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ABSTRACT
Heterogeneous Information Network (HIN) is a natural and general

representation of data in modern large commercial recommender

systems which involve heterogeneous types of data. HIN based

recommenders face two problems: how to represent the high-level

semantics of recommendations and how to fuse the heterogeneous

information to make recommendations. In this paper, we solve the

two problems by �rst introducing the concept of meta-graph to HIN-

based recommendation, and then solving the information fusion

problem with a “matrix factorization (MF) + factorization machine

(FM)” approach. For the similarities generated by each meta-graph,

we perform standard MF to generate latent features for both users

and items. With di�erent meta-graph based features, we propose

to use FM with Group lasso (FMG) to automatically learn from

the observed ratings to e�ectively select useful meta-graph based

features. Experimental results on two real-world datasets, Amazon

and Yelp, show the e�ectiveness of our approach compared to state-

of-the-art FM and other HIN-based recommendation algorithms.

CCS CONCEPTS
•Information systems → Collaborative �ltering; Recom-
mender systems; •Computer systems organization→ Hetero-
geneous (hybrid) systems;

KEYWORDS
Recommendation system; Collaborative �ltering; Heterogeneous

information networks; Factorization machine.

1 INTRODUCTION
Recommendation on the platforms like Amazon or Yelp refers to the

problem of recommending items, such as products or businesses,

to users so that the platforms can make more revenue when

users consume more items. Essentially if we consider users and

items as a bipartite graph, this is a link prediction problem on

heterogeneous types of entities, i.e., User and Item. Nowadays

large commercial recommender systems o�en incorporate richer

heterogeneous information. For example, on Amazon, the products
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have categories, or they can belong to brands, and users can write

reviews to products. On Yelp, users can follow other users to form

a social network, the location based businesses have categories,

and users can write reviews to businesses as well. �en, real-world

recommender systems o�en need to consider richer semantics with

di�erent types of information that are enabled and collected by the

platforms. �is richer heterogeneity thus requires the development

of a mathematical representation to formulate it and a tool to

compute over it.

Heterogeneous information networks (HINs) [30] have been

proposed as a general data representation for many di�erent

types of data, such as scholar network data [32], social network

data [13], patient network data [3], or knowledge graph data [5].

At the beginning, HINs were used to handle entity search and

similarity measure problems [32], where the query and result

entities are assumed to be of the same type (e.g., using Person to

search Person). Later, it was extended to handle heterogeneous

entity recommendation problems (i.e., recommending Items to

Users) [29, 39, 40]. To incorporate rich semantics, HINs �rst builds

a network schema of the heterogeneous network. For example, for

Yelp, a network schema is de�ned over the entity types User, Review,

Word, Business, etc. �en, the semantic relatedness constrained

by the entity types can be de�ned by the similarities between

two entities along meta-paths [32]. For traditional collaborative

�ltering, if we want to recommend businesses to users, we can build

a simple meta-path Business→User and learn from this meta-path

to make generalizations. From HIN’s schema, we can de�ne more

complicated meta-paths like User → Review → Word → Review →
Business. �is meta-path de�nes a similarity to measure whether a

user tends to like a business if his/her reviews are similar to those

wri�en by other users for the same business.

When applying meta-path based similarities to recommender

systems, there are two major challenges. First, meta-path may not

be the best way to characterize the rich semantics. Figure 1 shows a

concrete example, where a meta-path User → Review → Word →
Review → Business is used to capture users’ similarity since they

both write reviews and mention the seafood it serves. However,

if we want to capture the semantic that U1 and U2 rate the same

type of business (such as Restaurant), and at the same time, they

mention the same aspect (such as seafood), the meta-path fails.

�us, we need a be�er way to capture such complicated semantics.

Recently, Fang et al. [6] and Huang et al. [10] have proposed to

use meta-graph (or meta-structure) to compute similarity between

homogeneous type of entities (e.g., using Person to search Person)

over HINs, which can capture more complex semantics that meta-

path cannot. However, they didn’t explore entities of heterogeneous
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Figure 1: Example of HIN, which is built based on the web
page for Royal House on Yelp.

types with meta-graph. �us in this paper, we extend this idea to

heterogeneous recommendation problem. However, how to use

the similarities between heterogeneous types of entities developed

from HINs in recommendation is still unclear, which results in the

second challenge.

Second, di�erent meta-paths or meta-graphs result in di�erent

similarities. How to assemble them in an e�ective way is another

challenge. Currently, there are two principled ways. Considering

our goal is to achieve accurate prediction of User and Item ratings,

which can be formulated as a matrix completion problem of the user-

item rating matrix. One way to predict the missing ratings based

on HIN is to use meta-paths to generate a lot of ad-hoc alternative

similarities for user-item matrix, and then learn a weighting

mechanism for di�erent meta-paths to combine the similarities

explicitly to approximate the user-item rating matrix [29]. �is

approach does not consider implicit factors of each meta-path, and

each alternative similarity matrix could be very sparse to contribute

to the �nal ensemble. �e other way is to �rst factorize each user-

item similarity matrix computed based on each meta-path, and then

use the latent features to recover a new user-item matrix, which is

used for ensemble [40]. �is method resolves the sparsity problem

of each similarity matrix. However, it does not fully make use of the

latent features since when ensemble is performed, each meta-path

cannot see others’ variables but only the single value predicted by

the others.

To address the above challenges, we propose a new principled

way to fully combine di�erent latent features. First, instead of

using meta-paths for heterogeneous recommendation [29, 40],

we introduce the concept of meta-graph to the recommendation

problem, which allows us to incorporate more complex semantics

into our prediction problem. Second, instead of computing the

recovered matrices directly, we use all of the latent features of all

meta-graphs. Inspired by the famous work PCA+LDA used for face

recognition [2], which �rst uses PCA (principle component analysis)

to perform unsupervised dimensionality reduction, and then applies

LDA (linear discriminant analysis) to discover further reduced

dimensions guided by supervision, we apply matrix factorization

Figure 2: Example of HIN Schema. A: aspect extracted from
reviews; R: reviews; U: users; B: business; Cat: category of
item; Ci: city.

(MF) + factorization machine (FM) [25] to our recommendation

problem. For each meta-graph, we �rst compute the user-item

similarity matrix under the guidance of the meta-graph, and then

use unsupervised (without seeing the ratings) MF to factorize it into

a set of user and item latent vectors. �en, with many di�erent sets

of user and item vectors computed from di�erent meta-graphs,

we use FM to assemble them to learn from the rating matrix.

To e�ectively select useful meta-graphs, we propose to use FM

with Group lasso (FMG), i.e. the `2,1-norm regularization, to learn

the parameters. In this way, we can automatically determine for

new incoming problems which meta-graph should be used, and

for each meta-graph generated user and item vectors, how they

should be weighted. Experimental results on two large real-world

datasets, Amazon and Yelp, show that our approach can successfully

outperform other MF-based, FM-based, and existing HIN-based

state-of-the-arts for recommendation. Our code is available at

h�ps://github.com/HKUST-KnowComp/FMG.

2 FRAMEWORK
In this section, we introduce our framework to handle HIN-based

recommendation.

2.1 Meta-graph based Similarity
�e de�nitions of HIN and HIN Schema (a schema graph of entity

types and their relations) have been introduced in [32]. Here we

skip the formal de�nition and only illustrate the original HIN in

Figure 1 and the corresponding schema in Figure 2. Here we focus

on the concepts related to our paper. First, we formally de�ne the

meta-graph in HIN for recommendation.

De�nition 2.1. Meta-graph. A meta-graph M is a directed

acyclic graph (DAG) with a single source node ns (i.e., with in-

degree 0) and a single sink (target) node nt (i.e., with out-degree

0), de�ned on an HIN G = (V, E) with schema TG = (A,R ),
where V is the node set, E is the edge set, A is the node type

set, and R is the edge type set. �en we de�ne a meta-graph

as M = (VM , EM ,AM ,RM ,ns ,nt ), where VM ⊆ V , EM ⊆ E

constrained by AM ⊆ A and RM ⊆ R, respectively.

We show all of the meta-graphs used in this paper for both

Amazon and Yelp in Figure 3. We can see that they are DAGs with

U (User) as the source node and B (Business for Yelp and Product
for Amazon) as the target node. Here we useM3 andM9 used on

Yelp data to illustrate the computation problem.
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(a) Yelp-200K (Star: the average stars a business obtained). (b) Amazon-200K (Brd: brand of the item).

Figure 3: Meta-graphs used for Amazon and Yelp datasets.

Given the above de�nition of meta-graph, we want to compute

the similarities between the source and the target nodes. Originally,

commuting matrices [32] have been used to compute the counting-

based similarity matrix of a meta-path. Suppose we have a meta-

path P = (A1,A2, . . . ,Al ), where Ai ’s are node types in A. �en

we can de�ne a matrix WAiAj as the adjacency matrix between

type Ai and type Aj . �en, the commuting matrix for path P

is CP = WA1,A2
·WA2,A3

· ... ·WAl−1
,Al . For example, for M3

in Figure 3(a), CM3
= WU B ·W>U B ·WU B , where WU B is the

adjacency matrix between type U and type B. �is shows that the

counting-based similarities for a meta-path can be computed by

the multiplication of a sequences of matrices like the above WU B .

In practice, we can implement this in a very e�cient way if the

adjacency matrices W’s are sparse.

For meta-graphs, the problem becomes more complicated. For

example, forM9 in Figure 3(a), there are two ways to pass through

the meta-graph, which are (U ,R,A,R,U ,B) and (U ,R,B,R,U ,B).
Note that R represents the entity type Review in HIN. Here in

the path (U ,R,A,R,U ,B), (R,A,R) means that if two reviews both

mention the same A (Aspect), then they have some similarity.

Similarly, in (U ,R,B,R,U ,B), R,B,R means that if two reviews both

rate the same B (Business), then they have some similarity as well.

We should de�ne our logic of similarity when there are multiple

ways for a �ow passing through the meta-graph from source node

to the target one. When there are two paths, we can allow a �ow

to pass through either path, or we constrain a �ow to satisfy both

of them. By analyzing the former strategy, we �nd that it is similar

to simply split such meta-graph into multiple meta-paths and then

adopt our later computation. �us, we choose the la�er, which

requires one more matrix operation than simple multiplication,

i.e., the Hadamard product, or element-wise product. Algorithm 1

depicts the algorithm for computing the counting-based similarity

for M9 in Figure 3(a), where � is the Hadamard product. A�er

obtaining CSr , it is easier to obtain the whole commuting matrix

CM9
by the multiplication of a sequence of matrices. In practice,

not limited toM9 in Figure 3(a), the meta-graph de�ned in this

paper can be computed by two operations (Hadamard product and

multiplication) on the corresponding matrices.

Algorithm 1 Computing commuting matrix for CM9
.

1: Compute CP1
: CP1

=WRB ·W>RB ;

2: Compute CP2
: CP2

=WRA ·W>RA;

3: Compute CSr : CSr = CP1
� CP2

;

4: Compute CM9
: CM9

=WUR · CSr ·W
>
UR ·WU B .

By computing the similarities between all users and items along

the meta-graph M, we can obtain a user-item similarity matrix

R̂ ∈ Rm×n , where R̂i j represents the similarity between user ui
and item bj along the meta-graphM, and m and n are the number

of users and items, respectively. �en by designing L meta-graphs,

we can get L di�erent user-item similarity matrices, denoted by

R̂1

, . . . , R̂L
.

2.2 Meta-graph based Latent Features
A�er we obtain L di�erent user-item similarity matrices, we use

matrix factorization to obtain the latent features of users and

items to reduce the noise and �x the sparsity problem of the

original similarity matrices. State-of-the-art MF techniques can

be used for the task [14, 22, 36]. Based on the assumption that the

users’ preferences are controlled by a small number of factors, the

similarity matrix R can be factorized into two low-rank matrices, U
and B, which represent the latent features of users’ preferences and
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items, respectively. By solving the optimizing problem in (1), the

low dimensional representations of users and items can be obtained:

min

U,B

1

2

| |PΩ (UB> − R) | |2F +
λu
2

| |U| |2F +
λb
2

| |B| |2F , (1)

where observed positions are indicated by 1’s in Ω ∈ {0, 1}um×bn ,

and [PΩ (X)]i j = Xi j if Ωi j = 1, and 0 otherwise. λu
and λb are the hyper-parameters that control the in�uence

of Frobenius norm regularization to avoid over��ing. For L
meta-graph based similarities between users and items, we can

obtain L groups of latent features of users and items, denoted as

U(1) ,B(1) , ...,U(L) ,B(L)
.

2.3 Recommendation Model
A�er we obtain L groups of user and item latent features, for a

sample xn in the observed ratings, i.e., a pair of user and item,

denoted by ui and bj , we concatenate all of the corresponding user

and item features from all of the L meta-graphs:

xn = u(1)
i , ...,u

(l )
i , ...,u

(L)
i︸                    ︷︷                    ︸

L×F

b(1)j , ..., b
(l )
j , ..., b

(L)
j︸                    ︷︷                    ︸

L×F

, (2)

where F is the rank used to factorize every similarity matrix

by (1), and u(l )
i and b(l )j , respectively, represent user and item

latent features generated from l-th meta-graph. Note that F can

be di�erent for di�erent matrices, but we keep it constant for

simplicity. xn represents the feature vector of the n-th sample

a�er concatenation. �en each user and item can be represented

by the L × F latent features, respectively.

Given all of the features in (2), the rating for the sample xn based

on FM [25] is computed as follows:

ŷn (w,V) = w0 +

d∑
i=1

wix
n
i +

d∑
i=1

d∑
j=i+1

〈vi , vj 〉xni x
n
j , (3)

where w0 is the global bias, w ∈ Rd , representing the �rst-order

weights for the features, and V = [vi ] ∈ Rd×K represents the

second-order weights to model the interactions across di�erent

features. 〈·, ·〉 is the dot product of two vectors of size K . vi is the

i-th row of the matrix V, which describes the i-th variable with K
factors. d = 2LF represents the total number of features generated

by the L meta-graph based similarity matrices. F is the rank used

to factorize every similarity matrix. xni is the i-th feature in xn . �e

parameters can be learned by minimizing the mean square loss:

min

w,V

N∑
n=1

(yn − ŷn (w,V))2, (4)

whereyn is an observed rating for the n-th sample. N is the number

of all the observed ratings.

�ere are two problems when applying the FM model to the

meta-graph based latent features. �e �rst problem is that it may

bring noise when working with many meta-graphs thus impairing

the predicting capability of the model. Moreover, in practice, some

meta-graphs can be useless since information provided by some

meta-paths can be covered by others. �e second problem is the

computational cost. All of the features are generated by standard

matrix factorization, which means that the design matrix, i.e.,

features fed to FM, are dense. It increases the computational cost

for learning the parameters of the model as well as that of online

recommendation.

To alleviate the above two problems, we propose a novel

regularization for FM, i.e., the group lasso regularization [42], which

is a feature selection method on a group of variables. �e group

lasso regularization of parameters p is de�ned as follows:

Φ(p) =
G∑
д=1

| |pIд | |2, (5)

where Iд is the index set belonging to the prede�ned д-th group of

variables, д = 1, 2, ...,G , and | | · | |2 is the `2-norm. In our model, the

groups correspond to the meta-graph based features. For example,

U(l )
and B(l )

are the user and item latent features generated by the

l-th meta-graph. For a pair of user i and item j, the latent features

are u(l )i and b(l )i . �ere are two corresponding groups of variables

in w and V according to (3). With L meta-graphs, the features of

users and items from every single meta-graph can be put in a group.

We have in total 2L groups of variables in w and V, respectively.

For the �rst-order parameters w in (3), which is a vector, the

group lasso is applied to the subset of variables in w. �en we have:

Φw (w) =
2L∑
l=1

| |wl | |2, (6)

where wl ∈ R
F

, which models the weights for a group of user

or item features from one meta-graph. For the second-order

parameters V in (3), we have the regularizer as:

ΦV (V) =
2L∑
l=1

| |Vl | |F , (7)

where Vl ∈ RF×K , the l-th block of V corresponding to the l-th
meta-graph based features in a sample, and | | · | |F is the Frobenius

norm.

With group lasso regularizations, during the training process,

our model can automatically select useful features and remove

redundant ones in group, i.e. generated by di�erent meta-graphs.

In the selection process, unuseful features are removed in the unit

of a group.

2.4 Comparison with Previous Latent Feature
based Model

Previous approaches of recommendation based on HIN [40] also

applied matrix factorization to generate latent features from

di�erent meta-paths and predict the rating by a weighted ensemble

of dot product of user and item latent features from every single

meta-path:

r̂ (ui , bj ) =
L∑
l=1

θl · û
(l )
i ·

ˆb(l )Tj , (8)

where r̂ (ui , bj ) is the predicted rating for user ui and bj , L is the

number of meta-paths used, and θl is the weight for the l-th meta-

path latent features. However, here the predicting method is not

adequate, as it fails to capture the interactions between inter-meta-

graph features, i.e. features across di�erent meta-graphs, as well
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as the intra-meta-graph features, i.e. features inside a single meta-

graph. It may decrease the prediction ability of all of the user and

item features.

3 MODEL OPTIMIZATION
In this section, we introduce how to solve the optimization problem.

We de�ne our FM over meta-graph (FMG) model with the following

objective function:

h(w,V)=
N∑
n=1

(yn−ŷn (w,V))2 + λwΦw (w)+λvΦV (V). (9)

Note that in (3) we merge all of the superscripts (l )’s into subscript

without introducing confusion of the original FM model. Here, we

can see that h is non-smooth due to the use of Φw and ΦV. Besides,

as (3) is not convex on V, h is also not convex.

3.1 Optimization
To tackle the non-convex non-smooth objective function, we

propose to use the proximal gradient algorithm [23], which is

a powerful tool to handle non-convex problems, in the form of

(9). Speci�cally, the state-of-the-art nonmonotonous accelerated

proximal gradient (nmAPG) algorithm [17] is used. �e motivation

comes from two facts. First, nonsmoothness comes from the

proposed regularizers, which can be e�ciently handled since the

corresponding proximal steps have cheap closed-form solution.

Second, the acceleration technique is useful for signi�cantly

speeding up �rst order optimization algorithms [17, 37], and

nmAPG is the only technique which can deal with general non-

convex problems with sound convergence guarantee. �e whole

procedure is given in Algorithm 2.

Note that while both Φw and ΦV are nonsmooth in (9), they are

imposed onw andV separately. �us, we can also perform proximal

step independently for these two regularizers [23] as follows.

proxλwΦw+λV ΦV
(w,V)=

(
proxλwΦw

(w) , proxλV ΦV
(V)

)
.

�ese are performed at lines 6-7 and 12-13. �e closed-form

solution of proxαΦw
(·) and proxαΦV

(·) can be obtained easily from

Lemma 3.1 below. �us, each proximal step can be solved in one

pass of all groups.

Lemma 3.1 ([41]). �e closed-form solution of p∗ = proxλΦ (z) (Φ
is de�ned in (5)) is given by

p∗
Iд
= max

*
,
1 −

λ

‖zIд ‖2
, 0+

-
zIд ,

for all д = 1, . . . ,G.

Finally, it is easy to verify that the assumptions on the

convergence of nmAPG in [17] are satis�ed. �us, Algorithm 2 is

guaranteed to produce a critical point of (9).

3.2 Complexity Analysis
�e major computational cost in the training process is to update

the gradients of all parameters including gradient calculation and

evaluation of proximal operators. In [25], the author shows that

for every single sample, computing each gradient is O (1) time,

which leads to O (Kd ) time in total for one sample, where K is the

Algorithm 2 nmAPG [17] algorithm for (9).

1: Initiate w0, V0 as Gaussian random matrices;

2: w̄1 = w1 = w0, V̄1 = V1 = V0, c1 = h (w1, V1); q1 = 1, δ = 10
−3

,

a0 = 0, a1 = 1, α = 10
−7

;

3: for t = 1, 2, 3, . . . , T do
4: yt = wt +

at−1

at (w̄t −wt ) +
at−1−1

at (wt −wt−1);

5: Yt = Vt + at−1

at (V̄t − Vt ) + at−1−1

at (Vt − Vt−1);

6: w̄t+1 = proxαλΦw (wt − α∇wh (wt , Vt ));
7: V̄t+1 = proxαλΦV (Vt − α∇Vh (wt , Vt ));
8: ∆t = ‖w̄t+1 − yt ‖2

2
+ ‖V̄t+1 − Yt ‖2F

9: if h (w̄t+1, V̄t+1) ≤ ct − δ∆t ; then
10: wt+1 = w̄t+1, Vt+1 = V̄t+1;

11: else
12: ŵt+1 = proxαλΦw (wt − α∇wh (wt , Vt ));
13: V̂t+1 = proxαλΦV (Vt − α∇Vh (wt , Vt ));
14: if h (ŵt+1, V̂t+1) < h (w̄t+1, V̄t+1) then
15: wt+1 = ŵt+1;

16: Vt+1 = V̂t+1;

17: else
18: wt+1 = w̄t+1;

19: Vt+1 = V̄t+1;

20: end if
21: end if
22: at+1 =

1

2
(
√

4a2

t + 1 + 1)

23: qt+1 = ηqt + 1;

24: ct+1 =
1

qt+1

(ηqt ct + h (wt+1, Vt+1));

25: end for
26: return wT+1, VT+1.

dimensions for factorizing the second order parameters, as shown

in (3), and d = 2LF is the number of features in every sample. For

evaluating the proximal operator Φ, according to Lemma 3.1, for

each sample, each gradient also costs O (1), thus achieving O (Kd )
time by updating all gradients in one sample. �en, the total time in

one iteration isO (N (Kd +Kd )) = O (NKd ), where N is the number

of all observations. Assuming T iterations are used in total, the

overall time of the learning process is O (TNKd ).

4 EXPERIMENTS
In this section, we �rst introduce the datasets, evaluation metric

and experimental se�ings. And then show the experimental results.

4.1 Datasets
To demonstrate the e�ectiveness of HIN for recommendation, we

conduct experiments on four datasets with rich heterogeneous

information. �e �rst dataset is Yelp, which is provided for the Yelp

challenge.
1

Yelp is a website where a user can rate local businesses

or post photos and reviews about them. �e rates fall in the range

of 1 to 5, where higher ratings mean users like the businesses

while lower rates mean users’ negative feedbacks to the businesses.

Based on the information collected, the website can recommend

businesses according to the users’ preferences. Another dataset

is Amazon Electronics,
2

which is provided in [8]. As we know,

Amazon highly relies on recommendations to present interesting

items to users who are sur�ng on the website. In [8] many domains

1
h�ps://www.yelp.com/dataset challenge

2
h�p://jmcauley.ucsd.edu/data/amazon/
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Table 1: Statistics of Yelp and Amazon datasets.

Yelp-200K

Relations(A-B)

Number

of A

Number

of B

Number

of (A-B)

Avg Degrees

of A/B

User-Business 36,105 22,496 191,506 5.3/8.5

User-Review 36,105 191,506 191,506 5.3/1

User-User 17,065 17,065 140,344 8.2/8.2

Business-Category 22,496 869 67,940 3/78.2

Business-Star 22,496 9 22,496 1/2,499.6

Business-State 22,496 18 22496 1/1,249.8

Business-City 22,496 215 22,496 1/104.6

Review-Business 191,506 22,496 191,506 1/8.5

Review-Aspect 191,506 10 955,041 5/95,504.1

Amazon-200K

Relations(A-B)

Number

of A

Number

of B

Number

of (A-B)

Avg Degrees

of A/B

User-Business 59,297 20,216 183,807 3.1/9.1

User-Review 59,297 183,807 183,807 3.1/1

Business-Category 20,216 682 87,587 4.3/128.4

Business-Brand 95,33 2,015 9,533 1/4.7

Review-Business 183,807 20,216 183,807 1/9.1

Review-Aspect 183,807 10 796,392 4.3/79,639.2

Table 2: �e density of rating matrices in the four datasets
Density =

#Ratings

#Users×#Items
.

Amazon-200K Yelp-200K CIKM-Yelp CIKM-Douban

Density 0.015% 0.024% 0.086% 0.630%

of Amazon dataset are provided, and we choose the electronics

domain for our experiments. We extract subsets of entities from

Yelp and Amazon to build the HIN, which includes diverse types

and relations. �e subsets of the two datasets both include around

200,000 ratings in the user-item rating matrices. �us, we identify

them as Yelp-200K and Amazon-200K, respectively. Besides, we

also use the datasets provided in the CIKM paper [29], which we

call CIKM-Yelp and CIKM-Douban. �e statistics of our datasets are

shown in Table 1. For the detailed information of CIKM-Yelp and

CIKM-Douban, we refer the user to [29]. Note that i) the number

of types and relations in the �rst two datasets, i.e. Amazon-200K

and Yelp-200K, we used in this paper are much more than those

used in previous works [29, 39, 40]; ii) We give the sparsity of the

four datasets in Table 2. �e sparsity of the rating matrices is more

severe than those used in [29, 39, 40].

4.2 Evaluation Metric
To evaluate the recommendation performance, we adopt the root-

mean-square-error (RMSE) as our metric, which is the most popular

one for rating prediction in the recommendation literature [14, 20,

22]. RMSE is de�ned as follows

RMSE =

√∑
(i, j )∈Rtest (Ri j − R̂i j )

2

|Rtest |
, (10)

where Rtest is the set of all user-item pairs (i, j ) in the test set, R̂i j
is the predicted rate of user ui to item bj , and Ri j is the observed

rate of user ui to item bj in the test set. For RMSE, smaller value

means be�er performance.

4.3 Baseline Models
We compare the following models to our approach.

• RegSVD [15]: RegSVD is the basic matrix factorization with

L2 regularization, which uses only the user-item rating matrix.

We run the implementation in Librec [7].
3

• FMR [25]: FMR is the factorization machine with only the user-

item rating matrix. We adopt the method in Section 4.1.1 of [25]

to model the rating prediction task. We use the code provided

by the authors.
4

• HeteRec [40]: HeteRec method is based on meta-path based

similarity between users and items. A weighted ensemble model

is learned from the latent features of users and items generated

by applying matrix factorization to the similarity matrices of

di�erent meta-paths. We implemented it based on [40].

• SemRec [29]: SemRec is a meta-path based recommendation

on weighted HIN, which is built by connecting users and items

with the same ratings. Di�erent models are learned from

di�erent meta-paths, and a weight ensemble method is used

to predict the users’ ratings. We use the code provided by the

authors.
5

Note that in [39], the meta-path based similarities are used as

regularization terms in the matrix factorization framework. And

in [29], the authors reported that SemRec outperforms this method.

�us, we do not report the experimental results of [39] here.

4.4 Experimental Settings
To demonstrate the capability of our model, we use the meta-graphs

shown in Figure 3. �e meanings of the nodes are given in the

�gures. To get the aspects from review texts, we use Gensim [24], a

topic model so�ware to extract topics. �e number of topics is set to

10 empirically. We also try other numbers and they showed similar

results. �us, we �x the number of topics to 10 for all experiments

to make fair comparisons.

In terms of designing the experiments, we randomly split the

datasets into training and test ones by the ratio 8:2, i.e., 80% of the

whole data are used for training and the remaining 20% are for

testing. �e process is repeated �ve times and the average RMSE of

the �ve rounds are reported. Our framework is implemented with

Python 2.7, and all experiments run in a Linux server with Intel i7

CPU and 32GB RAM.

4.5 Recommendation E�ectiveness
We show our results in Table 3. As shown in Table 2, the sparsity

of the rating matrices of our data is severe. �is is important for

the rating prediction task. By comparing RMSEs of Yelp-200K and

CIKM-Yelp, we can see that the denser training data results in lower

RMSE, i.e., be�er performance can be obtained. �is is because with

more observations in the training set, we can get more information

about the whole matrix, leading to more accurate predicted ratings

of the users to the items. Note that the reason why we did not

report the result of SemRec on Amazon-200K is that the programs

3
h�ps://www.librec.net/

4
h�p://www.libfm.org/

5
h�ps://github.com/zzqsmall/SemRec
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(a) Yelp. (b) Amazon. (c) Sparsity of w, V.

Figure 4: E�ects of λ. (a) and (b) show RMSEs with di�erent λ’s. (c) shows the trend of sparsity. Note that at the fourth point
of x-axis we have λ = 0.05 for Yelp and λ = 0.06 for Amazon, respectively.

Table 3: Recommending performance in terms of RMSE.
Percentages in the brackets are the reduction of RMSE com-
paring our approach with the corresponding approaches in
the table header.

Amazon-200K Yelp-200K CIKM-Yelp CIKM-Douban

RegSVD

2.9656

(+60.0%)

2.5141

(+50.5%)

1.5323

(+27.7%)

0.7673

(+9.0%)

FMR

1.3462

(+11.9%)

1.7637

(+29.4%)

1.4342

(+22.8%)

0.7524

(+7.2%)

HeteRec

2.5368

(+53.2%)

2.3475

(+47.0%)

1.4891

(+25.6%)

0.7671

(+9.0%)

SemRec

-

-

1.4603

(+14.7%)

1.1559

(+4.2%)

0.7216

(+3.2%)

FMG 1.1864 1.2456 1.1074 0.6985

crashed on Amazon-200K in a server with 128G memory due to the

large numbers of users and items as shown in Table 1.

From Table 3, we can see that comparing to RegSVD and

FMR, which only use the rating matrix, SemRec and FMG, which

use additional heterogeneous information by meta-graphs, are

signi�cantly be�er. Especially, the sparser the rating matrix, the

more useful the additional information incorporated. For example,

on Amazon-200K, FMG outperforms RegSVD by 60%, while for

CIKM-Douban, the percentage of RMSE decreasing is 9%. Note that

the performance of HeteRec is worse than FMR, despite the fact

that we have tried our best to tune the models. �e reason is that, as

we show in Section 2.3, using a weighting ensemble of dot product

of latent features may lose information among the meta-graphs

and fail to avoid noise caused by too many meta-graphs.

When comparing the results of FMG and SemRec, we �nd that

the performance gap between them are not that large, which means

that SemRec is still a good method for rating prediction, especially

when comparing SemRec to the other three baselines. �e good

performance of SemRec may be a�ributed to two reasons. First,

incorporating rating values into HIN leads to a weighted HIN, which

may be�er capture the meta-graph or meta-path based similarity.

Currently, FMG ignores the rating values, so it remains unknown

whether it can further decrease RMSE if we adopt a similar approach

to incorporate rating values into HIN. We leave it as future work.

Second, the meta-graphs SemRec exploits are all of the style like

U → ∗ ← U → B, which have a good capability of predication. In

the Section 4.6, we will show that FMG can automatically select

features constructed by meta-graphs like U → ∗ ← U → B while

removing those by meta-graphs like (U → B → ∗ ← B). In

Section 4.7, we further study the prediction ability of each meta-

graph, and also show that meta-graphs with style like U → ∗ ←
U → B are be�er than those like U → B → ∗ ← B.

4.6 �e Parameter λ
In this part, we show the in�uence of parameter λ, with λ = λw =
λv , which controls the e�ects of group lasso. �e experiments

were conducted on Yelp-50k and Amazon-50k, where only 50,000

ratings are sampled and thus is a smaller version of Yelp-200K and

Amazon-200K for the sake of e�ciency of parameter tuning. �e

RMSEs of Yelp-50k and Amazon-50K are shown in Figures 4(a)

and (b), respectively. We can see that with λ increasing, RMSE

decreases �rst and then increases, demonstrating that λ values that

are too large or too small are not good for the performance of

rating prediction. Speci�cally, on Yelp, the best is λ = 0.05, and on

Amazon, the best is λ = 0.06. Next, we give further analysis of these

two parameters in terms of sparsity and the selected meta-graphs

by group lasso.

Sparsity of w,V. We now study the sparsity of the learned

parameters, i.e., ratio of zeros in w,V a�er learning. Sparsity is

de�ned as sparsity = z
wn+vn , where z is the total number of zeros

in w and V, and wn and vn are the number of entries in w and V,

respectively. �e larger sparsity is, the more zeros are in w and

V, which will reduce the time of online prediction. �e trend of

sparsity with di�erent λ’s is shown in Figure 4(c). We can see that

with λ increasing, the sparsity becomes greater, which aligns with

the e�ects of group lasso. Note that the trend is non-monotonous

due to the non-convexity of the objective function w.r.t. w and V
and the fact that we set λw = λv for the convenience of parameter

tuning.

�e Selected Meta-graphs. In this part, we analyze the selected

features by group lasso. From Figure 4, we can see that w and V
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Table 4: Selected Meta-graphs for Yelp and Amazon datasets.

User-Part Item-Part
w V w V

Yelp

Important M1 −M4,M6,M8 M1 −M3,M5,M8 M1 −M5,M8,M9 M3,M8

Useless M5,M7,M9 M4,M6,M7,M9 M6,M7 M1,M2,M4 −M7,M9

Amazon

Important M1 −M3,M5 M1 −M6 M2,M3,M5,M6 M2,M5,M6

Useless M4,M6 - M1,M4 M1,M3,M4

are good in terms of RMSE and sparsity when λ = 0.05 on Yelp

and λ = 0.06 on Amazon. �us, we show the most important meta-

graphs with this con�guration for user and item latent features.

�e results of Amazon and Yelp are shown in Table 4.

From Table 4, we can observe that both the �rst-order and second-

order interactions are important for overall performance, which

demonstrates that the second-order interactions are necessary for

be�er recommendation performance. As we mentioned in Section 1,

previous works do not fully make use of the latent features, like

the second-order interactions.

Another discovery is that the meta-graphs with style like U →
∗ ← U → B are be�er than those like U → B → ∗ ← B. Here we

useU → ∗ ← U → B to represent meta-graphs likeM2,M3,M8,M9

in Figure 3(a) and M2,M5,M6 in Figure 3(b), while use U → B →
∗ ← B to represent meta-graphs like M4,M5,M6,M7 in Figure 3(a)

and M3,M4 in Figure 3(b). For Yelp, we can see that meta-graphs

like M2,M3,M8,M9 tend to be selected while M4−M7 are removed,

which means that on Yelp, recommendations by friends or similar

users are be�er than those by similar items. Similar cases exist on

Amazon, i.e., M3,M4 tend to be removed.

Finally, on both datasets, complex structures like M9 in

Figure 3(a) and M6 in Figure 3(b) are determined to be important

for item latent features, which demonstrates the importance of

capturing these kinds of relations, which are ignored by previous

meta-path based recommendation methods [29, 39, 40].

4.7 Recommending Performance with Single
Meta-Graph

In this part, we compare the performances of di�erent meta-graphs

separately. In the training process, we use only one meta-graph

for user and item features and then predict and evalute the results

obtained by the corresponding meta-graph. Speci�cally, we run

experiments to compare RMSEs of all of the meta-graphs in Figure 3.

�e RMSE of each meta-graph is shown in Figure 5. Note that we

show as comparison the RMSEs of all the meta-graphs used, denoted

by Mall .

From Figure 5, we can see that on both Yelp and Amazon,

the performances are the best when all meta-graph based user

and item features are used, which demonstrates the usefulness of

the semantics captured by the designed meta-graphs in Figure 3.

Besides, we can see that on Yelp, the performances of M4 −M7 are

the worst, and on Amazon, the performances of M3 −M4 are also

among the worst three. Note that they are both meta-graphs with

style like U → B → ∗ ← B. �us, it aligns with the observation in

Section 4.6 that meta-graphs with style like U → ∗ ← U → B are

be�er than those like U → B → ∗ ← B.

(a) Yelp.

(b) Amazon.

Figure 5: RMSE of single meta-graph on Yelp and Amazon
datasets. Mall is our model trained with all meta-graphs.

Finally, for M9 on Yelp and M6 on Amazon, we can see that

the performances of these two meta-graphs are among the best

three, which demonstrates the usefulness of the complex semantics

captured in M9 on Yelp and M6 on Amazon. In future work, we will

try to design more complex meta-graphs like these two, and study

if they can further improve recommending performance.

4.8 �e Parameters F and K
In this part, we study the in�uence of the two parameters: F and

K . F is the rank used to factorize meta-graph based user-item

similarity matrices to obtain user and item latent features (see
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(a) Varying F with K = 10. (b) Varying K with F = 10. (c) Scalability.

Figure 6: (a) and (b) show RMSEs with di�erent K ’s and F ’s, (c) shows the execution time with di�erent sizes of datasets.

Section 2.2). K is the number of factors to factorize the second-

order weights V in the FMG model (see Section 2.3). For the sake

of e�ciency, we conduct extensive experiments using the smaller

datasets, Yelp-50K and Amazon-50K. We set F and K to values in

the range of [2, 3, 5, 10, 20, 30, 40, 50, 100]. �e results are shown in

Figures 6(a) and (b). We can see that the performances get be�er

with larger F or K in both datasets. A�er a threshold value, i.e.,

10, the performance becomes stable. In practice, the performance

gains are marginal when the two parameters are greater than 10,

and larger values mean higher computational cost. �erefore, it is

enough to obtain a good performance to set F = 10 and K = 10

for these two datasets, which are the adopted se�ings of these two

parameters of the experimental results reported in Section 4.5.

4.9 Scalability
In this part, we study the scalability of our FMG model. We extract

a series of datasets of di�erent scales from Yelp-200K and Amazon-

200K according to the number of observations in the user-item

rating matrix. �e speci�c values are [5K , 10K , 50K , 100K , 200K].

�e time cost of Amazon and Yelp datasets are shown in Figure 6(c),

for which we set λ = 0.05 for Yelp and λ = 0.06 for Amazon and

number of iterations to 3, 000. We can see from the �gure that the

training time is almost linear to the number observed ratings.

5 RELATEDWORK
In this section, we brie�y introduce the related work of HINs and

recommendation.

5.1 Heterogeneous Information Networks
HINs have been proposed as a general representation for many

real-world graphs or networks. Meta-path has been developed as a

sequence of entity types de�ned by the HIN network schema. Based

on a meta-path, several similarity measures, such as PathCount [32],

PathSim [32], and Path Constrained Random Walk [16] have

been proposed. �ese measures have been shown to be useful

for entity search and similarity measure in many real networks.

A�er the development of meta-path, many data mining tasks have

been enabled or enhanced including recommendation [29, 39, 40],

similarity search [27, 28, 32], clustering [33, 35], classi�cation [1,

12, 18], and link prediction [31, 43]. Recently, meta-graph (or meta-

structure) has been proposed to de�ne more complicated semantics

in HIN [6, 10]. �ey still applied meta-graph to entity similarity

problem where entities are constrained to be of the same type. In

this paper, we extend this idea to recommendation problem. �e

problem of recommendation requires us to approximate the large-

scale user-item rating matrix. �us, instead of computing each

similarity e�ciently online, we consider to compute the matrices

o�ine, and design the best way to use the user-item matrices

generated by di�erent meta-graphs for the �nal prediction.

5.2 Recommendation in HIN
Modern e-commerce websites allow us to incorporate hetero-

geneous information in making recommendations. Traditional

recommendation systrems must be enhanced to make use of the rich

semantics provided by the heterogeneous information. For example,

Ma et al. [20] incorporated social relations as regularization sterm

into the matrix factorization in recommendation systems. In [4, 34],

items’ meta-data are modeled to improve the recommendation

task. In [19, 21], the review texts are analyzed together with

the ratings in the rating prediction task. Ye et al. [38] proposed

a probabilistic model to incorporate users’ preferences, social

network and geographical information to enhance the point-

of-interests recommendation. �ese previous approaches have

demonstrated the importance and e�ectiveness of heterogeneous

information in improving recommendation accuracy. However,

most of these approaches dealt with di�erent heterogeneous

information disparately, hence losing important information that

exist across them.

HIN-based recommendation has been proposed to avoid the

disparate treatment of di�erent types of information. Based

on meta-path, several approaches have a�empted to tackle the

recommendation task based on HIN. In [39], meta-path based simi-

larities are used as regularization terms in the matrix factorization

framework. In [40], multiple meta-paths are used to learn user

and item latent features, which are then used to recover similarity

matrices combined by a weighted mechanism. In [29], users’ ratings

to items are used to build a weighted HIN, based on which meta-

path based methods are used to measure the similarities of users

for recommendation. �e combination of di�erent meta-paths

are explicit, using the similarities instead of latent features. As

discussed in the introduction, all of the above approaches do not
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make full use of the meta-path based features, whereas our approach

based on the factorization machine can do.

5.3 Factorization Machine
Factorization Machine [25] is a state-of-the-art recommendation

framework, which can model the interactions among features,

e.g., the rating information, categories of items, texts, time,

etc. �erefore, it is a powerful framework to integrate content

features for collaborative-�ltering-based recommendation. Many

approaches and systems have been developed based on FMs [9,

11, 26]. Di�erent from previous approaches which only consider

explicit features, we generate latent features by matrix factorization

based on di�erent meta-graphs. For FM using the original explicit

features, MF can be regarded as a step similar to PCA to perform

dimensionality reduction to reduce the noise of the original features.

6 CONCLUSION
In this paper, we present a heterogeneous information network

(HIN) based recommendation method. We introduce a principled

way of fusing heterogeneous information in the network. By using

meta-graphs derived from the HIN schema, we can formulate

complicated semantics between users and items. �en, we use

matrix factorization to obtain latent features of user and item from

each meta-path in an unsupervised way. A�er that, we use a

group lasso regularized factorization machine to fuse di�erent

groups of semantic information extracted from di�erent meta-

graphs to predict the links. Experimental results demonstrate the

e�ectiveness of our approach. In the future, we plan to explore

richer information to enrich the features and semantics in the

network, and use parallel computing and deep learning to further

improve our system.
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