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ABSTRACT
The explicitly observed social relations from online social platforms
have been widely incorporated into recommender systems to miti-
gate the data sparsity issue. However, the direct usage of explicit
social relations may lead to an inferior performance due to the un-
reliability (e.g., noises) of observed links. To this end, the discovery
of reliable relations among users plays a central role in advancing
social recommendation. In this paper, we propose a novel approach
to adaptively identify implicit friends toward discovering more
credible user relations. Particularly, implicit friends are those who
share similar tastes but could be distant from each other on the
network topology of social relations. Methodologically, to find the
implicit friends for each user, we first model the whole system as a
heterogeneous information network, and then capture the similar-
ity of users through the meta-path based embedding representation
learning. Finally, based on the intuition that social relations have
varying degrees of impact on different users, our approach adap-
tively incorporates different numbers of similar users as implicit
friends for each user to alleviate the adverse impact of unreliable
social relations for a more effective recommendation. Experimental
analysis on three real-world datasets demonstrates the superior-
ity of our method and explain why implicit friends are helpful in
improving social recommendation.
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1 INTRODUCTION
The emergence and advancement of recommender systems have
managed to mitigating the problem of information overload. How-
ever, in traditional recommender systems, most users usually only
consume few of the millions of items, leading to an inferior rec-
ommendation accuracy because of the data sparsity problem [34].
Due to the explosive development of online social platforms, the ex-
plicitly observed social relations now can be harnessed to alleviate
the data sparsity problem confronted by traditional recommender
systems; for the reason that user preferences can be inferred from
those of their friends [26, 33, 39]. With this intuition, social rec-
ommender systems [19] emerged and have attracted increasing
attention over the past years. Nonetheless, recent studies reveal
that social recommender systems suffer from the following issues:
(1) explicit social relations are not always available in real-world
recommender systems and are generally very sparse; (2) social re-
lations may be very noisy due to the existence of spammers and
bots. In addition to that, social relations have different interpreta-
tions in different contexts [30, 37]. For example, two close friends
may reach a consensus on movies but have rather diverse opinions
on purchasing clothes. Without the further filtering, the direct us-
age of explicit social relations may have an adverse impact on the
recommendation quality.

A vast majority of existing social recommender systems [11,
14, 16, 40, 41, 46] based on matrix factorization [12] integrate the
explicit social relations directly. Therefore, they are very likely to
suffer from the limitations discussed above. Furthermore, the afore-
mentioned approaches are fundamentally based on the assumption
that connected users have similar tastes while unconnected users
are more likely to have different preferences. But in reality users
may also share similar tastes with other users that are distant from
each other on the social network, and we refer to such user pairs
as implicit friends. To this end, the nuanced approaches which can
uncover and exploit reliable implicit social relations for recom-
mendation should be studied. Despite the fact that the user-item
bipartite network and user social network are two distinct networks
with different types of nodes and connections, they are inherently
correlated as users are involved on both networks. Hence, rich infor-
mation is shared across these two networks and a wiser choice is to
concatenate them as a whole heterogeneous information network
(HIN) to perform further analysis. In this way, we are able to better
capture the interactions among users in the system. For example, if
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two users purchased the same product while they are connected in
the social network, their connection could be strengthened.

A few studies [35, 38, 42, 45] have explored heterogeneous infor-
mation networks for general recommendation, but none of them
paid attention to address the problem of unreliability of the explicit
links for the social recommendation. In this paper, we propose a
novel HIN based social recommendation method, which consists
of two stages, to incorporate implicit friends to enhance the item
recommendation. The implicit friends with maximum similarities
for each user are identified in the first stage while the second stage
focuses on effectively harnessing these implicit friends. The chal-
lenge in the first stage is how to uncover the potential implicit
relations lying in the HIN. To handle it, we carefully design a set
of meaningful meta-paths over the HIN which are composed of
the user-item relations and the user-user social relations. These
elaborately designed meta-paths enable us to identify Top-K users
with the most similar tastes even though they are topologically
distant from each other in the social networks. Concretely, the
phase for implicit friends identification is performed by learning
embedding representations for users in the network. In this way,
we can alleviate the adverse effects resulted from unreliable explicit
social relations. When the Top-K implicit friends for each user are
identified, we then incorporate these implicit friends into an item
ranking model. Then a natural question to ask is that do all users
need the same number of implicit friends to facilitate recommen-
dation? Motivated by the findings that positive social effect is not
observed in all groups of users in the explicit social network [33],
we argue that integrating a fixed number (e.g. k = 100 for each user)
of implicit friends for all users may result in a suboptimal solution.
In consequence, we have developed a novel social BPR model to
adaptively refine the Top-K implicit friends in a way that each user
is able to select the optimal number of friends according to their
ranking performances on the observed feedbacks, which is superior
to other methods based on implicit friends [29, 43]. In other words,
the number of selected implicit friends is personalized rather than
being globally fixed. To this end, an Expectation-Maximization (EM)
algorithm based learning policy is employed to iteratively update
the personalized smilarity threshold with regard to implicit friends
for each user.

To summarize, our main contributions are listed as follows:

• We formally introduce the concept of implicit friends to social
recommendation and show how these friends are accurately
identified over the HIN by carefully designed meta-paths and
embedding representation learning.
• We categorize user feedbacks into five sets and elaborately
design a novel social BPR model which is capable of generating
more effective recommendation.
• An EM algorithm based learning policy is adopted to adaptively
refining the optimal Top-K implicit friends for each user, re-
sulting in an obvious improvement of recommendation quality
on different metrics.

2 PRELIMINARIES
In the task of social recommendation, we denoteU as the user set
and I as the item set. Gr and Gs are used to denote the user-item
bipartite network and the user-user social network, respectively.

U1

I2

U2

U3

U4

I1

I3

U1 U2

U4
U3

Gs

Gr

U1

U2

U4

U3

I2

I1
I3

Purchase-P TrustPurchase-N

Figure 1: Heterogeneous information network constructed
by the user-item bipartite network and the social network.
Purchase-P denotes the consumption with positive feed-
backs and Purchase-N denotes the consumption with neg-
ative feedbacks.

The network Gr = (Vr ,Er ) contains two types of nodes, user and
item, where (u, i) ∈ Er indicates that the user u purchased/rated
the item i . The Gs = (Vs ,Es ) only contains one type of node, which
is the user, where (u1,u2) ∈ Es indicates that the user u1 trusts the
user u2. The relationships between users are asymmetric and the
edge (u1,u2) is different from the edge (u2,u1).

Motivated by the existing studies [42, 45], we consider that the
promising way for social recommendation is to concatenate Gr and
Gs as a whole to a heterogeneous information network [27] and study
the recommendation problem based on the new network H. In this
regard, it enables us to capture rich information shared across Gr
andGs in quantifying user similarity for the social recommendation.

Definition 1. Heterogeneous Information Network: In a het-
erogeneous information network H = (V ,E,T ), each node v and
each link e is associated with a mapping function ϕ(v) : V → TV
and ϕ(e) : E → TE , respectively.TV andTE denote the sets of object
and relation types, where |TV | + |TE | > 2.

Figure 1 is an illustration of the HIN constructed by Gr and Gs
where two types of nodes and three types of edges are involved.
Different from the existing implicit feedback based recommender
systems, in this workwemake use of the negative feedbacks [32, 43].
As suggested by [8, 25], implicit negative feedbacks are common and
valuable to examine. For example, out of curiosity, a user may click a
song to listen, but soon she realizes that it is out of her taste and then
closes it. In most of the popular recommender systems [22, 24], the
above-mentioned clicks are treated as positive feedbacks, which is
ill-considered. In ourmodel, we also leverage the negative feedbacks
and attempt to exploit them in a proper way.

Definition 2. Implicit Friends: Implicit friends refer to a pair
of users with similar tastes or preferences but are not necessarily
connected with each other on the social network.

This paper aims to identify implicit friends for each user in the
social network and leverage the implicit friend relations to improve
the performance of the social recommendation.

3 IDENTIFYING THE IMPLICIT FRIENDS
OVER HIN

Identifying the implicit friends over HIN is the first important pillar
of our developed approach. In this stage, the proposed method first
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Table 1: Meta-paths designed for social recommendation.

Path Schema Description

P1 U
p
−→ I

p
←− U Users who have consumed the same item are similar with each other

P2 U
t
−→ U

t
−→ U A user may trust her/his friends’ friends

P3 U
t
←− U

t
−→ U Users who are trusted by the same user are similar with each other

P4 U
t
−→ U

t
←− U Users who share the same friends are similar with each other

P5 U
t
−→ U

p
−→ I

p
←− U A user may have similar taste with someone who has similar taste with his/her trustee

P6 U
t
−→ U

t
−→ U

p
−→ I

p
←− U Help find users of the similar tastes that are distant from each other on the social network

∗
p
−→ denotes the purchase relation and

t
−→ denotes the trust relation.

generates biased meta-path based randomwalks to explore the HIN;
and then learns node embedding representations via heterogeneous
Skip-Gram to identify the Top-K implicit friends for each user.

3.1 Generating Social Corpora over HIN
Since the real-world recommender systems modeled by HINs are
often in large-scale, containing millions of users and items, then the
first challenge in identifying implicit friends is how to reduce the
computational cost while preserving the information embedded in
the original networks. Inspired by the success of network embed-
ding models [4, 13, 23], we design a set of meaningful meta-paths
over the HIN, and then conduct biased meta-paths based random
walks to generate node sequences to solve our problem.

Formally, a meta-path schema is in the form of V1
R1
−−→ V2

R2
−−→

· · ·
Rq−1
−−−−→ Vq , wherein R = R1 ◦ R2 · · · ◦ Rq characterizes a new

composite relation between its start type V1 and the end type Vq
[28]. Specifically, to characterize the relations among users, we
define six types of meta-paths as shown in Table 1. These carefully
designed meta-paths help us find a pair of entities that similar but
could be distant from each other on the user-item bipartite network
and the user-user social network. For instance, with the meta-path
defined as P5, given U2 as the root (as shown in Fig. 1), after two
steps, the walk reaches the items I1 and I3, which are not directly
connected with U2. In this way, we can characterize the similarity
between distant user-item pairs.

The carefully designed meta-paths are used to conduct random
walks to generate a number of node sequences. However, social re-
lations are often noisy, thus we have to find out reliable sequences
with biased probability. Here we show how meta-paths can be
exploited to guide the random walks to generate biased node se-
quences - referred as the social corpus.

Given a meta-path schema P = V1
R1
−−→ V2

R2
−−→ · · ·

Rq−1
−−−−→ Vq , the

transition probability at step k is defined as follows:

p(vk+1 |vkn ,P)=



1
|Nk+1(vkn ) |

(vk+1,vkn ) ∈ p

ψ (vk+1,vkn )∑
v′ ∈Nn+1(vkn )

ψ (v ′,vkn )
(vk+1,vkn ) ∈ t

0 (vk+1,vkn ) < E

(1)

where vkn ∈ Vn , Nn+1(vkn ) denotes the Vn+1 type of neighborhood
of node vkn , ψ (vk+1,vkn ) = |Nn+1(vk+1) ∩ Nn+1(vkn )|. It means, at
each step of the random walk, the next node type is decided by

the pre-defined meta-path P. When Vn = U and Vn+1 = I (or the
inverse), we uniformly select the successor node. But in the case
that Vn = Vn+1 = U (or the inverse), the successor node is chosen
according to the number of overlapped neighbors with the current
node. In other words, if the successor has a large number of shared
friends with vkn , it is more likely to be selected, which is in light
of the study [21] that the stronger the tie between two users are,
the more their friends overlap. By doing so, we can obtain more
reliable sequences and reduce the adverse consequences of noisy
social relations. At last, it should be noted that the walk is recursive,
that means, Vq+1 = V2.

Random walks based network representation learning [9] gener-
ally learns representations of nodes according to their co-occurrence
in a context window. Therefore, it is necessary to distinguish posi-
tive and negative feedbacks. When conducting random walks, we
only use the positive feedbacks and user relations to generate the
positive social corpus. Likewise, the negative social corpus is based
on negative feedbacks and user relations. These two social corpora,
in which the complete preferences of users are encoded, will be
used to generate different representations in the next step.

3.2 Learning Node Representations and
Identifying Top-K Implicit Friends

The collected social corpora consist of different types of nodes and
it is still not clear how to quantify the similarity among these nodes.
Thus, we learn node embedding Y ∈ R |V |×d based on heteroge-
neous Skip-Gram [5], an extension of word2vec embeddings, to
solve the problem. Formally, given a meta-path guided node se-
quence and the current node vk , the objective function is:

max
θ

∑
v ∈V

∑
vmn ∈C(vk )

logp(vmn |v
k ;θ ), (2)

whereC(vk ) is the context ofvk with thewindow sizew ;p(vmn |vk ;θ )
is commonly defined as the heterogeneous softmax function:

p(vmn |v
k ;θ ) =

e
yvmn ·yvk∑

v ∈Vn e
yv ·yvk

. (3)

Here yv is the vth row of Y , representing the embedding vector of
node v , and Vn is the node set of type n in H. The heterogeneous
Skip-Gram maximizes the probability in terms of the local struc-
tures. But for each node in C(vk ), it only considers nodes in the
same type set instead of all the nodes, which makes it different
from the conventional Skip-Gram model.
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Figure 2: Different types of implicit friends.

The computation of p(vmn |vk ;θ ) in Eq. (2) is time-consuming,
which is difficult to be applied to large-scale networks. To accelerate
the optimization, we adopt the negative sampling heuristic [20]
for the learning task. Given the type of the node in C(vk ) and the
negative sample size I , we randomly select I nodes with the same
type label from V for the construction of softmax and then update
Eq. (2) by maximizing the following objective function:

O(Y ) = logσ (yvmn ·yvk )+
I∑
i=1
Ev in∼Pn (vn )[logσ (−yv in ·yvk )], (4)

where σ (y) = 1
1+e−y and the sampling distribution Pn (vn ) are

determined by the node degree.
Note that we have two social corpora which depict the posi-

tive and negative user preferences, respectively. As a result, each
user finally gets two representations. When the representation
learning is done by performing stochastic gradient ascent on Eq.
(4), we compute the cosine similarity for each pair of users w.r.t.
their embeddings and identify the Top-K positive and negative im-
plicit friends for each user. In particular, Positive friends are implicit
friends who share similar positive preference with the current user
while negative friends are the users who share similar negative
preference. As the embedding vectors are continuous and dense, it
enables us to compute the similarity for each pair of users, even if
they are topologically distant from each other on social networks,
which makes our model superior to other methods [7, 15, 29].

4 IF-BPR: BPRWITH IMPLICIT FRIENDS
In this section, we present our proposed IF-BPR model which incor-
porates the implicit friends into BPR and ranks social items based
on different types of friends.

4.1 Model Assumption and Formulation
After the Top-K positive and negative implicit friends for each
user are identified, we find that they are partially overlapped as
expected (shown in Fig. 2). Then the overlapped part is named as
Perfect friends since they share similar preference with the current
user in both aspects. To this end, for each user, we have three types
of implicit friends - implicit perfect friends, implicit positive friends,
and implicit negative friends. Hence, the items that are not observed
in the consumption history of the current user can be categorized
in a fine-grained way. The proposed categorization is as follows.

• Positive Items: For all u ∈ U, let Pu denote items consumed
by u itself.
• Joint Social Items: Any item i ∈ I\Pu

⋃
NSu that has been

consumed by at least one of u’s perfect friends and received a
positive feedback. This set is denoted as Ju .
• Positive Social Items: Any item i ∈ I\Pu

⋃
Ju

⋃
NSu that

has been consumed by at least one of u’s positive friends and
received a positive feedback. We denote this set as PSu .
• Negative Social Items: Any item i ∈ I\Pu

⋃
Ju

⋃
PSu that

has been consumed by u itself or u’s negative friends and re-
ceived a negative feedback. This set is defined as NSu .
• Non-consumed Items: The set Nu which contains the re-
maining items such that < Pu

⋃
Ju

⋃
PSu

⋃
NSu .

Obviously, Pu
⋃
Ju

⋃
PSu

⋃
NSu

⋃
Nu = I and they are dis-

joint with each other. Note that there is no Joint Negative Items
which contains items that have been negatively rated by both of pos-
itive friends and negative friends oru itself since negative feedbacks
are rather limited compared with positive feedbacks in real-world
scenarios. Hence, elaborately categorizing negative feedbacks is
prone to overfitting.

Generally, recommended items for users are presented as an
ordered list. Therefore, items with higher rankings in the list are
more likely to be noticed. BPR [24] is a typical one-class collabora-
tive filtering algorithm which aims to model the preference-order
for each user. However, BPR ignores relations among users in the
social network. To fully take advantage of the social relations, a
social BPR model (SBPR) [46] is built based on the assumption that
users tend to assign higher ranks to items that their friends prefer.
Specifically, SBPR extends BPR with the following relations:

xui ≽ xuk ,xuk ≽ xuj , i ∈ Pu ,k ∈ SPu , j ∈ Nu , (5)

where xu · denotes the preference score of user u on one of the
candidate items, SPu denotes the set of items the u did not express
any positive feedback, but at least one of explicit friends did.

In our model, the above assumption is further expanded. Given
u, Pu , Ju , PSu , NSu , and Nu , we aim to learn a ranking function for
each user that can rank items by the following order:

f :xui ≽ xuj ≽ xuk ≽ xuc ≽ xun ,

i ∈ Pu , j ∈ Ju,k ∈ PSu , c ∈ Nu ,n ∈ NSu .
(6)

This assumption can be easily interpreted in a way that perfect
friends are supposed to have higher priority than positive friends
while observed negative items should have a lower ranking than
unobserved items.

Let Θ ≡ (Z,Q) denote the latent user and item feature vectors,
respectively. According to the model assumption, the optimization
likelihood for each user can be represented as follows:∏

i ∈Pu , j ∈Ju
P(xui ≽ xuj |Θ)

∏
j ∈Ju ,k ∈PSu

P(xuj ≽ xuk |Θ)∏
k ∈PSu ,c ∈NCu

P(xuk ≽ xuc |Θ)
∏

c ∈NCu ,n∈Nu

P(xuc ≽ xun |Θ),
(7)

where P(xui ≽ xuk |Θ) is defined as σ (xui − xuk ) and xui = ZTuQi .
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4.2 Adaptive Refinement for Top-K Implicit
Friends

In section 3, we have identified the Top-K (e.g. 100) positive and
negative friends for each user. However, incorporating the same
number of implicit friends for each user may lead to a suboptimal
solution because of the ubiquitous differences across different users.
Warner et al. [33] revealed that positive social effect is not observed
in all groups of users in the explicit social network. Users who have
limited connection to other members are usually not influenced by
their friends on the purchasing behaviors. In addition, the positive
social effect is only moderately observed among connected users.
Particularly, to maintain the distinctiveness, highly connected users
have a tendency to reduce their purchases of items when they
observe that these items were consumed by their friends. Based on
this study, we conjecture that different users are also influenced by
their implicit friends in a rather diversified fashion. Consequently,
assigning all users the same number of implicit friends may not be
a wise choice.

To tackle the above-mentioned problem, a feasible alternative
is to adaptively refine the Top-K implicit friends for each user
according to the performance of the model on the training data. As
the Top-K implicit friends are ordered by the similarity with the
current user, a similarity threshold tu for the current user which
varies with the proceeding of the training enables the adaptive
refining. That means, if tu becomes higher during the training, few
implicit friends would be used to train the model. On the contrary,
more implicit friends would be added. This is a typical problem
which can be solved by EM-algorithm. Given a threshold tu , the
importance of an implicit friend can be quantitatively measured
using the following formula:

g = σ (
suv − tu
su − tu

), (8)

where suv is the similarity between the current user u and one of
its implicit friends v , and su is the average similarity of all positive
implicit friends who have higher similarity than tu with u.

To incorporate the threshold into the optimization such that our
IF-BPR model is able to learn it adaptively, we add a coefficient
(1+g) into the probability that items in Pu are preferred over items
in Ju . More specifically, we define:

P(xui ≽ xuj |Θ) = σ (
xui − xuj

1 + g
), i ∈ Pu , j ∈ Ju (9)

where (xui − xuj ) is discounted by (1 + g). The intuition is that the
weight of item j is determined by both the similarity of the implicit
friend v and the average similarity of all selected implicit friends
of user u. Specifically, we use g to control the magnitude of perfect
friends which are derived from both positive and negative friends.

4.3 Parameters Optimization
Generally, to avoid overfitting, zero-mean Gaussian priors are im-
posed on Z and Q, generating a regularization term in the form of
λΘ
2 (| |Z| |

2
F + | |Q| |

2
F ). Furthermore, we notice that, given the perfect

friends F (u), user feature vectors follow a conditional distribu-
tion N(Zu |Ẑu ,σ 2ZI) with mean Ẑu and variance σ 2Z, and Ẑu is the
average of feature vectors of users in F (u). The proposed social
regularization is based on the assumption that a user’s preference

should be close to the average preferences of her friends, which
is often not well exploited in the item ranking problem. Under
this additional constraint, the influence of perfect friends is further
expanded. In particular, if the adaptive refinement is not adopted
because of the demand of fast running, without this constraint,
IF-BPR is prone to overfitting as a small number of implicit friends
only have rated a small proportion of items, which leads to small
sets of Ju , PSu and NSu . With the rise of the number of implicit
friends, the influence of the social regularizer will be weaken. By
taking negative log-form of the posterior probability, our model
minimizes the following objective function, which is composed of
order modeling and regularization terms:

L = −
∑
u

( ∑
i ∈Pu

∑
j ∈Ju

ln(σ (
xui − xuj

1 + g
))

−
∑
j ∈Ju

∑
k ∈PSu

ln(σ (xuj − xuk )) −
∑

k ∈PSu

∑
c ∈Nu

ln(σ (xuk − xuc ))

−
∑
c ∈Nu

∑
n∈NSu

ln(σ (xuc − xun ))

)
+
λΘ
2
(| |Z| |2F + | |Q| |

2
F )

+
λZ
2

∑
u
| |Zu −

∑
u′ ∈F(u) Zu′

|F (u)|
| |2F +

λt
2

∑
u
| |tu | |

2.

(10)

A local minimum of the log-likelihood function in Eq. (10) can be
obtained by performing stochastic gradient descent on Z and Q.
Equations (11) shows the corresponding derivatives.

∂L

∂Zu
= −

1
1+ge

−(
xui −xuj

1+g )

1 + e−(
xui −xujk

1+д )
(Qi − Qj ) −

e−(xuj−xuk )

1 + e−(xuj−xuk )
(Qj − Qk )

−
e−(xuk−xuc )

1 + e−(xuk−xuc )
(Qk − Qc ) −

e−(xuc−xun )

1 + e−(xuc−xun )
(Qc − Qn )

+ λZ (Zu −

∑
u′ ∈F(u) Zu′

|F (u)|
) + λΘZu ,

∂L

∂Qi
= −

1
1+ge

−(
xui −xuj

1+g )

1 + e−(
xui −xuj

1+д )
Zu + λΘQi ,

∂L

∂Qj
=

1
1+д e

−(
xui −xuj

1+g )

1 + e−(
xui −xuj

1+g )
Zu −

e−(xuj−xuk )

1 + e−(xuj−xuk )
Zu + λΘQj ,

∂L

∂Qk
=

e−(xuj−xuk )

1 + e−(xuj−xuk )
Zu −

e−(xuj−xuk )

1 + e−(xuj−xuk )
Zu + λΘQk ,

∂L

∂Qc
= −

e−(xuk−xuc )

1 + e−(xuk−xuc )
Zu −

e−(xuc−xun )

1 + e−(xuc−xun )
Zu + λΘQc ,

∂L

∂Qn
= −

e−(xuc−xun )

1 + e−(xuc−xun )
Zu + λΘQn

(11)

Meanwhile, to adaptively refine implicit friends for each user, an
EM algorithm based update policy is adopted. Based on Eq. (10),
each time we randomly sample a user and five items from the
corresponding item sets to perform the optimization process (E-
step). After each iteration on all users and sampled pairs, we update
tu according to Eq. (12), filter out implicit friends which have a
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similarity below the personalized threshold for each user, and then
reconstruct the social item sets (M-step).

∂L

∂tu
=

∑
j ∈Ju

−

( g(1 − g) 1
1+ge

−(
xui −xuj

1+g )
(xui − xuj )(suv − tu )

1 + e−(
xui −xuj

1+s )(tu − tu )2(1 + g)2 |Ju |
−
λt tu
|Ju |

)
.

(12)
Compared with the original Social BPR [46] and other Social

BPR based models [32, 43], IF-BPR extends the social ranking as-
sumption, which can model the order in a fine-grained view, and
proposes to refine the Top-K implicit friends for each user to en-
sure that the final selected implicit user relations could improve
the social recommendation performance. Besides, existing Social
BPR models sample negative pairs from unobserved data, which is
ill-considered because unobserved item could also be the positive
feedbacks. Instead, IF-BPR develops a wiser sampling strategy with
the identified negative feedbacks and friends.

5 EXPERIMENTS AND RESULTS
In this section, we perform experiments to answer the following
research questions: (1) Can adaptively learning the optimal number
of implicit friends improve recommendation performance? (2) Can
IF-BPR show evident improvement when compared with other
methods? (3) Can IF-BPR relieve the cold-start recommendation
problem? (4) What are the roles implicit friends and explicit friends
play for the social recommendation?

5.1 Experimental Designs
Datasets.Three common social recommendation datasets, LastFM [2],
Douban [44], and Epinions [19] are used for experimental evalua-
tions. It should be noted that as the main focus of this paper is to
perform the top-N recommendation, for Epinions and Douban with
a rating scale of 1 to 5, only the ratings of 4 and 5 are considered
as the positive feedbacks and the ratings of 1 and 2 are considered
as the negative feedbacks for the model training. For LastFM, the
songs which were listened only for once by the current user are
collected as the negative feedbacks. The detailed statistics of the
used datasets are shown in Table 2. For all the datasets, we use
80% of the data as the training set, from which we randomly select
10% as the validation set. Specifically, the parameters of baseline
methods are determined by their performance on the validation set.
Then we conduct the experiments with 5-fold cross validation for
10 times and present the average performance.

Table 2: Dataset Statistics

Dataset #Users #Items #Feedbacks Density #Relations
LastFM 1,892 17,632 92,834 0.278% 25,434
Douban 2,831 15,918 636,436 1.412% 35,624
Epinions 18,201 18,751 403,725 0.072% 203,720

Baseline Methods. To demonstrate the superiority of our ap-
proach, we compare IF-BPR with the most popular item ranking
methods: Most-Pop (MP), BPR [24], SBPR [46], TBPR [32] and
CUNE [43]. Besides, two network embeddingmethods, DeepWalk[23]
and metapath2vec[5], are also trained to generate recommenda-
tions by computing the cosine similarities between users and items,
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Figure 3: Comparison of adaptive learning and Top-K . (Star
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Figure 4: The number of implicit friends of users.

and all the node sequences used in metapath2vec are the same as
those used in IF-BPR. Among these methods, SBPR directly uses
the explicit relations, TBPR divides explicit relations into strong
and weak sets, and CUNE is the most similar approach to our pro-
posed method as it also leverages network embedding techniques
to obtain the Top-K implicit friends. However, CUNE identifies
the Top-K implicit friends from a homogeneous network (i.e., the
collaborative user network derived from the user-item bipartite
network), while our developed method models the whole system
as a heterogeneous information network, and the comparison with
CUNE can further reveal the advantages of the proposed IF-BPR
model.
Evaluation Metrics. Two relevance-based metrics - Precision@K
and Recall@K, and one ranking-based metric - MAP@K (Mean
average precision) are used to measure the recommendation per-
formance of our proposed model and various baseline methods.
Configuration. For all baseline models, the regularization coef-
ficient λΘ is set as 0.01 and the dimension of latent features d is
specified as 20. For the two network embedding based model, CUNE
and IF-BPR, the number of walks is n = 20, the length of each walk
is l = 20, the dimension of embedding is Y = 25, the window size is
w = 5, the number of negative samples isM = 5, and the number
of implicit friends for CUNE is decided by its optimal performance
on three datasets. For IF-BPR, the social regularization coefficient
λs is empirically specified as 0.2 and the regularization coefficient
for similarity threshold is λt = 0.01. Moreover, In our experiments,
40% of node sequences in IF-BPR are generated by the meta-path
U

p
−→ I

p
←− U , with the remaining part evenly shared by other paths.
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Table 3: Performance comparison of our methods and other methods.

Dataset Metric MP BPR SBPR TBPR CUNE DeepWalk MP2vec IF-BPR IF-BPR+ Improv.

LastFM

Prec@10 3.090% 4.910% 4.846% 5.321% 4.770% 1.906% 2.138% 6.338% 6.622% 24.450%
Prec@20 2.037% 2.975% 3.037% 3.224% 3.080% 1.185% 1.345% 3.783% 3.931% 21.923%
Rec@10 4.674% 7.471% 7.184% 8.038% 7.144% 2.706% 3.042% 9.609% 9.972% 24.060%
Rec@20 6.130% 9.023% 8.991% 9.437% 9.192% 3.371% 3.824% 11.363% 11.804% 25.082%
MAP@10 0.02264 0.03367 0.03213 0.04194 0.03681 0.01245 0.01383 0.04723 0.05035 20.052%
MAP@20 0.02399 0.03522 0.03406 0.04268 0.03909 0.01306 0.01457 0.04945 0.05262 23.289%

Douban

Prec@10 10.256% 10.366% 8.806% 9.578% 11.442% 0.704% 1.188% 12.156% 12.612% 10.575%
Prec@20 7.426% 8.103% 6.909% 7.188% 8.377% 0.556% 0.997% 8.879% 9.085% 8.452%
Rec@10 3.273% 3.551% 2.705% 3.347% 3.874% 0.109% 0.158% 4.086% 4.417% 14.017%
Rec@20 4.752% 5.295% 4.228% 4.863% 5.498% 0.173% 0.284% 5.816% 6.063% 10.276%
MAP@10 0.06162 0.05636 0.04517 0.05115 0.06455 0.00259 0.00524 0.07241 0.07702 19.318%
MAP@20 0.04025 0.03921 0.03062 0.03413 0.04263 0.00172 0.00342 0.04867 0.05133 20.408%

Epinions

Prec@10 1.174% 1.732% 1.828% 1.960% 2.040% 1.378% 1.127% 2.136% 2.195% 7.598%
Prec@20 0.852% 1.382% 1.281% 1.379% 1.417% 1.007% 0.904% 1.441% 1.482% 4.587%
Rec@10 2.589% 4.029% 3.981% 3.997% 3.923% 2.929% 2.675% 4.277% 4.541% 13.610%
Rec@20 3.541% 5.425% 5.521% 5.419% 5.301% 3.990% 3.610% 5.678% 5.957% 7.897%
MAP@10 0.01312 0.01877 0.01820 0.01942 0.01937 0.01366 0.01160 0.02031 0.02264 16.580%
MAP@20 0.01322 0.01883 0.01837 0.01953 0.01944 0.01382 0.01161 0.02056 0.02244 14.900%

5.2 Adaptive Refining vs. Top-K
Intuitively, the assumption that all users share the same number of
Top-K implicit friends may lead to suboptimal recommendation per-
formance. That is the reason why we propose to adaptively refine
the Top-K implicit friends for each user. In this part, to ascertain
that adaptive refining is necessary, we compare the performance
of two variants of IF-BPR. The one with the refinement is named
IF-BPR+ while the other without this procedure is still named IF-
BPR. To ensure the confidence of the results, we change the number
of implicit friends (Top-K) in the range of [10, 150] with a step of
10. For IF-BPR+, the initial similarity threshold of each user is the
median similarity of Top-150 implicit friends.

As shown in Fig. 3, on Douban and Epinions, the performance of
IF-BPR increases with the rise of the number of implicit friends, and
then it gradually reaches a stable state. On LastFM, IF-BPR initially
gets a poor performance and then the performance monotonously
increases to the best when k = 80. Afterwards, it starts to drop. The
reason why IF-BPR gets unsatisfying performance when K is small
is due to the overfitting since the user-item pairs in Ju , PFu , and
NFu are limited. Obviously, IF-BPR+ outperforms IF-BPR by a fair
margin, which shows the effectiveness of adaptively refining the
Top-K implicit friends for each user.

Furthermore, to confirm that IF-BPR+ learns a different number
of implicit friends for each user, we randomly extract 1,000 users
from each dataset and draw the number of implicit friends when
IF-BPR+ finishes the running. From Fig. 4 we can see that different
users do have different numbers of implicit friends.

5.3 Recommendation Performance
The recommendation performance of different methods is shown
in Table 3. We can make the following observations from the table:
(1) In all cases, our proposed models IF-BPR and IF-BPR+ out-

perform all the compared baseline methods. Specifically, on

two denser datasets LastFM and Douban, IF-BPR and IF-BPR+
achieve much better recommendation performance than other
methods w.r.t. Precision@k , Recall@k andMAP@k . The rela-
tive improvements (calculated by comparing with the second
best performance) vary in the range of 4.587% to 25.082%.

(2) Two implicit friends based recommendation approaches, CUNE
and IF-BRP(+) achieve better recommendation performance
than explicit friends based recommendation methods in most
cases. The result can be explained that the embedding learn-
ing plays an important role in quantifying the similarity of
topologically distant users for the recommendation and im-
plicit friends can closely reflect the current user’s preference
compared with explicit friends. By contrast, two network em-
bedding methods show a poor performance, especially on the
dataset of Douban. We believe it is because these methods do
not model the preference order. This is why we propose IF-BPR
to enhance recommendation instead of using embeddings to
generate personalized recommendations directly.

(3) In comparison to BPR, SBPR does not show any evident im-
provements in half of the cases. In particular, on Douban dataset
which has a higher feedback density, BPR even performs better
than SBPR and TBPR. The potential reason is that users’ own
feedbacks are enough to fit their preferences. As a consequence,
noises in social networks may lower the performance. It once
again confirms the fact that explicit social relations are not
always helpful in improving the quality of recommendation.

5.4 Recommendation for Cold-Start Users
The real challenge for social recommendation is to perform the
accurate recommendation for the cold-start users who have a lim-
ited number of feedbacks or ratings in the system. In this part, we
conduct experiments on users who have feedbacks less than 10 to
validate if IF-BPR can alleviate the cold-start problem.
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LastFM Douban Epinions
0.00%

8.00%

16.00%

24.00%

C
ov
er
ag
e

0.60%
3.10%

14.50%

CUNE

LastFM Douban Epinions
0.00%

8.00%

16.00%

24.00%

5.10%

13.20%

22.90%

IF-BPR

Figure 6: Coverage for cold-start users.

From Fig. 5, we can see that IF-BPR+ leads to more accurate
recommendations than other baseline methods in almost all cases.
To our surprise, SBPR and TBPR are inferior to BPR on Douban. The
reason may be that social relations are often too noisy to be directly
used to improve the recommendation performance and cold-start
users are also cold with regard to the social relations. As for CUNE
and IF-BPR, both of them make use of enough implicit friends for
the recommendation, which alleviates the cold-start problem with
a significant improvement in recommendation performance.

However, why IF-BPR+ outperforms CUNE is still not explored
yet. We then turn our attention to investigate the network struc-
ture. In addition to the adaptive learning procedure, it is easy to
understand that the centrality of cold-start users are often very low
as few other users connect to them. In IF-BPR+, we design meta-
paths P2 to P6 to alleviate this issue by allowing the nodes with low
centrality reach other nodes other than the directed neighbors in
Gr. But in CUNE, the random walk only traverses the collabora-
tive user network derived from Gr. Hence, the nodes with lower
centrality scores are less likely to appear in the social corpora. To
further corroborate these assumptions, we randomly select 1,000

nodes from the social corpora generated by CUNE and IF-BPR+,
respectively. As is shown in Fig. 6, IF-BPR+ covers more cold-start
users on all these three datasets. Consequently, the cold-start users
are more likely to obtain a better embedding representation as they
appear more in the social corpora. The above explorations explain
why IF-BPR+ is superior to CUNE in practice.

Figure 7: The ego social network of the user with ID ’1917’.

5.5 Explicit Friends vs Implicit Friends
Above experiments validate the effectiveness of leveraging the
implicit friends for the recommendation. It is natural for us to ask
what are the roles the explicit friends and implicit friends play in
the social recommendation? First, we examine whether the implicit
friends and explicit friends overlap with each other. As expected,
we only witness a less than 25% overlap. To illustrate the result, we
randomly extract a user with id ’1917’ and her explicit and perfect
implicit friends from Epinions, and then visualize the topology of
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the ego social network of user ’1917’. According to Fig. 7, we can
notice that overlapped explicit friends are highly connected with
other explicit friends, whereas the nodes that are almost isolated
with other explicit friends are less likely to be the implicit friends.
If the isolated explicit friends are labeled as unreliable in terms
of user interactions, this phenomenon can be a strong evidence
showing that implicit friends are less noisy compared with the
explicit friends. Considering that implicit friends are those who
have similar tastes, we can draw a conclusion that the implicit
friends could be complementary for the reliable explicit friends for
the social recommendation.

Generally, social relations approximately follow the power-law
distribution. That is to say, a small fraction of users generate most
of the observed links. As social recommender systems directly make
use of the observed links, the power-law distribution implies that
conventional social recommender systems are actually measuring
the similarity between users with high degree centrality and can-
not well handle the tail users during the recommendation. As a
consequence, it lowers the diversity of recommendations. In Fig.
8, we draw the follower distributions of explicit friends and im-
plicit friends. As can be seen, the links of implicit friends are more
evenly distributed over the whole crowds. This is another reason
that can explain why IF-BPR is more effective than conventional
social recommender systems.
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Figure 8: Follower relationship distribution (1000 users are
randomly selected from each dataset).

6 RELATEDWORK
In the early stage, studies on social recommendation mainly focused
on discussing how to fully take advantage of the explicit social rela-
tions to improve the recommendation performance. Among those,
Ma et al. [17] proposed a model to co-factorize the rating matrix
and the relation matrix by connecting social information and rating
information through the shared user latent feature. An ensemble
based method [16] is proposed which assumes that the preferences
of users are largely determined by the tastes of their friends. Later
on, matrix factorization based social recommender systems are also
developed [11, 18] with the same principle. Based on these works,
Liu et al. [14] later introduced a model based on Bayesian inference
to enable the recommendation over online social networks. Unlike
other methods, in the work [10], two trust models were proposed.
In contrast to other social recommenders, this work considers that
both the trustors and trustees can affect users’ preferences. In addi-
tion, various one-class collaborative filtering models [22] for social

recommendation are also well studied. For example, in [46], the
authors proposed to adapt BPR [24] to social personalized rank-
ing with the observation that the preference lists of friends are
similar to each other. In [3], a probabilistic model is developed to
incorporate social relations into traditional factorization methods.

Follow-up findings showed that the direct usage of explicit social
relations may result in an inferior performance [30]. Subsequent
studies then resorted to identifying credible relations from online
social networks. [36] proposed to find a wise group of experts in
social networks to solve specific tasks. In the research [6], the au-
thors argued that people trusting each other may not always share
similar preferences. In their work, the original single-aspect trust
information is decomposed into four general trust aspects. Shortly
after, Wang et al. [32] proposed to leverage strong and weak so-
cial ties among two nodes for the social recommendation. In the
work [31], the above- mentioned method is extended by learning
personalized similarity thresholds for different users in order to
differentiate close friends from casual acquaintances. Besides, there
are a few studies proposed trust metrics to search for reliable im-
plicit friends by computing and predicting trust scores between
users based on their interactions [1, 7, 29]. Furthermore, inspired
by the recent advances in network embedding learning such as
DeepWalk [23], an embedding based social recommender system
called CUNE is developed by identifying credible semantic friends
on the constructed collaborative user network [43]. Despite the
fact that aforementioned models have achieved decent improve-
ments, few of them model the whole system as a heterogeneous
network for the social recommendation, through which we can
capture the similarity of users that are implicit from each other on
the social network. It also should be mentioned that our work is
similar but distinct from CUNE as we are the first to study the social
recommendation by learning embedding representations of nodes
on a heterogeneous network while CUNE focuses on homogeneous
networks.

7 CONCLUSION
This paper aims to identify implicit friends toward the discovery
of more credible user relations for the social recommendation. In-
spired by the recent advances of network embedding, we propose a
novel social recommendation method called IF-BPR. Our model first
generates a sequence of nodes under the guidance of specifically
designed meta-paths in which both the user-item and user-user
relations are maximally encoded, and then map each user into a
latent feature space by embedding representation learning. In this
way, it enables us to find the Top-K implicit friends that are not
necessarily connected with each other on the social network, and
the obtained Top-K implicit friends are further exploited for the rec-
ommendation via an adaptive social Bayesian personalized ranking
approach. Extensive experiments show that IF-BPR significantly im-
proves the quality of social recommendation, even for the cold-start
users. Moreover, the analysis reveals the reason why IF-BPR shows
a remarkable improvement and proves that the way we search for
implicit friends is reasonable and promising.
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