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Abstract

Ranking is an important way of retrieving authoritative pa-
pers from a large scientific literature database. Current state-
of-the-art exploits the flat structure of the heterogeneous ac-
ademic network to achieve a better ranking of scientific ar-
ticles, however, ignores the multinomial nature of the multi-
dimensional relationships between different types of aca-
demic entities. This paper proposes a novel mutual ranking
algorithm based on the multinomial heterogeneous academ-
ic hypernetwork, which serves as a generalized model of a
scientific literature database. The proposed algorithm is
demonstrated effective through extensive evaluation against
well-known IR metrics on a well-established benchmarking
environment based on the ACL Anthology Network.

Introduction

The tremendous scientific advancements, which result in a
fast growing scientific literature database, have made au-
tomatic scientific ranking a much more important issue
than ever before. Researchers need to know what papers
are the must-read classics to gain a solid understanding of a
scientific domain and, besides that, what papers are the
most valuable for them to read to catch up with the current
research fronts. However it is a great challenge for re-
searchers to answer the above questions efficiently due to
the explosive number of scientific publications. For exam-
ple the ACL Anthology for the small subarea computation-
al linguistics has indexed 18041 papers published by 14386
authors in 273 conferences or journals by 2011. It is so
complex for humans to maneuver this dataset manually
that there is an urgent need for effective automatic ranking.

For the purpose automatic scientific ranking, a number
of graph-based algorithms have been proposed. A recent
trend in graph-based algorithms is to employ the structure
of the heterogeneous academic network for an improved
ranking (Zhou et al., 2007; Sayyadi and Getoor, 2009; Das
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etal., 2011; Yan et al., 2011; Wang et al., 2013). The most
important assumption of these algorithm is that the authori-
ty of the papers and the importance of their authors (as
well as publication venues ) are mutually reinforced, that is
a paper may be more authoritative if it is written by influ-
ential researchers and a researcher gains more importance
from its papers that are regarded as influential.

Despite of their success in improving ranking effective-
ness, graph-based algorithms all work on simple networks,
either homogeneous or heterogeneous, which limits their
abilities to model the real-life situation and thus their rank-
ing performance. A toy example helps to understand this.
For the scientific literature database in Figure 1(a), current
works use simple network to model author! citations as in
Figure 2(b). A paper citation results in several author cita-
tions, each of which links a citing author to a cited author
in the author citation network. As a matter of fact, these
author citation relations are just low-dimensional projec-
tions of a multinomial citation relation between the authors
of the citing and cited papers. A more natural way is to
model these multinomial citations using a directed hyper-
network? (Ducournao & Bretto, 2014). Figure 1(c) shows a
subnetwork of the author citation hypernetwork. The red-
dashed, blue-solid and yellow-dotted polygons represent
three citation hyperedges. Double-lined and shaded verti-
ces denote the tail and head vertices respectively. In such a
hypernetwork, an author citation hyperedge links the set of
authors of a citing paper to the set of authors of a cited
paper. For example, the fact that p; cites ps results in the
blue-solid hyperedge. Its tail vertices (i.e. citing authors)
and head vertices (i.c. cited authors) are {r|, 72} and {rs, s}
respectively. Note that this is a case of author self-citation
as r acts as both a citing author and cited author.

We argue that using hypernetwork as a better model for
the multinomial relationships between academic entities,

! Author and researcher are used interchangeably throughout the paper.

2 Although network and graph are typically used for the directed and
undirected case respectively in discrete mathematics, this paper inter-
changeably uses hypernetwork and hypergraph.
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Figure 1. An exemplar Heterogeneous Academic Network.

we may get a more reasonable ranking result. As an illus-
tration, applying PageRank to both networks in Figure 1(b)

and Figure 1(c) results in the following researcher rankings:

rip) = [71:0.09, 12:0.03, r3:0.78, r4:0.05, r5:0.05] and ri() =
[71:0.33, 72:0.03, 73:0.41, 74:0.11, 5:0.11]. We can see that
the importance of 1 has been elevated by using author cita-
tion hypernetwork. This is reasonable because 7 not only
receives many citations but also citations from important
researchers like 3. We argue that PageRank on author cita-
tion hypernetwork returns a more reasonable ranking result
than on simple author citation network.

Actually there also exist multinomial multidimensional
relationships between different types of academic entities.
For instance, a few researchers may have co-authored a
number of papers. Current methods project these multimo-
nial multidimensional relations to a number of simple bina-
ry relations which lead to information loss and thus poor
ranking effectiveness. To overcome the above deficiencies,
this paper proposes to use heterogeneous hypernetwork as
a generalized model for the multinomial and multidimen-
sional academic network, resulting in a heterogeneous ac-
ademic hypernetwork, and proposes a better mutual rank-
ing algorithm for scientific articles by employing the mu-
tual reinforcement relationships between academic entities
in the heteroegeneous academic hypernetwork.

Related Work

Graph-based algorithms have recently been extensively
applied to scientific ranking. Chen et al. (2007) was the
first to apply Google’s PageRank algorithm to the citation

network to find the most prestigious papers. Later, Liu et al.

(2008) proposed a PageRank-style personalized ranking
algorithm for scientific publications by introducing time
factors into the personalization vector for an acknowl-
edgement of time recency. Almost at the same time, Walk-
er et al. (2007) proposed the CiteRank algorithm which
was derived in a different way where the rank of a paper is
defined as the authority aggregated from other nodes
through an authority flow downstream in the citation net-
work as in Eq. (1) where « is the fraction of score flowing
downward the citation network represented by W. An im-
portant aspect of CiteRank is the setting of personalization
towards each paper based on its publication time in Eq. (2)
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where 7, and ¢ are respectively the current time and the
publication time of the i-th paper in term of year or month,
and 7 is an adjustable decay factor.

)
2

Li et al. (2008) also considered a personalization strategy
similar to CiteRank for favoring recent articles. Later, Yan
et al. (2009) proposed to use the weighted PageRank to the
coauthorship network and studied the effect of different
damping factors. Radicchi et al. (2009) proposed SARA on
author citation network, which works in quite a similar
way to CiteRank on paper citation network. In their es-
sence, CiteRank and SARA can be rewritten into an ele-
gant matrix formulation which is almost equivalent to Pag-
eRank. All the above methods build and work on homoge-
neous network of only one type of academic entities.

Indeed, author importance and venue prestige were
thought to have a significant impact on the assignment of
paper authority, especially for those published recently
without having attracted enough incoming citations. The
above intuition was realized by recent efforts in heteroge-
neous graph based ranking of multi-type, multi-relational
data. The seminal work CoRank proposes ranking frame-
work based on a combination of intra-network (homogene-
ous) random walk in the citation and coauthorship network
as well as the inter-network (heterogeneous) random walk
between papers and its authors in the authorship network
(Zhou et al., 2007). A large portion of later works followed
or extended the similar idea of CoRank (Deng et al., 2009,
Sayyadi and Getoor 2009; Yan et al., 2011; Ng et al., 2011;
Jiang et al., 2012; Wang et al., 2013) while differed from
CoRank in that they all employed only one-step random
walk in both the homogeneous and heterogeneous net-
works. Deng et al. (2009) proposed the Co-HITS algorithm
to bipartite graphs with one of its variant based on random
walk works just in a similar way to the inter-network ran-
dom walk in CoRank. The FutureRank algorithm (Sayyadi
and Getoor 2009) was different from CoRank in that it did
not rely on either the coauthorhisp or author citation net-
work. The algorithms proposed by Yan et al. (2011) and
Wang et al. (2013) also relied on the mutual reinforcement
between papers and venues without considering homoge-
neous relationships between either authors or venues, while
these information was used in Das et al. (2011).

s=l-p+(1-a)- W-p+(1-a)" - W-p+--

(o =11)/7

pi=e

Method

Heterogeneous Academic Hypernetwork

Most previous studies model the multinomial relationships
between (the same type of) entities using undirected (ho-
mogeneneous) hypernetwork. To accommodate more gen-



eralized circumstances such as author citation network, this
paper, inspired by Bellaachia and Al-Dhelaan (2015) and
Ducournao and Bretto (2014), extends hypernetwork defi-
nition to the directed case as follows. A directed homogen-
enous hypernetwork is denoted as # = (V,E) where (1)
V =V"UV" denotes the set of vertices with V" and V'~
called the set of tail and head vertices respectively; (2)
Ez{é | éz(V*(é),V’(é))} denotes the set of directed
hyperedges with V'(e)c V" and V (¢) <V being the
sets of tail and head vertices that are incident to ¢ . Note
that we allow V' (e)nV (e)=Q . W (é) denotes the
weight of hyperedge ¢ and W, = diag(W (¢)) is the diag-
onal matrix of hyperedge weights. As in Bellaachia and Al-
Dhelaan (2015), we also allow vertices not only hyperedg-
es to be weighted. Thus, a directed hypernetwork # can
be represented by two weighted adjacency matrices W’
and W where W' (v,é) and W (v,é)) denote the weight
of the tail and head vertex of hyperedge ¢ respectively.
Correspondingly there are two Boolean adjacency matrices
H' and H .Superscripts “[P]” and “[R]” are used to dis-
tinguish between paper citation hypernetwork #™ = (V'™
E™) and author citation hypernetwork #™ = (V'™ E"™) .
This paper also considers to employ the multinomial re-
lationship between papers and authors to boost scientific
ranking performance. We use H™" = (V™ , E™) to denote
the heterogeneous hypernetwork where (1) the superscript
“[PR]” indicates # ™™ is a heterogeneous hypernetwork
capturing the multinomial relationships between Papers
and Researchers; (2) V™ =V"™ UV™ is the vertex set and
E™ = {e[”“ | ™ = (Vm (™), V™ (e“’”))} denotes the edge
set. For an undirected heterogeneous hyperedge ™ ,
V(™) and V™ (e™) denote the subsets of papers and

researchers that are incident to hyperedge €™ respectively.

HTY is represented by a | V™ |-by-| E™™ | weighted adja-
cency matrix W™ and a | V™ |-by-| E™ | matrix W™,
which indicate the weights of a paper and a researcher in a
heterogeneous hyperedge €™ respectively, and two corre-
sponding binary adjacency matrices H"™ and H™" . Each
heterogeneous hyperedge ¢™ has a weight W™ (™) and
a diagonal edge weight matrix W™ = diag(W""(e"™)) .

Heterogeneous Academic Hypernetwork Ranking

Based on the above definitions of the heterogeneous aca-
demic hypernetworks, our scientific literature ranking al-
gorithm is formulated based on the mutual reinforcement
assumptions as follows. Each paper p; is assigned two im-
portance values, the authority pa(i) and the ph(i), and the
importance of each researcher 7y is denoted as ri(k). Thus
for all the papers and researchers we have three ranking
vectors pa, ph, and ri. Intuitively, one purpose of hub is
for assessing a paper’s “soundness”, that is whether a paper
covers enough authoritative related work. The other is for
introducing a mechanism of backward flow (Jiang et al.,
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2013) from the cited to citing papers, otherwise old papers
or dangling papers (without outgoing citations caused by
dataset cutoff) will absorb the ranking values.

The idea of the ranking algorithm is explained using the
assignment of paper authority vector as follows.

Computing the Paper Authority Vector

The computation is done at an iterative fashion. The au-
thority pa“*" (i) of paper p; at time (¢ + 1) has the follow-
ing three parts with the constraint a1 + a2 + o3 = 1.

(1) au; part is directly inherited from its historical value,
that is pa"*" (i) < «,, - pa” (i).

(2) a2 part is transmitted from the hub values of its cita-
tions, that is pa"""(i) « a,-Y.  ph"”(j) where p;
— p; means a citation from paper p; to f)aper Di

(3) The remaining o3 part is reinforced by its authors’
importance values as in pa”* 1)(1)<—0513 Z E rz(’) (k)
where A(p;) is the set of authors of paper p; " rif(k) is
the k-th researcher’s importance at time ¢.

First formulate part (2) of paper authority pa“*" (i) . Be-
cause each citing paper p; may be connected to p; via dif-
ferent hyperedges, to transmit the hub value of p; to p; over
H'™, we need to first select a directed hyperedge €™ go-
ing out of p; according to the following probability, which
is in essence the normalized weight of hyperedge ",

VVe[P] (E[PJ)XH[P+](j,E[P])
Pl ~[P P . ~[P]y °
> iy W@ H (™)

This means a portion of hub value (specified in Eq. (3))
is propagated from paper p; to the head vertices incident to

€™ . Among this, the fraction that goes to p; is determined
by Eq. (4), which is in essence the normalized weight of p;
as a head vertex in e"

VVV[P*] (i, E[P] )
Wikl = 5P
Zm“’l LoGe

Combining these two probabilities, we get the transi-
tion probability from a citing paper p; to a cited paper p; in
the homogeneous hypergraph #"" as follows,

3)

) )

WIE) < H e e

P =D

d"()) s"iE™ (5

Where
PP llae! ()= Zé["]eE["] Wem ( Pl )x HT (, pid ), (©6)
SPI(@E™) = z,*eyll‘\ VVV[IL] i,e™y. %)

d"(j) and 5"7(€"™)are called the out-degree of pa-
per p; and in-degree of hyperedge &' in #™ respectively.

Based on Egs. (5-7), part (2) of paper authority is calcu-
lated in Eq. (8).
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W@ < H 8 .8
d™(j) ST

A neater matrix-vector format of Eq. (8) is as follows

T
pa’" «a, (L") ph®, ©)
where "' is the normalized transition matrix for the pa-
per citation hypernetwork as follows

[P :(D[P*] )*‘ HE W .(A[P—])” .(w[P*] )T, (10)

where D' =diag(d""(j)) and A" =diag(s" (™))
are the diagonal matrices of the out-degrees of papers and
the in-degrees of paper citation hyperedges respectively.

Part (3) of the authority of paper p; is propagated from
the importance of each of its authors 7 through the hetero-
geneous authorship hypergraph. Similarly this is also done
by a two-step process. First, a portion of ri(7x) is propagat-
ed over #™ via an undirected heterogeneous hyperedge
€™ that is incident to 4 based on the normalized weight
of €™ . Then this amount of author importance is transmit-
ted to the target paper p; based on the normalized weight of
piin €™ . Thus the transition probability from author 4 to
paper p; over H™ is

Pr®P (ki) =
Z PRI (e[PR])XH[R/P] (k e[PR]) PRI (i e[PR]) , (11)
e > % v )
PRI _ PRI

d[R/ P] (k) 5[P/R] (e[PR] )
Where
d[R/P] (k) — ZélpR]EE["Rl We[PR] (’é[PR]) % H[R/P] (k, é[PR]) , (12)
ST = Zfeym VVV[P/R] (@,e™). (13)

d™" (k) denotes the mode-R degree of researcher 7y in
H'™ while 6" (™) denotes the mode-P degree of the
heterogeneous hyperedge ™.

Based on Eq. (11), part (3) of paper authority is calculat-
ed by pa"""(i) « a3y P77k, 1) x 7" (j) , and in

matrix-vector format as follows

pa'" «—a, (ER%P] )T ri”, (14)
where %" is the normalized transition matrix from re-
searchers to papers in the heterogeneous authorship hyper-
graph as follows
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[RoP (D[R/P] )—1 CHIVPLL py PRI '(A[P/R] )—1 .(W[P/R] )T . (15)

where DV*! = diag(d™" (k)) is the diagonal matrix of the

out-degree of researchers and A®" = diag(s™" (™)) is

the diagonal matrix of the in-degrees of papers in H™ .
Putting the above together we have

pa(tﬂ) _

, 16
a,A"'pa"” +a, (L[P” )T ph" + ¢, (L[R"P] )T ri” (16)

where A" is a np-dimensional identity matrix.

Putting the Remaining into a Unified Form
Paper hub is calculated similar to authority as in Eq. (17).

ph(m) _
T T

P-] 0 LA NENE RP1\ D ()

a,y, ([,{ ) pa"”’ +a,,A"ph +a23(ﬁ ) ri

where

A = (D[P—])

. amn

-1 1

BN )

is the normalized transition matrix for the reverse paper
citation hypernetwork.
Similarly research importance is computed by

ri(rH) —

T T s
a, (ﬁp_’R]) pa"” +a,, (L[P_’R]) ph" + o, £

where
1 —
Po>R] _ [P/R] [P/R] [PR] [R/P]
£PM = (D) T HM L WP (AT

AR (D[R+] )‘1 CHIR L WIRI ,(A[R—] )‘1

(19)

1

(W), (20)
(WE @D

To put all the above together, we have the following uni-
fied iterative ranking equation

T (1)

1 _
T g AP o, T o 0] [pa
ph| =| @,/ a,A" o, 0| |ph| . (22)
ri a L8 a7 o N ri
Experiments

Experimental Setup

It is always difficult to put different ranking algorithms in a
fair play because of lack of a common testing benchmark
including dataset, gold-standard and evaluation metrics.
Thus one of the contributions of this paper is to construct a
comprehensive testing benchmark® for the design and eval-
uation of scientific ranking algorithms.

3 Available at http:/sites.google.com/site/xiaoruijiang/research.



avg #citation

#paper  #author  #venue  #dangling (wlo dangling)
4187
18041 14386 273 (23.21%) 4.597/5.987

Table 1. Statistics of the Benchmarking Dataset

#rec. 2 3 4 5 6 7 8 9 10
#GoldP 63 19 7 1 1 0 0 1 1 93
Grade 1 2 3 3 4 4 5 5 5

Table 2. Statistics of the Gold Standard Sets

numNonDangling mmnumDangling -A-ratioGoldStandard
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Figure 2. The Time Distributions for the AAN Benchmark Da-
taset and Gold Standard Papers.

Dataset Description

Previous studies evaluated their algorithms on different
datasets, for example the arXiv hep-th dataset (Chen et al.,
2007; Walker et al., 2007; Radicchi et al., 2009, the Infor-
mation Science and Library Science publications (Ding et
al., 2009; Yan et al., 2011), and different datasets of com-
puter science publications (Zhou et al., 2007; Li et al.,
2008; Sayyadi & Getoor, 2009; Das et al., 2011).

This paper uses ACL Anthology Network (AAN) as the
benchmarking dataset (Radev et al., 2013). AAN contains
the complete collection of computational linguistics arti-
cles published by the ACL (Association of Computational
Linguistics). The 2011 release of AAN is used and its sta-
tistics is shown in Table 1. A distinguishing advantage of
using AAN is that, by recording the full name of each au-
thor in such a self-contained field, the need for name dis-
ambiguation is minimized.

Note that in this paper, the citation hypernetwork #™
is constructed by adding a hyperedge for each citing paper
p with the citing paper alone as the tail vertex set and all
the cited papers as the head vertex set. For the author cita-
tion hypernetwork #™, we add a directed hyperedge for
each pair of citing and cited papers. The authors of the cit-
ing and cited paper constitute the tail and head vertex sets
of the hyperedge respectively. The heterogeneous hyper-
network H™ is constructed by adding a hyperedge for
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each set of coauthors and the set of papers they collaborate
on. For evaluation, this paper only considers the simple
case where both hyperedges and vertices are unweighted
and leaves weighting strategies as one of our future work.

Evaluation Methods

The gold standard set GoldP consist of 93 papers that are
recommended at least twice by two well-known textbooks
and/or the course reading lists of 15 world-famous univer-
sities, with the recommendation counts listed in Table 2.
The non-uniform time distributions of both the AAN da-
taset and gold standard papers are illustrated in Figure 2.

As there are recommendation counts for the gold stand-
ard set of papers, we adopt two widely adopted graded
relevance metrics for evaluating the ranking effectiveness.
The first metric is the Normalized Discounted Cumulative
Gain (NDCG:; Jérvelin and Kekéldinen, 2002). The second
metric is Graded Average Precision (GAP; Robertson et al.,
2010), a generalization of average precision to the multi-
graded case. While NDCG is precision-oriented, GAP also
considers recall by estimating the area under the non-
interpolated graded precision-recall curve. For graded doc-
ument ranking evaluation, let G =[0, 1, ..., c] be the grade
list for the top-K document list R = {d; | 1 <k < K where
the grade for each document dj is 7 € G}, which is sorted
in descending order of grade to R= {djy}.

NDCG is defined as the Discounted Cumulative Gain
(DCQG) divided by its ideal value (IDCG), that is

DCG@K _ Druer’s
IDCG@K Y, 7’

1<[i]<K T

NDCG @K = (23)

where 7, =logd, ifdi>1and 7, =d, otherwise.

GAP is based on such a hypothetic model that a user has
a probability p; to set a threshold at grade j, that is to treat
grades 1, ...,/ as relevant. Thus GAP is formulated by the
accumulated average precision contributed at all the K po-
sitions divided by the maximal accumulated average preci-
sions contributed by the top-K documents, as in Eq. (24)

GW@K:Z;ZL&mm#
Zi:l Ri ’/:I p,

where R; is the number of relevant documents at grade i,

min(7g iy )
6(]’)’!, k) — {211 p./‘

; (24)

r.>0
. (25)
0 otherwise

Experiment Results

Several representative ranking algorithms are evaluated in
the same benchmarking environment, including PageRank
(Brin and Page, 1998), the randomized version of HITS
(Ng et al, 2001), CoRank (Zhou et al., 2007), FutureRank
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Figure 3. NDCG Curves for Top-100 Papers.
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Figure 4. GAP Curves for Top-100 Papers.

(Sayyadi and Getoor 2009), P-Rank (Yan et al., 2011). For
CoRank, a and S (= 1 — a) parts of all the ranking vectors
come from intra- and inter-network iterations respectively.
FutureRank also has an additional y part of uniform tele-
portation for paper ranking such that o + f+y=1. On the
contrary, P-Rank adopts personalized PageRank for paper
ranking with y part of non-uniform (i.e. personalized) tele-
portation, where o and f (= 1 — @) portions of the personal-
ization vector come from author and venue (journal and/or
conference etc.) rankings respectively. The algorithm pro-
posed in this paper is denoted as HHGBiRank. However,
to demonstrate the usefulness of distinguishing paper au-
thority and hub, this section also consider a variant called
HHGRank which applies PageRank-style ranking to paper
citation hypernetwork. Note that although time factor is not
considered in FutureRank for the purpose of a fair play, we
will see how HHGBiRank improves ranking performance
by resolving a related issue of time factor. We report the
results under parameter settings that have been proved ef-
fective so that real performances of different competitors
can be reflected. Thus we have a1 = o= o1 = 02 = a3
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Figure 5. Jensen-Shannon Divergence of Top-100 Papers.

Jenson-Shannon Divergence

04 -
0235

0.3

—+—PageRank

026 1 -a-RandHITS

02 —+-CoRank
0.15 ——FutureRank

0.1 + -*-HHGBiRank
0.05 \‘\X-—H—H”‘"‘—* -o-HHGRank

S & P S LSS
& & @Y 5 X O
%@@@@@@@@@
TRV PrPRY R Y

Figure 6. Jensen-Shannon Divergence of Top-500 Papers.

=032 = 0.3 and 13 = 03 = 033 = 0.4 for HHGBiRaI]k;
m=2,n=2,1=1 (as in its original paper) and a = 0.3 For
CoRank; a = 0.3 and = 0.45 For FutureRank and P-Rank,
o.=0.5; and for all the algorithms the teleportation factor is
setasy=0.15.

Figure 3 and Figure 4 illustrate the NDCG curve and
GAP curve of the top-100 papers returned by different al-
gorithms respectively. Note that, in both figures, the results
of P-Rank are calculated using top-5k returned papers, i.c.
top-50, top-100, ..., top-500 due to its poor performance.
In Figure 4, we set the probabilities p; of setting thresholds
at each grade j equally to 0.20. Similar GAP curves are
obtained if we use different thresholding probabilities and
are omitted due to space limit. Consistent to previous stud-
ies, FutureRank and CoRank perform better than HITS and
PageRank, which justifies employing the structure of het-
erogeneous academic networks. HHGRank improves rank-
ing effectiveness further by 10% to 15% in term of NDCG
and about 30% in term of GAP. This demonstrates the su-
periority of using heterogeneous academic hypernetworks
as the more generalized model. We also see that HHG-



BiRank beats all the competitors in a general sense, almost
10% and 15% better than HHGRank in terms of NDCG
and GP respectively, which justifies our assumption about
the distinction between authority and hub.

As the time distribution for the gold standard papers is
non-uniform, it is intuitive that an algorithm is better if the
time distribution of its top-ranked papers is closer to that of
the gold standard, for which Jenson-Shannon divergence
(JS) is a promising evaluation metric. Figure 5 shows the
JS curves for the top-100 papers returned by different algo-
rithms. A smaller JS value for a certain £ and a flatter JS
curve mean a better algorithm. In this sense, PageRank,
CoRank and FutureRank are the three worst algorithms. It
also implies that there is an inverse relationship between
NDCG or GAP and JS divergence. HHGRank is clearly
better than the above three algorithms due to the powerful
modeling capability of heterogeneous academic hypernet-
works, and HHGBiRank performs even much better than

HHGRank due to the distinction between authority and hub.

Although when £ is small HITS has a smaller JS value
than HHGRank (k < 60) and HHGBiRank (k < 40), it is not
valid to say HITS is better than heterogeneous academic
network based algorithms. Actually when we expand the
ranked list to top-500 as in Figure 6, HHGRank is better
than all the previous algorithms and HHGBiRank further
enlarges the performance gain by a nontrivial margin.

Conclusion

This paper introduces a new scientific ranking algorithm
based on the multinomial multidimensional relationships
between different types of academic entities. Using hetero-
geneous academic hypernetwork as a generalized model,
the algorithm formulates the mutual reinforcement relation
between these academic entities. The proposed algorithm
has been extensively evaluated and demonstrated effective
using widely-adopted IR metrics in a common benchmark-
ing environment with ACL Anthology Network as the da-
taset and a carefully built gold standard set of papers.
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