First of all, we give a brief introduction to Ranking SVM [28]. Given the labeled data
in the target domain LT , for each query qk

T (k = 1, . . . , nT ), given an instance pair xa
Ti

, xb
Ti

from different rank levels and their corresponding labels ya
Ti

, yb
Ti

, Ranking SVM aims to learn
a ranking function fT which can correctly predict the preference orders between instances
satisfying the following constraints:

ya
Ti

� yb
Ti

⇔ f
(

xa
Ti

)
> f

(
xb

Ti

)
(4)

Ranking SVM reduces the ranking problem into a binary classification problem by using
the instance pairs as follows:

(

xa
Ti

− xb
Ti

, zTi =
{

+1 ya
Ti

� yb
Ti−1 ya

Ti
≺ yb

Ti

)

(5)
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where xa
Ti

− xb
Ti

is the new instance and zTi is the new label for the instance pair. In this
way, we can get a new training data set consisting of instance pairs in the target domain

L′
T =

{
(xa

Ti
− xb

Ti
, zTi )

}n2

i=1
.

Then, Ranking SVM aims to minimize the following objective function for model learning
on the new training data L′

T :

min
wT

n2∑

i=1

[
1 − zTi

〈
wT , xa

Ti
− xb

Ti

〉]

+ + λ‖wT ‖2 (6)

where the first term is called the Ranking SVM hinge loss, and the second term is the
regularization term.

For the source domain, we can make the same assumption and use the parallel notations
wS and L′

S = {
(xa

Si
− xb

Si
, zSi )

}n1
i=1. Finally, we can rewrite the objective function Eq. 2 by

optimizing the Ranking SVM hinge loss (the convex upper bound of the original loss) as:

min
wS ,wT ,φ

n1∑

i=1

[
1 − zSi

〈
wS, φ

(
xa

Si

)
− φ

(
xb

Si

)〉]

+

+ C
n2∑

i=1

[
1 − zTi

〈
wT , φ

(
xa

Ti

)
− φ

(
xb

Ti

)〉]

+ + λJφ(wS, wT )

(7)

Now the problem is to define the transformation function and the penalty of the model
complexity.

3.4.2 Instantiation of the transformation function

We use a d × d matrix U to describe the correlation between features, then the inner product
of examples can be defined as x�

i UU�x j . Such parameterization is equivalent to projecting
every example x onto a latent space spanned by φ : x → U�x . With the transformation
function, we can redefine the loss function, for example, by replacing the second term in
Eq. 7 with:

n2∑

i=1

[
1 − zTi

〈
wT , U� (xa

Ti
− xb

Ti

)〉]

+ (8)

For HCD Ranking, our assumption is that there exists a low-dimensional latent space
between the source domain and the target domain. For simplicity, we assume that the common
features in the latent space φi (x), shared by the two domains, are the linear combination of the
original features. That is, φi (x) = u�

i x , where ui is the orthogonal combination parameter
vector, and x is the original feature vector. Further, we use U to denote the matrix with the
columns the vectors ui (i = 1, . . . , d), thus it is an orthogonal matrix. After projecting the
examples from the two domains onto the latent space by matrix U , they will have similar
representations.

To intuitively illustrate the semantics of the transformation function, we conduct an anal-
ysis on the academic social network data set and plot the feature distributions in different
spaces for comparison in Fig. 3.

In Fig. 3a and c, black crosses, green triangles, and blue circles denote “not relevant”,
“marginal relevant”, and “relevant” conferences, respectively. In Fig. 3b and d, black crosses,
green triangles, cyan pluses, and blue circles denote “not relevant”, “marginal relevant”,
“relevant”, and “most relevant” experts, respectively. Figure 3a and b show the distributions
of the conferences and experts in the original space, where we use principle component
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Fig. 3 An example for illustrating the transformation function by comparison of the ranking learning in the
original space and the latent space

analysis (PCA) for extracting the first two principal directions. Figure 3c and d shows their
corresponding distributions in the latent space, where we use HCDRank for finding the first
two principal directions. Among them, all the ranking directions (red lines with arrows) are
learned by Ranking SVM. In this example, the original ranking directions for the conferences
and experts differ very largely. By the transformation function, the ranking directions of the
conferences and experts in the latent space have become very similar.

3.4.3 Instantiation of the penalty function

As for the penalty Jφ(wS, wT ) of the model complexity, we define it as a regularization term,
specifically, a (2,1)-norm ‖W‖2,1, for the parameters of the source and the target domains,
where W = [wS, wT ] is a d × 2 matrix with the first column corresponding to wS and the
second wT . The (2, 1)-norm of W is defined as ||W ||2,1 = ∑d

i=1 ||ai ||2 where ai is the i-th
row of W. The 2-norm regularizer on each row of W leads to a common feature set over the
two domains and the 1-norm regularizer leads to a sparse solution. The (2,1)-norm regularizer
thus offers a principled way to interpret the correlation between the two domains and also
introduce useful sparsity effects. Finally, we can redefine the objective function as:

min
wS ,wT ,U

n1∑

i=1

[
1 − zSi

〈
wS, U�

(
xa

Si
− xb

Si

)〉]

+

+ C
n2∑

i=1

[
1 − zTi

〈
wT , U�

(
xa

Ti
− xb

Ti

)〉]

+ + λ‖W‖2
2,1

s.t. U�U = I

(9)

where U�U = I denotes an orthogonal constraint which makes the projection matrix U
unique.
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Algorithm 1: HCDRank for transfer ranking
Input:

Training set: LS
⋃LT ; Test set: A

Output:
Ranking function f ∗

T = 〈w∗
T , x〉 and the predicted

preferences over test data: {yi }n
i=1

Initialization:

D = Id×d
d

Step 1: Latent Space Finding
1: while not reached maximal iteration number Q do

2: α1 = argmin
{ n1∑

i=1

[
1 − zSi

〈α, xa
Si

− xb
Si

〉]+ + λ〈α, D+α〉
}

3: α2 = argmin
{ n2∑

i=1

[
1 − zTi

〈α, xa
Ti

− xb
Ti

〉]+ + λ〈α, D+α〉
}

4: M = [α1, α2]
5: set D = (M M�)

1
2

Tr(M M�)
1
2

6: end while
7: Apply SVD decomposition on D, D = U
V �
8: Construct U by the eigenvectors corresponding to the

top two eigenvalues of D

Step 2: Learning in Latent Space

9:w∗
T = argmin

{ n1∑

i=1

[
1 − zSi

〈
w, U�(xa

Si
− xb

Si
)
〉]

+

+C
n2∑

i=1

[
1 − zTi

〈
w, U�(xa

Ti
− xb

Ti
)
〉]

+ + λ||w||2
}

10: for i = 1 to n do
11: yi = 〈w∗

T , U�xi 〉
12: end for

3.4.4 Learning algorithm

Directly solving the objective function (including parameters wS, wT , U in Eq. 9) is intrac-
table, as it is a non-convex problem. Fortunately, we can derive an equivalently convex
formulation of the objective function Eq. 9 as follows: (Derivation of the equivalence is
given in Appendix A).

min
M,D

n1∑

i=1

[
1 − zSi

〈
α1, xa

Si
− xb

Si

〉]

+ + C
n2∑

i=1

[
1 − zTi

〈
α2, xa

Ti
− xb

Ti

〉]

+

+λ
2∑

t=1

〈
αt , D+αt

〉

s.t. D � 0, Tr(D) ≤ 1, range(M) ⊆ range(D)

(10)

where M = [α1, α2] = U W, D = UDiag(
||ai ||2||W ||2,1

)U� and the superscript “+” of D
indicates the pseudoinverse of the matrix D. X is a p × q matrix, range of X is the span of
columns of X which can be defined as range(X) = {x |Xz = x,for some z ∈ Rq}. The
trace constraint of D is imposed because if D is set to ∞, the objective function will only
minimize the empirical loss. The range constraint bounds the penalty term below and away
from zero. The equivalence has been previously used in [3].

We can solve the equivalently convex problem with an iterative minimization algorithm,
as outlined in Algorithm 1, and detailed as follows:

Step 1. We use an iterative algorithm to optimize matrix M and D. First, in lines 2-4, we
keep D fixed and learn α1 and α2 (i.e., matrix M) from the labeled training data

123



120 B. Wang et al.

in two domains, respectively. Second, in line 5, we update matrix D by the learnt
matrix M . We run the above two steps iteratively until convergence or excess of
the maximal iteration number. Then in lines 7 and 8, we apply SVD decomposition
[51] on the learnt intermedia matrix D, i.e., D = U
V �; then, the matrix U is
constructed by the eigenvectors corresponding to the top two eigenvalues of D.
The reason why we only use the two eigenvectors corresponding to the top two
eigenvalues for constructing matrix U is as follows.
In algorithm 1, M is a d ∗ 2 matrix, so rank(M) ≤ 2, where rank(M) is the
maximum number of linearly independent column vectors of matrix M . Thus, the
rank of matrix D also satisfies rank(D) ≤ 2. After SVD decomposition on matrix
D, there are at most two non-zero eigenvalues, so we just use the two eigenvectors
corresponding to the top two eigenvalues for constructing the projection matrix U .

Step 2. In line 9, we learn the weight vector of the target domain from all the labeled data
in the latent space. In lines 10-12, we use the learnt w∗

T to predict ranking levels of
new instances from the target domain.

3.4.5 Complexity

The size of the two matrices to be optimized in HCDRank depends only on the feature number
d , e.g., matrix D is d × d and W is d × 2. The complexity for SVD decomposition on matrix
D is O(d3). Further, for dealing with large-scale problem, PEGASUS library can be used on
peta-level data [35].

Let N = n1 + n2 be the total number of instance pairs for training and s be the number
of non-zero features. Using the cutting-plane algorithm [34], linear Ranking SVM training
has O

(
s N log(N )

)
time complexity.

In our algorithm HCDRank, let Q be the maximal iteration number, then the training of
HCDRank has O

(
(2Q + 1) · s N log(N ) + d3

)
time complexity.

3.5 Generalization bound

In this section, we theoretically analyze our algorithm HCDRank and derive the generaliza-
tion bound for it. See Appendix B for the proof.

Theorem 3.1 Let H be a hypothesis space of VC-dimension k. Let US and UT be unlabeled
samples of size m′ each, drawn from DS and DT respectively, and d̂H�H is the empirical
distance between them. Let L = LS

⋃LT be the labeled samples of size m generated by
drawing (1 − β)m points from DS and βm points from DT , labeling them according to fS

and fT respectively. Let εS(h), εT (h) be the true risks for the hypothesis h in the source
and target domains respectively, θ = 1/(1 + C) and ε̂θ (h) be the empirical weighted risk
of two domains. For each ranking function h with zero training risk, if ĥ ∈ H is the empir-
ical minimizer of ε̂θ (h) on L, then with probability of at least 1 − δ(over the choice of the
samples)[8,28]

εT (ĥ) ≤ 2
βm−1

(
k log

(
8e(βm−1)

k

)
log (32(βm − 1)) + log

(
8(βm−1)

δ

))

+2
√

θ2

β
+ (1−θ)2

1−β

√
k log(2m)−log δ

2m

+2(1 − θ)

⎛

⎝ 1
2 d̂H�H(US, UT ) + 4

√
2k log(2m′)+log

(
4
δ

)

m′ + γ

⎞

⎠

(11)

where γ = minh∈H εS(h) + εT (h) and β = nT
nS+nT

.
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The error bound is comprised of three components: the first one is the upper bound for
the target risk using only the labeled data in the target domain; the second one corresponds
to the difference between the true and empirical weighted risks; the last one measures the
distance between target risk and weighted risk.

When we have many labeled data in the source domain and few labeled data in the target
domain, θ will be small and the distance d̂H�H will be vital for the performance of HCDRank
algorithm. In the latent space found by our algorithm, the instances from the two domains
will have similar representations, then the distributions of the two domains will be similar,
so d̂H�H will be small and the bound is tight. When the latent space is bad, the difference
between these distributions is large, the bound is loose.

4 Net-HCDRank

For HCD Ranking problem, the proposed HCDRank approach transfers knowledge via the
latent space by exploiting the correlations between the contents of different objects. As the
rapid development of Web 2.0, the heterogenous networks are becoming more and more
common where many interrelated links between different objects exist. The links are also
very important for transferring ranking supervision across domains. Let us take the heter-
ogeneous academic network as an example, there are many relationships between papers,
conferences and authors, for example, author writes paper, and paper publishes on a confer-
ence and so on. The intuition for knowledge transferring by links is as follows: a paper with
significant impact is very likely written by an author with significant impact, a paper with
significant impact is very likely accepted by a conference with significant impact, and an
author with significant impact may publish papers on a conference with significant impact.
So our problem now is “while the network structure is available, how can we exploit the
structural information for knowledge transfer?” In this section, we will discuss how to suffi-
ciently exploit both content and structural information for knowledge transfer in heterogenous
networks.

4.1 Basic idea

Figure 4 demonstrates the framework of the proposed Net-HCDRank algorithm. There are
two phases in our algorithm: (1) feature extraction; (2) HCDRank algorithm. After extracting
structural features from the heterogeneous network, the HCDRank algorithm can be applied
for transferring knowledge in heterogeneous network.

While the network structure is available, there are inter-type and intra-type links across
two domains (subgraphs). Sufficiently exploiting this kind of information inside the links
can boost the rank performance. Meanwhile, for each node of the network G = (V, E),
there is an associated attribute vector xi ∈ R

d . So the first challenge is how to lever-
age both node-specific attribute vector and network structure to help the ranking function
learning in the subgraph GT . For phase 1, we propose a novel way to encode the network
structure into Markov random walk representations based on the random walk over het-
erogeneous network . Then, we can use the new structural feature vector to augment the
node-specific attribute feature vector for learning a better ranking model. For phase 2, we
just use the HCDRank algorithm for transferring knowledge between different types of
objects.
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Fig. 4 Framework of the Net-HCDRank algorithm. There are two phases: feature extraction and HCDRank
algorithm

Fig. 5 Random walk over heterogeneous network

4.2 Markov random walk representation

First, we briefly define the process of random walk over the heterogeneous network. Recalling
our previous definitions, the heterogeneous network G = (V, E) is a directed graph with
V = ⋃

i∈I Vi and E ⊂ V × V where Vi is the set of i-th type nodes.
As Figure 5 shows, there are three different collections of nodes: nodes in the subgraph

GS (the source domain), nodes in the subgraph GT (the target domain), the other nodes in
the graph G − GT − GS . There can be different types of nodes in each collection, we just
use one type of nodes in each collection for illustration. For example, Vx is the node set of
x-th type object in the source domain. There can be inter- and intra-links between different
node collections. For example, there may exist intra-links between nodes in Vx in the source
domain, and there also exist inter-links between Vx and Vy, Vz . Let the transition probability
from x-th type object to y-th type object be μxy , then the transition probability from node vi

of type x to v j of type y can be defined as

pi j = μxy × ωi j
∑

k∈Vy
ωik

with
�∑

k=1

μxk = 1 (12)
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where � is the total number of different object types in the network.
Let us take the heterogeneous social network as an example for introducing the intuition

of Eq. 12. After the user has found his interested expert, then with some probability he will
view the expert’s coauthors (intra-links), papers (inter-links), and their published conferences
(inter-links). By this way, he will surf over the heterogeneous academic social network.

Regarding the μxy , a simple way for specifying its value is to calculate the ratio between
the sum of edge weights from x-th type object to y-th type object and the sum of edge
weights from x-th type object to all the other objects. More specifically, μxy can be specified
as follows:

μxy =
∑

i∈Vx

∑
j∈Vy

wi j
∑�

k=1
∑

i∈Vx

∑
j∈Vk

wi j
(13)

If the data set is sufficient, the values of μxy calculated in this way would be more accurate.
Prior knowledge can also be utilized for this purpose.

Further, we define pi j after t steps as p(t)
i j , which can reflect the structure of the hetero-

geneous network via the probability propagation. Similar to the PageRank algorithm [16],
we introduce a random jump parameter α, which allows a surfer to randomly jump to other
nodes in the graph. Let B = [pi j ] denote the one-step transition matrix, then we have

P = (1 − α)B + αE, E = (1, . . . , 1)�
(

1

|V | , . . . ,
1

|V |
)

(14)

where |V | is the total number of nodes in the graph. After t steps, the transition probability
from vi to v j can be defined as p(t)

i j = [Pt ]i j

where Pt is the t-th power of matrix P . The t-step transition probability of one node is a good
representation of its network structure, so we use the transition probabilities from one node
to the other nodes to form the structure feature vector associated with that node, that is, for
node vi , we use the vector x ′

i = (
pt

i1, . . . , pt
i |V |

) ∈ R
|V | to encode the structure information

associated with this node.
Finally, we can obtain the data sets LS = {

(qk
S, xk

S, yk
S)
}nS

k=1 , A = {
(qk, xk)

}n
k=1 and

LT = {
(qk

T , xk
T , yk

T )
}nT

k=1 where xk
Si

, xk
i and xk

Ti
are the feature vectors associated with nodes

vk
Si

, vk
i , and vk

Ti
, respectively, in the R

d+|V | space by concatenating x ′
i into the original feature

vector xi .
The representation-based Markov random walk has been used in [48]; in their work, they

use points of the same type to construct the k-nearest neighbor(k-NN) graph by a predefined
distance metric. But for our problem, the network is intrinsic, the objects are heterogeneous,
and the weight is defined by the relationship (or co-occurrence).

5 Experiments

Our approach is general and can be applied to various data sets. We perform the experiments
on three different genres of data sets: a homogeneous data set which consists of documents
from different domains; a heterogeneous data set which consists of three different types of
objects; a heterogeneous task data set which consists of data from two different ranking tasks.

123



124 B. Wang et al.

5.1 Evaluation measures, baseline methods

5.1.1 Evaluation measures

To quantitatively evaluate our method, we use Precision@n, MAP (mean average precision)
[5] and NDCG (normalized discount cumulative gain) [30]. More evaluation measures can
be found in [4].

The precision of top n results for a query is measured by precision at n which is defined
as follows:

P@n = #{relevant documents in topnresults}
n

Average precision is defined based on the P@n to measure the accuracy of ranking results
for a given query.

AP =
∑

n

P@n · I[documentnis relevant]
#{relevant documents}

MAP is defined as the mean of all APs over test set and measures the mean precision of
ranking results over all the queries. Different from MAP, NDCG gives high weights to the
top ranked relevant documents. The NDCG score at position n is defined as

N@n = Zn

n∑

j=1

2r( j) − 1

log(1 + j)

where r( j) is the rank of j-th document, and Zn is a normalization factor.

5.1.2 Baseline methods

We compare HCDRank with three baselines. Ranking SVM (RSVM) [28] is one of the state-
of-the-art ranking algorithms for information retrieval which is designed for ranking in a
single domain. For fair comparisons, we conduct two experiments with RSVM, one is to
train the ranking model only by the labeled data in the target domain LT and the other (called
RSVMt) is to train the ranking model by the labeled data in the source domain and the target
domain LS

⋃LT . The third baseline is MTRSVM which is a multi-task feature learning
approach using ranking SVM hinge loss. MTRSVM is adapted from [3], and aims at learn-
ing a low-dimensional representation shared by a set of multiple related tasks. MTRSVM is
designed for addressing the situation where all the tasks have the same number of training
data, by minimizing the total loss of all the learning tasks. However, in HCD Ranking prob-
lem, the training data of ranking tasks are very imbalanced, there are many labeled training
data in the source domain while only limited labeled data in the target domain. Further,
HCDRank only focuses on the ranking function learning for the target domain by learning
the ranking function from all the labeled data in the latent space with cost-sensitive factor.

All the experiments are carried out on a PC running Windows XP with Dual-Core
AMD Athlon 64 X2 Processor(2 GHz) and 2 G RAM. We use SVMlight [33] with linear
kernel and default parameters to implement RSVM, RSVMt and the preference learning
step of MTRSVM and HCDRank. The other part of MTRSVM and HCDRank have been
implemented using Matlab 7.1, and the maximal iteration number Q of HCDRank is set
to five. Also without special specification, we use the grid search to choose parameter C
from {2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 1, 2, 22, 23, 24, 25}, the results reported below are all
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Table 3 Description of features in LETOR data set

Data set Category Description #Features Feature IDs

TREC A Low-level content features 16 {2-5,9-12,28-35}

B Some high-level content features 6 {15,16,19,20,23,24}

C Some high-level content features 7 {1,17,18,21,22,25,26}

D Hyperlink features 7 {6-8,14,36-38}

E Hybrid features 8 {13,27,39-44}

OHSUMED F Low-level title features 10 {1-10}

G Low-level abstract features 10 {11-20}

H High-level content features 5 {21-25}

averaged over 10 runs and we judge statistical significance using the dependent t test with
p < 0.05.

5.2 Results on homogeneous data

5.2.1 Data set

We use LETOR 2.0 [40] as the homogeneous data set, which is a data set for evaluating various
algorithms for learning to rank. LETOR 2.0 is comprised of three sub data sets: TREC2003,
TREC2004, and OHSUMED, with respectively 50, 75, and 106 queries. A set of query-
document pairs are collected in each of the data sets. The TREC data set is a collection
from a topic distillation task which aims to find good entry points principally devoted to
a given topic. The OHSUMED data set is a collection of records from medical journals.
In the OHSUMED data set, there are three rank levels, i.e. relevant � partially relevant �
non-relevant, while in the TREC data set, there are only two, i.e. relevant � non-relevant.
In LETOR, all the features are highly abstract. In TREC, there are 44 features divided into
four categories. In OHSUMED, there are 25 features falling into three categories. Table 3
summarizes the features in the LETOR data set. For example, for TREC data, there are 16
low-level content features (e.g. tf and idf), 13 high-level content features (e.g. BM25 and
language model for IR), 7 hyperlink features (e.g. PageRank and HITS) and 8 hybrid features
(e.g. hyperlink-based relevance propagation).

5.2.2 Feature definition

To adapt to the cross-domain ranking scenario, we make slight revision to the LETOR data
set. After revision, the whole data set and three sub data sets are correspondingly referred
to as LETOR_TR, TREC2003_TR, TREC2004_TR and OHSUMED_TR. Specifically, we
split each data set into two domains (source domain and target domain), according to the
feature types. Table 4 lists statistics of the data sets in which the 4th column shows the details
of features used in each domain of every data set by feature categories A-H in Table 3. We
split features in this way which can simulate some real applications. For example, the source
domain of TREC2003_TR only contains feature categories A and B with queries 1-25 which
correspond to features for document contents; while the target domain of TREC2003_TR
consists of feature categories B, C, D, E with queries 26-50 which may correspond to fea-
tures in blogs. After this splitting, intuitively the features in two domains are quite different.
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Table 4 Data characteristics of LETOR_TR data set

Data Set Domain Query IDs Features #Doc #D/Q #Dp/Q

TREC2003_TR SOURCE 25:{1-25} AB 24,079 963 6,450

TARGET 25:{26-50} BCDE 25,092 1,004 13,761

TREC2004_TR SOURCE 38:{1-107} AE 37,154 978 5,969

TARGET 37:{111-221} BCDE 37,016 1,000 5,696

OHSUMED_TR SOURCE 56:{1-56} FH 8,136 145 5,726

TARGET 50:{57-106} GH 8,004 160 5,239

#D/Q and #Dp/Q denote the average number of documents and document pairs corresponding to a query
respectively
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Fig. 6 MAP and NDCG performances for LETOR_TR

In all experiments, we use all the labeled query-document pairs from the source domain as
the training data LS , and randomly sample 20% queries with all their labeled documents from
the target domain as the training data LT (that is, 5, 8, and 10 queries for TREC2003_TR,
TREC2004_TR and OHSUMED_TR, respectively), while all the other data in the target
domain are viewed as the unlabeled test set A.

For ease of implementation, in this experiment, we still define each instance by a vector
of 44 (TREC) or 25 (OHSUMED) dimensions. We set the feature values that are not defined
in a domain as zeros. For example, in the source domain of TREC2003_TR, only features of
categories A and B are set with their actual values, the values of others (B, C, D, E) are set
to zeros. Similarly, in the target domain of TREC2003_TR, features in categories B, C, D,
and E have their actual values and the others are zeros.

5.2.3 Results and analysis

Figure 6 and Table 5 show the results of all methods on the LETOR_TR data sets. Generally,
our approach achieves higher performances and has a nice convergence property (converging
after several iterations in most cases). Specifically, we have the following observations:

1. Ranking accuracy. HCDRank performs much better (by +5.6% and +6.1%, respec-
tively, in terms of MAP) than the comparison methods on both TREC2003_TR and
OHSUMED_TR. On TREC2004_TR, HCDRank results in a comparable performance
with RSVMt.

2. Effect of difference. We measure the difference of the source domain and the target
domain in each data set by the cosine-based similarity. We first use the mean vectors
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Table 5 MAP and NDCG performances for LETOR_TR

Data Set Baselines MAP N@1 N@3 N@5 N@10

TREC2003_TR RSVM .1330* .2100 .2144* .2098* .1970*

RSVMt .0986* .1100* .1631* .1489* .1368*

MTRSVM .1100* .1850* .1730* .1703* .1656*

HCDRank .1404 .2300 .2325 .2214 .2089

TREC2004_TR RSVM .2526* .3000 .3019* .3153* .3251*

RSVMt .2866 .4138 .3371 .3408 .3383

MTRSVM .2464* .2966 .2949* .3038* .3151*

HCDRank .2795 .3552 .3571 .3508 .3586

OHSUMED_TR RSVM .3541* .3483 .3255* .3141* .3044*

RSVMt .3171* .2600* .2465* .2446* .2402*

MTRSVM .3411* .3208* .3015* .2989* .2868*

HCDRank .3758 .3700 .3654 .3573 .3459

Best performances are in bold font, and statistically significant improvements are with asterisk(*)

of the two domains as their representatives, and then, the cosine similarity is calcu-
lated between these two mean vectors. The cosine similarities of the three sub data
sets are 0.01, 0.23, and 0.18. We see that when the similarity is relatively high (0.23 on
TREC2004_TR), simply combination of the training data from both domains for learning
would result in a better ranking performance: RSVMt performs better than MTRSVM
and RSVM. When the similarities are relatively low (0.01 on TREC2003_TR and 0.18
on OHSUMED_TR), such a brute combination will introduce a lot of noise which hurts
the performance: RSVMt underperforms MTRSVM and RSVM. In both situations, our
approach can balance the difference and consistently outperform the three methods.

3. Reason for performance. We conduct an analysis of why HCDRank is effective on
LETOR_TR. An important observation is that, in the ranking problem, many features
are extracted from query-document pairs, so the features already contain information
from both queries and documents. Thus, a good latent space means that if the new
feature representations in that space of two query-document pairs q1-d1 and q2-d2 from
the two domains are similar, then the rank levels of the two documents are also similar.
For example, if d1 is relevant to q1, then it is highly possible that d2 is also relevant
to q2.

5.3 Results on heterogeneous data

5.3.1 Data Set

The second data set is a heterogeneous academic data set, which contains 14, 134 authors,
10, 716 papers, and 1, 434 conferences. The queries are 44 most frequent queried keywords
(e.g., “data mining”, “information retrieval”) collected from the query log of the ArnetMiner2

system [50]. For evaluation, we used the method of pooled relevance judgments [12] together
with human judgments. Specifically, to obtain the ground truth for experts, for each query,

2 ArnetMiner(arnetminer.org) is a free online service to search and perform data mining operations against
academic publications on the Internet, using social network analysis to identify connections between research-
ers, conferences, and publications.
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Table 6 Data characteristics of the heterogeneous academic data set

Domain #Query Object type #Feature #Object #Object/Query

SOURCE 44 Conferences 16 1,434 33
TARGET 44 Experts 17 14,134 321

the top 30 experts from Libra3, Rexa4, and Arnetminer were collected, respectively, and
pooled into a single list by removing the same or ambiguous ones. Then, annotators (two
faculties and five graduates from CS) provided human judgments in terms of how many
publications he/she has published, how many publications are related to the given query, how
many top conference papers he/she has published, what distinguished awards (Turing award,
IEEE/ACM fellow and so on) he/she has been awarded. There are four rank levels (3, 2, 1,
and 0), which, respectively, represent definite relevance � relevance � marginal relevance
� not relevance. To obtain the ground truth for conferences, the top 30 conferences from
Libra and ArnetMiner are collected and three online resources5 are mainly referenced for
conference ranking. Table 6 lists the statistics of this heterogeneous academic data set.

In this experiment, we aim to answer the question: how can heterogeneous data be bridged
for better ranking? We use the labeled data of one type of object (e.g., conferences) as the
source domain and another type of object (e.g., authors) as the target domain. Thus, our goal
is to transfer the conference ranking information for ranking authors.

5.3.2 Feature definition

We use titles of all papers published in a conference to form a conference “document” and
use titles of all papers written by an author as the author’s “document”. Thus, we can define
features for each object as listed in Table 7. For each “document”, there are 10 low-level
content features (e.g. L1 is term frequency(tf), L5 is inverse doc frequency(idf)) and 3 high-
level content features (e.g. H1 and H2 are the original and log values of BM25 score, H3
is the value of language model for IR). S1-S3 are special features for a conference which
measure the number of years held and the total citations. S4-S7 are special features for an
expert, for example, the year of his first paper and the citations of all his papers. Finally, we
define 16 features (L1-L10, H1-H3 and S1-S3) for conferences and 17 features for experts
(L1-L10, H1-H3 and S4-S7).

We normalize the original feature vectors by query. Suppose there are N (i) documents
{d(i)

j }N (i)

j=1 for i-th query, then after normalization, the feature x (i)
j of document d(i)

j will
become

x (i)
j − mink {x (i)

k }
maxk {x (i)

k } − mink {x (i)
k }

k = 1, . . . , N (i)

3 Libra(libra.msra.cn) is the academic search engine from Microsoft, which supports the search of conferences,
papers and experts.
4 Rexa(rexa.info) is a digital library and search engine covering the computer science research literature and
their authors.
5 http://www.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html and http://www3.ntu.edu.sg/home/
ASSourav/crank.htm and http://www.cs-conference-ranking.org/conferencerankings/alltopics.html
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Table 7 Feature definitions for expertise search

Features Description

L1-L10 Low-level content features, refer to [40]

H1-H3 High-level content features, refer to [40]

S1 The number of years the conference has been held

S2 The total citation of one conference during recent 5 years

S3 The total citation of one conference during recent 10 years

S4 The number of years passed since his first paper

S5 The total citation of one expert

S6 The number of papers cited more than 5 times

S7 The number of papers cited more than 10 times

Table 8 Performances of different approaches for expert finding

Approach MAP N@1 N@3 N@5 N@10

Libra .5823* .3393* .2942* .3054* .3799*

Rexa .6218* .2560* .2705* .2759* .3602*

RSVM .8084 .6071 .5839* .5854 .6385

RSVMt .8096* .5944 .6026 .5956 .6387

MTRSVM .8059* .5791 .5796 .5810 .6379

HCDRank .8195 .6250 .6257 .6152 .6615

Best performances are in bold-font, and statistically significant improvements are with asterisk(*)

5.3.3 Results and analysis

In this experiment, we take the labeled conference data as the source domain, and the expert
data as the target domain in which we use one query with its corresponding documents as the
labeled data and the rest as the unlabeled test data. The results reported below are averaged
over all the queries. The parameter C is empirically set to 1.

As for the baseline methods, besides RSVM,RSVMt, and MTRSVM, we also compare
our approach with the results of two online academic search systems: Libra.msra.cn and
Rexa.info, which are mainly based on unsupervised learning algorithm, e.g., the language
model [60]. Table 8 shows the results of different approaches, the main observations are as
follows:

1. Ranking accuracy. Among all the approaches, HCDRank outperforms the five baselines.
The performances of RSVM and MTRSVM are comparable. Also all learning-to-rank
methods outperform the two systems which suggest the usefulness of supervision in a
specific domain for improving the ranking performance.

2. Feature analysis. Figure 7 shows the important features for knowledge transfer via the
latent space, which can be identified by the learnt final weight vectors. We can see that the
final w∗

T can exploit the data information from two domains and adjust the weights learnt
from single domain to better predict preferences in the target domain. This is the major
reason why the proposed method performs best. The right table in the figure lists the top
10 features vital for knowledge transfer in this academic data set by the descending order
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Fig. 7 Feature correlation analysis in the source and the target domains. The red colored weights w∗
T are

learnt by HCDRank; the blue and black ones (wS and wT ) are learnt from the two domains separately. The
table lists top 10 features learnt from the academic data set for HCD ranking

of the absolute weight values. There are L2, L6, L9, L10 in low-level content features,
H1-H3 in high-level content features, and S1, S2, S4 in self-defined features.

3. Reason for performance. The key reason is that even in the heterogeneous network,
there might be latent dependencies between the objects, some common features can still
be extracted from the latent dependencies. For example, in the expertise search, authors
and conferences are connected by the papers they have published. The discovered latent
dependencies can be used to transfer supervised knowledge between the heterogeneous
objects. Our approach can effectively discover the common latent space in the heteroge-
neous network thus can achieve better performance for expertise search.

5.4 Results on heterogeneous tasks

5.4.1 Data set

The third experiment is for heterogeneous tasks, where we have two different ranking tasks:
expert finding and best supervisor finding. The goal of expert finding is to find experts on a
given topic (query), while best supervisor finding is about finding the best supervisors in a
specific domain, which is useful for junior students to find “good” supervisors in their inter-
ested fields. An expert can be a good supervisor, but not necessarily, thus the two tasks are
related but different. The goal of this experiment is to evaluate whether the proposed approach
can transfer knowledge to improve a different ranking task (best supervisor finding) using
training data of an existing related heterogeneous ranking task (expert finding).

The evaluation data set for best supervisor finding is created by collecting the feedbacks
from many researchers in related domains. The data set for best supervisor finding consists
of 9 most frequent queries, for each query, we choose the top ranked 50 researchers by
ArnetMiner.org and another 50 researchers who start publishing papers only in recent years
(>2003, 91.6% of them are currently graduates or postdoctoral researchers). We sent to each
of the researchers an email, in which we listed the top 50 researchers for each query, and
ask for feedbacks on whether each candidate is the best supervisor (“yes”) or not (“no”), or
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Table 9 Data characteristics of the heterogeneous task data set

Domain #Query Object type #Feature #Object #Object/Query

SOURCE 44 experts 21 14,134 321
TARGET 9 researchers 53 488 54

Table 10 Features for expert
finding and best supervisor
finding

Feature Description

L1-L10 Low-level language model features, refer to [40]

H1-H3 High-level language model features, refer to [40]

B1 The year he/she published his/her first paper

B2 The number of papers of an expert

B3 The number of papers in recent 2 years

B4 The number of papers in recent 5 years

B5 The number of citations of all his/her papers

B6 The number of papers cited more than 5 times

B7 The numebr of papers cited more than 10 times

B8 PageRank score in academic network

SumCo1-8 The sum of coauthors’ B1-B8 scores

AvgCo1-8 The average of coauthors’ B1-B8 scores

SumStu1-8 The sum of his/her advisees’ B1-B8 scores

AvgStu1-8 The average of his/her advisees’ B1-B8 scores

“not sure”. Participants can also add other best supervisors. Based on the feedbacks from the
participants, we organized a list for evaluating best supervisor finding. We rated each candi-
date person by simply counting the number of “yes”(+1) and “no” (−1) from the received
feedbacks and averaged the ratings over the number of the corresponding definite feedbacks
(“yes” and “no”). In this way, we created a relatively commonly accepted best supervisor list
for each query. Table 9 lists the statistics of this heterogeneous task data set.

5.4.2 Feature definition

We define 21 common features for expert finding and best supervisor finding (as shown in
Table 10). Features L1-L10 and H1-H3 are scores calculated using language models, while
features B1-B8 represent the expertise scores of an author from different aspects. B5-B7
are the same as S5-S7 in Table 7. More features for expert finding can be found here [63].
In addition, we define another 32 special features for best supervisor finding. SumCo1-
SumCo8 represent the overall expertise of his coauthors, and we average SumCo1-SumCo8
scores over the total number of his coauthors, denoted by AvgCo1-AvgCo8. Similarly, we
consider the summation and average of the expertise of only his advisees through features
SumStu1-SumStu8 and AvgStu1-AvgStu8. For SumStu1-SumStu8 and AvgStu1-AvgStu8,
we need identify the adviser-advisee relationship between researchers.

We employ a heuristic-based method for that. Table 11 defines four features to identify
the adviser-advisee relationship. Notation ni is the number of publications of author i , and
nco is the number of cooperation publications, ti is the year of author i’s first publication,
and tco is the first year of coauthors’ cooperations. Notation N is a constant that describes
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Table 11 Features for
relationship identification

Feature Description Formula

f1 Coauthor paper ratio nco
ni

− nco
n j

f2 Absolute paper difference g
( ni −n j

N

)

f3 Year of first paper g
( t j −ti

T

)

f4 Time interval until cooperation g (tco − ti ) − g
(
tco − t j

)

Table 12 Results of best supervisor finding

Approach P@5 P@10 P@15 MAP N@5 N@10

RSVM .7714 .8429 .8285 .7756 .5545 .5947

RSVMt .8000 .8286 .8476 .7837 .5923 .5999

MTRSVM .8000 .8286 .8476 .7875 .6140 .6075

Language model .6250* .6875* .6500* .6726* .3343* .3809*

HCDRank .8285 .7857 .8571 .7971 .6189 .6112

Best performances are in bold-font, and statistically significant improvements are with asterisk(*)

the average difference of number of publications between an ordinary teacher and a student,
and T is the time interval between their first publications. We take N = 10 and T = 10 in
our experiments. g(x) is an identity function if −1 < x < 1 and a sign function if x ≤ −1
or x ≥ 1. For any two researchers i and j , we calculate a score si j = ∑

k λk fk(i, j), where
weight {λ} of the features is predefined. Finally, if si j > r , we say author i is the advisor
of author j ; if si j < −r , we say author i is advised by author j , where r is a predefined
threshold, and usually takes 2.5∼3.5. Experiments show that the accuracy of relationship
identification with this method is 67.0%. Interested readers can refer to [58] for our demo.

5.4.3 Results and analysis

In this experiment, for the source domain data, we use all the labeled data from the expert
finding task, and for the target domain data, we use two sampled queries with their corre-
sponding documents from the best supervisor finding task as the labeled data, and the rest
as the unlabeled test data. Table 12 shows the performance of best supervisor finding. We
see that the proposed method performs better than the baseline methods of using RSVM,
RSVMt, MTRSVM and the language model-based method [60]. Also we can see that all
supervised learning-to-rank methods can achieve higher ranking accuracies than the unsu-
pervised ranking method (language model).

Table 13 show the top 5 best supervisors/experts for two example queries. From that, we
can see the traditional expert finding algorithm is inappropriate for the best supervisor finding
task.

5.5 Results on heterogenous data with network structure

5.5.1 Data set

There is no existing publicly available data set in our problem setting, so we only perform
our experiment on the heterogeneous academic dataset in the second experiment with minor
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Table 13 Example lists of expert finding verse best supervisor finding

Best supervisor finding Expert finding

Machine learning SVM Machine learning SVM

Geoffrey E. Hinton Bernhard Scholkopf Pat Langley Bernhard Scholkopf

Sanjay Jain Vladimir Vapnik Ivan Bratko Vladimir Vapnik

Michael I. Jordan John Shawe-Taylor Thomas G. Dietterich Olvi L. Mangasarian

Tom M. Mitchell Alex J. Smola Carl H. Smith Chih-Jen Lin

Avrim Blum Thomas Hofmann Jaime G. Carbonell Thorsten Joachims

Fig. 8 Random walk over
heterogeneous network

modification. Because there is no link information in the original dataset, we utilize Arnet-
Miner for generating the links, but there are some authors who cannot be matched perfectly,
so we remove them. Finally, the academic data set contains 14,023 authors, 10,212 papers,
and 1,382 conferences. In this experiment, we aim to transfer preference constraints from
conference subgraph to author subgraph via both the content correlation and the structure of
the whole network.

5.5.2 Feature definition

There are two different parts of features: (1) for node-specific attribute feature, we use the
same definition as Table 7; (2) for network structure feature, we will define them later in this
subsection. We have three different types of objects: paper(p), author(a) and conference(c).
In this heterogeneous network, for nodes, we use all of the three different types of objects; for
edges, we use the paper citation relationship, coauthor relationship, the author writes paper
relationship, the paper publishes on the conference relationship; for weights, if there is an
edge between two nodes, then the weight is 1, otherwise 0. Further, the set IS only contains
the conference object type, and IT only contains the author object type.

We use Fig. 8 to demonstrate the inter-type and intra-type link structure of the heteroge-
neous academic network. Now the problem is how to calculate the transition probabilities
between nodes. Specifically, let Va, Vp, Vc denote the set of authors, papers and conferences.
Because there are different kinds of links between heterogeneous objects, we define different
types of transition probabilities. Let μpp denote the transition probability for paper citations,
μpa and μap for paper-author relationship, μpc and μcp for paper-conference relationship.
Clearly, we need μpp + μpa + μpc = 1 and we define μap = 1 and μcp = 1. Then, the
transition probability from node vi to node v j can be defined as follows (more details can be
found in [49]):

pi j = μxy × 1

Out_Degree
(
vi → Vy

) (15)

where x, y ∈ {a, p, c} are the types of node vi and v j ; Out_Degree(vi → Vy) is the
total number of directed edges from vi to all the nodes in Vy .
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Table 14 Feature definitions for
heterogenous data with network
structure

Features Description

L1-L10 Low-level content features, refer to [40]

H1-H3 High-level content features, refer to [40]

S1-S7 Special features for conferences and experts, refer to Table 7

M1-MK Structural features by Markov random walk representation

We use the Markov random walk representation at step t in Sect. 4 to define the network
structure features. There are 25,617 different nodes in total for this heterogeneous academic
network data, so we did not directly use all the structure features. After we obtain the transition
matrix at step t , we can easily calculate the authority scores for each node by simply sum-
ming up the corresponding column. Then, we just use the top K nodes with highest authority
scores as the representatives of the whole network. Specifically, for node vi , we just use the
transition probabilities from it to the top K nodes at step t to form the node-specific structure
feature vector.

To summarize, Table 14 lists all the features for the this experiment. Among them, the
first 20 features (L1-L10, H1-H3, S1-S7) are the same as Table 7, M1-MK are K structural
features by Markov random walk representation.

5.5.3 Results and analysis

In this experiment, we use the same setting as Sect. 5.3. Empirically, we set the cost-sensitive
parameter C = 1, the step parameter t = 4, K = 100. By analyzing the log data of
ArnetMiner, we set the transition probabilities μpp = 0.7, μpa = 0.29, and μpc = 0.01.
Specifically, we first split the log data into different sessions of users, and then in each
session, we can further analyze the actions of the user: viewing conferences, viewing papers,
or viewing experts. Finally, we can count the co-occurrence of any two actions and get the
transition probabilities. x

As for the baselines, besides RSVM, RSVMt, and MTRSVM, we also compare the
performance of our approach with Net-RSVM, Net-RSVMt, and Net-MTRSVM which are
the corresponding structural versions of those baselines by exploiting network structural
information. Table 15 shows the results of different approaches, and the main observations
are as follows:

1. Ranking accuracy. Note that the results for RSVM, RSVMt, MTRSVM, and HCD-
Rank are a little different from Table 8, that is, because we remove some authors who
can not be matched perfectly. Among all the approaches, Net-HCDRank outperforms
the other baselines in most measures which verify the effectiveness of our approach.
Generally speaking, all the structural versions of the baselines outperform the original
ones in most measures which implies that exploiting the network structural information
can significantly boost the performances.

2. Feature analysis. Figure 9 shows the final weight vectors learnt in this data set. We can
see that the final w∗

T can exploit the data information from two domains and adjust the
weights learnt from single domain data to better predict preferences in the target domain.
This is the major reason why the proposed method performs best. The right table in the
figure lists the top 15 features vital for knowledge transfer in this academic data set by
the descending order of the absolute weight values.
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Table 15 Performances of different approaches for expert finding

Approach MAP N@1 N@3 N@5 N@10

RSVM .8457 .6811 .6228 .6083 .6695

RSVMt .8431* .5995* .6001 .5885 .6501*

MTRSVM .8439 .6709 .6224 .6071 .6651

HCDRank .8533 .6480 .6323 .6188 .6812

Net-RSVM .8422 .6760 .6400 .6199 .6701

Net-RSVMt .8374* .5995* .6122 .5989 .6446*

Net-MTRSVM .8386 .6454 .6235 .6045 .6613

Net-HCDRank .8508 .6760 .6428 .6318 .6816

Best performances are in bold-font, the improved performances by exploiting the network information are in
italic font, and statistically significant improvements are with asterisk(*)
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Fig. 9 Feature correlation analysis in the source and the target domains. The red colored weights w∗
T are

learnt by Net-HCDRank; the blue and black ones (wS and wT ) are learnt from the two domains separately.
The table lists top 15 features learnt from the academic data set for Net-HCDRank

Among them, there are one low-level content feature (L10), two high-level content
features (H2, H3), one special feature for conference (S1). All the other 11 features
are extracted from network structure, that is, the network structure information is very
important for transferring knowledge across domains.

3. Parameter sensitivity analysis. Figure 10 shows how the measures change while the
parameters K and t vary. From this figure, we can mainly conclude that: (1) When t = 2,
as K varies, all the measures (MAP, N@1, N@3, N@5, N@10) are relatively not stable,
and the performance drops relatively sharp, which indicates that the score after 2 steps
may include more noise. (2) When t = 4, as K varies, all the measures (MAP, N@1,
N@3, N@5, N@10) are very stable and very close. That means, the random walk results
at step 4 are more reasonable to describe the network structure.

4. Reason for performance. The academic data have intrinsic link structure which is very
useful for ranking objects. We try to exploit this information by Markov random walk
representation. The supervision can be propagated from the source subgraph to the target
subgraph via the links within the whole network. That is the main reason why Net-HCD-
Rank can outperform HCDRank significantly.
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Fig. 10 How performances vary as K increases

6 Related work

6.1 Learning to rank

Considerable works have been conducted for supervised learning to rank [32,6], which can
be divided into three categories: pointwise approach, pairwise approach [46], and listwise
approach. In pointwise approaches, the ranking problem aims at predicting the rank level
of an object. In pairwise approaches, the ranking problem can be reduced to binary classifi-
cation by comparing the rank levels of instance pairs. Ranking SVM [28], RankBoost, and
RankNet [13] are three state-of-the-art algorithms in this category. In listwise approaches,
the ranking problem is formulated to directly optimize some listwise performance measures
of information retrieval [56,59,61].

Regarding the unavailability of a large amount of training data, there are also some works
for ranking by semi-supervised learning and transductive learning. For example, Duh and
Kirchhoff propose a framework for ranking in the transductive setting. They try to extract
query-specific features in order to learn a query-specific ranking function [20]. Amini et al.
[2] propose a semi-supervised rankboost algorithm. Hoi and Jin propose a semi-supervised
ensemble ranking with a SVM-like formulation [29].

Some work takes the relations between objects to be ranked into consideration. Agarwal
et al. [1] propose a framework for ranking networked entities based on a maximum entropy
flow algorithm with weight function for different types of edges. In their work, they combine
pairwise preference constraints into a Markov random walk process and use the total amount
of in-flow to rank the entities. Our work is different from theirs in three folds: (1) we have
query information; (2) we have attribute vector for each node; (3) our work is in a transfer
learning setting. Qin et al. [44] propose a problem referred to as “learning to rank relational
objects” while the ranking function takes the relationships between the objects to be ranked
into consideration, they also formulate it into an optimization problem based on Ranking
SVM for solving it. They need to predefine an outer ranking function based on relations, so
it cannot be used to other tasks different from the two tasks defined in that paper, that is also
the reason why we do not use it as a baseline method. The major difference from our work
is that our data objects are in a heterogeneous network under transfer learning setting.

Also there are quite a few work done in cross-domain ranking problem [24,25]. Chen and
Lu et al. [15] propose a tree-based ranking adaptation algorithm, aiming to make use of the
training data from an existing domain. Wang et al. [52] propose a novel problem called heter-
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ogeneous cross-domain ranking problem and also propose a unified regularized framework
for solving it. Chapelle et al. [14] propose a novel multi-task learning algorithm with boosted
decision trees for jointly learning different web search ranking tasks. Another noting thing
is that the second track of Yahoo! Learning to Ranking Challenge6 is for transfer ranking. In
the second track, there are two data sets for this challenge, each corresponding to a different
country. Both data sets are related, but also different to some extent. The larger set serves as
the source domain and the smaller one as the target domain.

The biggest difference from our work is that our main focus is on the knowledge transfer
across heterogeneous objects (eg., conferences vs. experts).

6.2 Transfer learning

Another related work is transfer learning, which aims to transfer knowledge from a source
domain to a related target domain. Two fundamental issues in transfer learning are “what to
transfer” and “when to transfer” [43]. Many approaches have been proposed by reweighting
instances in source domain for the use in target domain [17]. Gao et al. [22] propose a locally
weighted ensemble framework which can utilize different models for transferring labeled
information from multiple training domains.

Also many works have been done based on new feature representation [31,36]. For
example, Argyriou and Evgeniou propose a method to learn a shared low-dimensional rep-
resentation for multiple related tasks [3]. The algorithm can learn the features and the task
functions simultaneously in a convex optimization formulation which can be solved very
efficiently. Blitzer et al. [9] propose a structural correspondence learning (SCL) approach to
induce correspondences among features across two domains. Raina et al. [45] propose to use
large amount of unlabeled data in source domain to improve the performance on target domain
in which there are few labeled data. Xie et al. [55] propose a framework called LatentMap for
dealing with the transfer learning problem where the spaces of two domains are at most over-
lapping, the marginal and conditional distributions are different, and the dimensionality can
be extremely high. Gupta et al. [26] propose a novel nonnegative shared subspace learning
framework for improving the retrieval performance by leveraging a second data source.

Some works about knowledge transfer across heterogenous feature spaces have been done
[38]. For example, Yang et al. [57] propose an approach called annotation-based probabilistic
latent semantic analysis(aPLSA) for boosting unsupervised learning with the help of another
heterogeneous data collected from the social Web.

Shi et al. [47] propose a novel algorithm called HeMap for borrowing supervised informa-
tion from data set with different feature spaces, distributions, and output spaces via spectral
embedding.

Recently, there are some works done about knowledge transfer in heterogeneous network
[23,27].

Dai et al. [18] propose a general framework called EigenTransfer for tackling many exist-
ing transfer learning problems. They learn the spectra of a graph consisting of features,
instances, and class labels by normalized cut, then based on the spectral representation, they
learn a classifier from all the labeled data in the target domain.

They transfer the knowledge across domains via constructing a task graph. That is differ-
ent from ours in two folds: (1) we are dealing with heterogeneous network which is in an
inherent graph setting; (2) we need to exploit the link structure between objects to boost the
performance.

6 http://learningtorankchallenge.yahoo.com.
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There are also many other works which transfer information by shared parameters [10,21],
relational knowledge [41], or kernel method [62]. Transfer learning techniques are widely
used in classification, regression, clustering, dimensionality reduction [53], collaborative
filtering [37], sentiment classification [42], and information extraction [54].

7 Conclusion and future work

We formally define the problem of heterogeneous cross-domain (HCD) ranking and address
four challenges: (1) how to formalize the problem in a unified and principled framework
even when the types of objects across domains are different; (2) how to transfer the knowl-
edge of heterogeneous objects across domains; (3) how to preserve the preference relation-
ships between instances across heterogeneous data sources; (4) how to efficiently exploit the
structure information for better knowledge transfer. To address these, we propose a general
regularized framework to discover a latent space for two domains and minimize two weighted
ranking functions simultaneously in the latent space. We solve this problem by optimizing
the convex upper bound of the non-continuous loss function and derive its generalization
bound. Further, we try to exploit the network link structure for better knowledge transferring
between objects with different types by Markov random walk representation. Experimental
results on three different genres of data sets demonstrate the effectiveness of the proposed
methods.

There are several directions for future work. It would be interesting to develop new
algorithms under the framework and to reduce the computing complexity for online appli-
cation. Another issue is, if there are no supervision in the target domain, so how to transfer
ranking information from the source domain by the link structure of the network.

Another potential issue is to apply the proposed approach to other applications (e.g.,
recommendation, rating, and link prediction) to further validate its effectiveness.
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Key Foundation Research (No. 60933013, No. 61035004).

Appendix A: Derivation of the equivalent convex formulation

For completeness, we give a brief proof on the equivalence between Eqs. 9 and 10. We
follow the same structure as the proof of equation equivalence in [3]. For easy explanation,
we denote the objective functions in Eqs. 9 and 10 as E(W, U ) and R(M, D), respectively.

Theorem A.1 Problem of min
{E(W, U ) : U�U = I

}
is equivalent to the problem

min
{R(M, D) : D � 0,Tr(D) ≤ 1,range(M) ⊆ range(D)

}
.

Proof The correspondence between the two problems is M = U W ,

D = UDiag
( ||ai ||2||W ||2,1

)
U�. Let ai be the i-th row of W, ‖ai‖2 = ‖M�ui‖2. So

2∑

t=1
〈αt , D+αt 〉 = Tr(M� D+M) = ‖W‖2,1 Tr

(
M�UDiag(‖M�ui‖2)

+U�M
)

= ‖W‖2,1 Tr
( d∑

i=1
(‖M�ui‖2)

+M�ui u�
i M

) = ‖W‖2,1

d∑

i=1
‖M�ui‖2 = ‖W‖2

2,1
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Therefore, minM,D R(M, D) ≤ minW,U E(W, U ).
On the other side, let D = UDiag(λi )U�, then

2∑

t=1

〈αt , D+αt 〉 = Tr
(
M�UDiag(λ+

i )U�M
) = Tr

(
Diag(λ+

i )W W �) ≥ ‖W‖2
2,1

Hence, minM,D R(M, D) ≥ minW,U E(W, U ). So they are equivalent. ��

Appendix B: Proof for the generalization bound of HCDRank

Proof First of all, some notations will be introduced. A domain is defined by two terms: the
distribution D on instance space X , and a ranking function f : X → R. Then, the source
and target domains are denoted by 〈DS, fS〉 and 〈DT , fT 〉, respectively.

Following [8], suppose f ∗ is the ideal ranking function for the target domain, and h :
XT → R is a hypothesis for instance space XT , then according the target domain distribution
DT , the probability of h disagreeing with f ∗ can be defined as follows which is also the risk
of this hypothesis:

εT (h, f ∗) = Ex1,x2∼DT

[
cpre f

(
x1, x2, h(x1), h(x2)

)]
(16)

where cpre f
(
x1, x2, h(x1), h(x2)

) =
⎧
⎨

⎩

1 y1 � y2 ∧ h(x1) ≤ h(x2)

1 y1 ≺ y2 ∧ h(x1) ≥ h(x2)

0 otherwise

in which y1, y2 are the corresponding rank levels of x1, x2.
This risk can be abbreviated to εT (h) and the corresponding empirical risk is denoted as

ε̂T (h). The parallel notations εS(h, f ∗), εS(h), ε̂S(h) are used for the source domain. These
can be used to calculate the distance between the two domains DS and DT by a hypothesis
class specific measure. Let H be a hypothesis class for instance space X , AH be the sub-
set of H consisting of each hypothesis h ∈ H,

{
x1, x2 : x1, x2 ∈ X , y1, y2 ∈ Y, I[y1 �

y2] ∗ I[h(x1) > h(x2)] + I[y1 ≺ y2] ∗ I[h(x1) < h(x2)] = 1
} ∈ AH where y1, y2 are the

rank levels of x1, x2.
Then the distance between the source and target domains is defined as

dH(DS, DT ) = 2 sup
A∈AH

∣
∣PrDS [A] − PrDT [A]∣∣ (17)

According to [8], when H has finite VC-dimension k, dH can be computed from finite
unlabeled samples of the two domains. Let H be the hypothesis space, we can define the
symmetric difference hypothesis space H��H as

H��H = {
c(x1, x2, h, h′) = 1 : h, h′ ∈ H} (18)

where c(x1, x2, h, h′) =
⎧
⎨

⎩

1 h(x1) > h(x2) ∧ h′(x1) ≤ h′(x2)

1 h(x1) < h(x2) ∧ h′(x1) ≥ h′(x2)

0 otherwise
(19)

For a pair of hypotheses in H, if they disagree with each other on a point, then that point
will be labeled as positive by each hypothesis g ∈ H��H. Similarly, AH��H can be defined as
the set of A such that A = {

x1, x2 : x1, x2 ∈ X , I[h(x1) > h(x2)] �= I[h′(x1) > h′(x2)]
}

for

123



140 B. Wang et al.

some h, h′ ∈ H. Then, the distance dH��H can be proven satisfying the following inequality
for any hypotheses h, h′ ∈ H:

∣
∣εS(h, h′) − εT (h, h′)

∣
∣ ≤ 1

2
dH��H(DS, DT ) (20)

Further, for the combined source and target task, the ideal hypothesis which can minimize
the combined risk can be defined as

h∗ = argmin
h∈H

εS(h) + εT (h) (21)

This combined risk can be denoted as λ = εS(h∗) + εT (h∗).
Regarding our problem, an equivalent formulation for Eq. 9 is as follows:

min
W,U

n1∑

i=1

[
1 − zSi

〈
wS, U�

(
xa

Si
− xb

Si

)〉]

+

+C
n2∑

i=1

[
1 − zTi

〈
wT , U�

(
xa

Ti
− xb

Ti

)〉]

+
s.t. ||W ||2,1 ≤ κ, U�U = I

(22)

where κ ≥ 0 and there is a one-to-one correspondence between λ and κ [39].
In Eq. 22, the objective function is ε̂S(h)+ C ε̂T (h) with parameter C ∈ [0,∞). It is easy

to prove that C is equivalent to the ratio (1 − θ)/θ with θ ∈ [0, 1], that is, θ = 1/(1 + C).
Thus, by replacing C with (1 − θ)/θ and multiplying both sides of the equation by θ , we
can obtain the following equivalent objective function which is a convex combination of
empirical source and target risk:

ε̂θ (h) = θ ε̂T (h) + (1 − θ)ε̂S(h) (23)

where θ = 1
1+C , ε̂θ (h) and εθ (h) are the empirical/true weighted risks respectively. Hereafter,

we will analyze the weighted risk function in Eq. 23.
Following [8], we can use the following two lemmas for bounding the target domain

risk. Lemma B.1 bounds the difference between the target risk and the weighted risk, and
Lemma B.2 bounds the difference between the empirical and true weighted risks.

Lemma B.1 Let h be a hypothesis in H, then

∣
∣εθ (h) − εT (h)

∣
∣ ≤ (1 − θ)

(
1

2
dH��H(DS, DT ) + λ

)

(24)

Lemma B.2 Let H be a hypothesis space of VC-dimension k. If we label βm points from
DT and (1 − β)m points from DS by fT and fS respectively with β = nT /(nS + nT ), then
with probability at least 1 − δ, for every h ∈ H

∣
∣ε̂θ (h) − εθ (h)

∣
∣ <

√
θ2

β
+ (1 − θ)2

1 − β

√
k log(2m) − log δ

2m
(25)

Following [8], from these two lemmas, we can obtain the following theorem:

Theorem B.1 Let H be a hypothesis space of VC-dimension k. Let US and UT be unlabeled
samples of size m′ each, drawn from DS and DT respectively, and d̂H�H is the empirical
distance between them. Let L = LS

⋃LT be the labeled samples of size m generated by
drawing (1 − β)m points from DS and βm points from DT , labeling them according to fS

and fT respectively. If ĥ ∈ H is the empirical minimizer of ε̂θ (h) on L, h∗
T = minh∈H εT (h)
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is the target risk minimizer, and γ = minh∈H εS(h)+ εT (h), then with probability of at least
1 − δ(over the choice of the samples)[8]

εT (ĥ) ≤ εT (h∗
T ) + 2

√
θ2

β
+ (1−θ)2

1−β

√
k log(2m)−log δ

2m

+2(1 − θ)
(

1
2 d̂H�H(US, UT ) + 4

√
2k log(2m′)+log

(
4
δ

)

m′ + γ
) (26)

Following [28], we can use the following theorem to bound the target risk εT (h).

Theorem B.2 Let LT be the labeled samples of size βm generated from DT , labeling them
according to fT , and e be the natural logarithm. For each ranking function h : X → R with
zero training error, then with probability 1 − δ

εT (h) ≤ 2

βm − 1

(

k log

(
8e(βm − 1)

k

)

log
(
32(βm − 1)

)+ log

(
8(βm − 1)

δ

))

By plugging theorem B.2 into theorem B.1, we can obtain the generalization bound for
our HCD Ranking problem as show in theorem 3.1. ��
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