
Neural Memory Streaming Recommender Networks with
Adversarial Training

Qinyong Wang
School of Information Technology
and Electrical Engineering, The

University of Queensland
qinyong.wang@uq.edu.au

Hongzhi Yin∗
School of Information Technology
and Electrical Engineering, The

University of Queensland
h.yin1@uq.edu.au

Zhiting Hu
Language Technologies Institute,

Carnegie Mellon University
zhitingh@cs.cmu.edu

Defu Lian
School of Computer Science and

Engineering, University of Electronic
Science and Technology of China

dove.ustc@gmail.com

Hao Wang
360 Search Lab

cashenry@126.com

Zi Huang
School of Information Technology
and Electrical Engineering, The

University of Queensland
huang@itee.uq.edu.au

ABSTRACT
With the increasing popularity of various social media and E-
commerce platforms, large volumes of user behaviour data (e.g.,
user transaction data, rating and review data) are being continu-
ally generated at unprecedented and ever-increasing scales. It is
more realistic and practical to study recommender systems with
inputs of streaming data. User-generated streaming data presents
unique properties such as temporally ordered, continuous and high-
velocity, which poses tremendous new challenges for the once very
successful recommendation techniques. Although a few temporal
or sequential recommender models have recently been developed
based on recurrent neural models, most of them can only be ap-
plied to the session-based recommendation scenario, due to their
short-term memories and the limited capability of capturing users’
long-term stable interests. In this paper, we propose a streaming rec-
ommender model based on neural memory networks with external
memories to capture and store both long-term stable interests and
short-term dynamic interests in a unified way. An adaptive negative
sampling framework based on Generative Adversarial Nets (GAN)
is developed to optimize our proposed streaming recommender
model, which effectively overcomes the limitations of classical neg-
ative sampling approaches and improves the effectiveness of the
model parameter inference. Extensive experiments are conducted
on two large-scale recommendation datasets, and the experimental
results show the superiority of our proposed model in the streaming
recommendation scenario.
ACM Reference Format:
Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao Wang, and Zi
Huang. 2018. Neural Memory Streaming Recommender Networks with

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220004

Adversarial Training. In Proceedings of The 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’18). ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3219819.3220004

1 INTRODUCTION
The recent study by Econsultancy [28] shows that 94% of com-
panies agree that personalized recommendation has become an
important means to improve user experience, engagement, revenue
and conversion rate, and is critical to current and future success.
For example, Amazon and Netflix recommendations are cited by
many company observers as an outstanding means to improve rev-
enues and profits. They rely on the ability of recommender systems
to recommend media content or products that users are likely to
consume. With the proliferation of smart mobile phones, mobile
shopping and mobile commerce become the mainstream. In mobile
commerce, most mobile purchases (more than 58%) are made after
seeing a recommendation on a product detail page, and bringing
the most personalized recommendations to the top of a small screen
makes mobile shopping more convenient [34].

While recommender systems have attracted a large amount of re-
search interest, the subarea of streaming recommender systems has
remained largely unexplored. The real-world social media and E-
commerce platforms such as Amazon and Netflix generate massive
user-item interaction data (i.e., user behavior data) at an unprece-
dented rate. For example, nearly 1.5 billion transactions were made
in Alibaba during its Singles Day shopping event on 11, Novem-
ber 2017 [30]. Such data is temporally ordered, continuous, high-
speed and time-varying, which determines the streaming nature
of data in recommendation systems. Therefore, it is more practical
to study recommender systems using a streaming data framework.
The real-time streaming setting poses great challenges for conven-
tional recommender systems, most of which are designed for static
settings and implemented by batch learning techniques, which usu-
ally suffer from the following drawbacks when dealing with the
stream situation: 1) delay on model updates caused by the expen-
sive time cost of re-running the batch model; 2) inability to track
fast-changing trends (e.g., user preferences and item popularity) in
the presence of streaming data; and 3) lots of memory overhead to
explicitly store all the historical data.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2467

https://doi.org/10.1145/3219819.3220004
https://doi.org/10.1145/3219819.3220004

As the recommender system by nature is an incremental pro-
cess, some online learning techniques based on stochastic gradient
descent (SGD) and particle filters [11, 54] have been adopted or
developed to support streaming recommendations. However, they
suffer from the problem of “short-term memory”, i.e., since the al-
gorithms to update these models are based only on the most recent
data points, and do not take into account the past observations, the
models quickly forget the patterns learned in earlier stages. The
recommendation models based on these online learning algorithms
fail to capture users’ long-term stable interests. Recently, recurrent
neural model based recommender systems [17, 49] are proposed
to tackle streaming recommendation problems, which adopt recur-
rent neural networks (RNN) or long short-term memory (LSTM) to
capture and store sequential patterns of interacted items or users’
dynamic interests. Such models learn a continuous and compact
representation of the input data, and perform global updates across
the whole memory cell at each step. These architecture designs
encourage RNNs/LSTMs to capture sequential patterns from data,
which makes RNNs/LSTMs based recommender systems especially
good at capturing sequential user activity patterns or user temporal
dynamics. They are often applied to the session-based recommenda-
tion scenario without user profiles (i.e., users’ historical interaction
data). However, like the online learning algorithms, RNNs/LSTMs
have limitations in modeling and capturing users’ long-term stable
interests which are hardly affected by temporal factors.

To this end, we propose a novel model named NeuralMemory
Recommender Networks (NMRN). NMRN is inspired by Neural
Turing Machines (NTM) [14] and Memory Network (NemNN) [37],
and consists of two main components: augmented memories storing
user and item information, and an controller network interacting
with user activity data and reading or writing to the memories.
Augmenting controller network with external memories separates
the tasks of storing and processing information and makes the net-
work only focus on processing information stored outside it. It also
increases its capability of storing knowledge, thus users’ long-term
and stable preferences can persist if necessary. Moreover, NMRN
can flexibly and explicitly read from and write to the memories on
demand like physical computers. NMRN encourages local changes
in memory, and this ability to directly execute local update to in-
ternal memories makes NMRN powerful to integrate users’ recent
interaction data and capture their newly emerging interests.

Specifically, the external memories of NMRN compose the key
memory and the value memory. The structure of key-value memory
networks (KV-MemNN) [26, 57] makes the original MemNN more
suitable to deal with pairwise data. Given a new user-item inter-
action pair (u,v) arriving at the system in real time, NMRN first
generates a soft address from the key memory, activated by u. The
addressing process is inspired by recent advances in attention mech-
anism, which is popular in the fields of computer vision [27, 51] and
NLP [23, 59], but is rarely studied in the field of recommender sys-
tems. The atention mechanism applied in recommender systems is
useful to improve the retrieval accuracy and model interpretability.
The fundamental idea of our attention design is to learn a weighted
representation across the key memory, which is converted into a
probability distribution by the Softmax function as the soft address.
Then, NMRN reads from the value memory based on the soft ad-
dress, resulting in a vector that represents both long-term stable

and short-term emerging interests of user u. Inspired by the suc-
cess of pairwise personalized ranking models [32, 35] (e.g., BPR) in
top-k recommendations, we adopt the Hinge-loss in our model opti-
mization. As the number of unobserved examples is very huge, we
employ the negative sampling method proposed in [24] to improve
the training efficiency. Most existing negative sampling approaches
use either random sampling [1, 24, 38] or popularity-biased sam-
pling strategies [5, 11]. However, the majority of negative examples
generated in these sampling strategies can be easily discriminated
from observed examples, and will contribute little towards the train-
ing, because sampled items could be completely unrelated to the
target user. Besides, these sampling approaches are not adaptive
enough to generate adversarial negative examples, because (1) they
are static and thus do not consider that the estimated similarity or
proximity between a user and an item changes during the learning
process. For example, the similarity between user u and a sampled
noise item v is high at the beginning, but after several gradient
descent steps it becomes low; and (2) these samplers are global and
do not reflect how informative a noise item is w.r.t. a specific user.
In light of this, we develop an adaptive noise sampler based on a
Generative Adversarial Network (GAN) [13] to optimize our model,
which considers both the specific user and the current values of
the model parameters to adaptively generate “difficult” and infor-
mative negative examples. Moreover, in order to simultaneously
capture the first-order similarity between users and items as well
as the second-order similarities between users and between items
to learn robust representations of users and items, we adopt the
Euclidean distance to measure the similarity between a user and an
item instead of the widely adopted dot product, inspired by [19].

Overall, we summarize the major contributions of this paper:

(1) To the best of our knowledge, we are the first to design and
develop a streaming recommendermodel based onKey-Value
Memory Networks to provide real-time recommendations.
It has the nice capability of capturing and storing both users’
long-term stable interests and short-term dynamic interests.

(2) We propose a novel adaptive noise sampler to generate ad-
versarial negative samples for model optimization, which
significantly improves training effectiveness of our proposed
streaming recommender model. This is the first time to in-
tegrate Generative Adversarial Nets with the negative sam-
pling method seamlessly for recommender systems.

(3) We conduct extensive experiments to evaluate the perfor-
mance of our proposed streaming recommender model in
the streaming recommendation setting on two large-scale
recommendation datasets. The results show the superior-
ity of our proposals by comparing with the state-of-the-art
streaming recommendation techniques.

2 MODEL DESCRIPTION
In this section, we first formulate NMRN, then describe its structure
and finally present how to use it for streaming recommendations.
Note that in the description below, vectors and matrices are denoted
with bold small letters and bold capital letters respectively.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2468

𝑩

𝑀𝑡−1
𝑣

𝑢

𝑀𝑡
𝑣

𝑀𝑡
𝑘

𝑣−

𝑙𝑜𝑠𝑠

𝑀𝑡+1
𝑣

𝑨

𝒗

𝒗−

Softmax

Sigmoid Tanh

𝑒𝑡 𝑎𝑡

𝒖

1-

𝑣

𝑠

𝒘

Figure 1: the Architecture of the Propose Model

2.1 Model Preliminaries
The detailed structure of NMRN is illustrated in Figure 1. The total
numbers of users and items are denoted as N and M. We denote a
user-item interaction pair at time t as (ut ,vt)whilev−t is a sampled
negative item for a specific user at time t . Various sampling strate-
gies have been developed to draw them, which will be described
and analyzed in Section 3. ut is transformed into ut by multiplied
with user embedding matrix A while vt and v−t are transformed
into vt and v−t with item embedding matrix B, where ut, vt and v−t
have real-valued vectors with r dimensions, and the size of A and
B is N × r . Mk

t and Mv
t respectively represent key memory matrix

and value memory matrix at time t respectively, both with size of
L × r , where L and r stand for the number of memory slots and
the dimension of each memory slot respectively. wt is an attention
weight vector with size L that is generated from Mk

t activated by a
specific user u at time t . Thus, the weight vector is both user- and
time-specific. Note that we leave out the subscript t of ut , vt , ut, vt,
v−t and wt to make the expressions more compact in the following
sections and figures where no confusion occurs.

The notion of similarity is at the heart of all recommendermodels
and neural memory models. We adopt the metric learning approach
to learn a metric space, in which we employ the Euclidean distance
to measure the similarity among users, items and memory slots.
Given two data points p and q in a learned metric space, their
Euclidean distance d is calculated as:

d (p, q) = ∥p − q∥ =
√∑

i
(pi − qi)2 (1)

Compared with the widely adopted dot product similarity, the dis-
tance metric meets the condition of the triangle inequality: for any
three objects in a metric space, the sum of any two pairwise distance
should be greater than or equal to the remaining pairwise distance.
This property implies that: (1)if user u is close to both item v1 and
v2, it implies that v1 and v2 are also close to each other bounded
by d(v1,v2) < d(u,v1) + d(u,v2); (2)similarly, if item v is close to

both user u1 and u2, then u1 and u2 are also guaranteed to be close
to each other bounded by d(u1,u2) < d(u1,v) + d(u2,v) [19].

These implications could result in the following benefits in user
behavior modelling: (1) The distance metric facilitate the following
objects to cluster together: users who co-like the same items and
items co-liked by the same users. (2) Given any user, his/her nearest
neighboring items are the ones that he/she liked or are liked by
other similar users.

2.2 Memory Addressing
We assume that there exist L latent factors for interests, and different
user has different tastes (i.e., weights) on these latent factors. Each
user’s weights remain stable because they are related to his/her
intrinsic personality factors. In our model, each key memory slot
stores the key (i.e., weight) to the corresponding latent factor. Specif-
ically, at time t, the one-hot representation of user u is transformed
into an r-dimensional continuous user embedding u via the embed-
ding matrix A. Then u is fed into the key memory matrixMk

t to get
attention weights, i.e., u is compared with each key memory slot
(take the ith one as an example) to get the similarity simi using the
Euclidean distance:

simi =

u −Mk

t (i)

 (2)

Then, an attention weight vector w with size L are obtained by
applying the Softmax function, i.e., So f tmax(zi) = ezi /Σje

(zj),
to the negative similarities so that the most similar memory slot
produces the largest weight:

w (i) = Sof tmax (−simi) (3)

We adopt the soft attention mechanism by using the differentiable
Softmax function so that the whole architecture is differentiable and
end-to-end. This property is called end-to-end differentiable, with
one end being the inputs and the other the outputs. The attention
process is also referred asmemory addressing tomimic real memory
operations in the areas of computer architectures [26].

2.3 Memory Reading
Each slot in the value memory stores the concrete latent factor
value (e.g., topics and categories) in the same order as the value
memory. Unlike the stable weights, each of these latent factors’
values is varying and evolutionary during the whole process in
different speed, analogous to the topic evolution over time [29].
Significant change in latent factor value means that old preferences
are disappearing while new preferences appear, i.e., new user in-
terests emerge, but minor change in latent factor value means user
interests remain stable. This explains why our model can capture
both long-term stable interests and short-term dynamic interests.
Technically, each memory slot is multiplied by the corresponding
attention weight, resulting in a r-dimensional vector s which we
call proxy preference vector :

s =
∑L

i=1
w (i)Mv

t (i) (4)

The proxy preference vector s plays an important role and we
explain it as follows: (1) It preserves the information of the user’s all
interacted items, so that it naturally captures the user’s long-term
and short-term interests. (2) It is generated from the value memory
matrix that stores item information, therefore it could act as a proxy

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2469

of a user when computing the similarity between a user and an item,
because users and items may be projected to different spaces (e.g.,
when the size of a key memory slot is different from that of a value
memory slot), and their similarity cannot be directly computed via
Euclidean distance. In fact, the overall effect is equivalent to that
the user and the item are projected into the joint r-dimensional
space, which enables the similarity computation between a user
and an item. Thus, given a user as query, the efficiency of the top-k
recommendation at time t can be significantly improved with off-
the-shelf approximate nearest-neighbor (ANN) algorithms, such as
location-sensitive hashing (LSH).

2.4 Memory Writing
To locally update the value memory matrix to adapt to the change
of user preferences, a memory writing scheme is proposed inspired
by [14, 57]. Once a new user-item pair arrives at the system, the
item’s embedding will be written to the value memory matrix using
the same attention weights w generated in the memory reading
stage. The relevant memories are first erased and then the new item
information such as the item’s popularity is added to update the
value memory.

Specifically, to update the value memory matrixMv
t intoMv

t+1, a
linear function is applied to the newly arrived itemv’s embedding v
and then the Sigmoid function is employed to the result, obtaining
the erased vector et as follows:

et = Siдmoid (Wev + be) (5)

where We is a linear transformation matrix with size of r × r , and
be is a r-dimensional bias vector. The resulting erased vector et is
a r-dimensional vector, whose values range from 0 to 1. Then the
value memory Mv

t is partially erased, and each of its memory slots
is modified by:

M̃v
t+1(i) = Mv

t (i) ◦ [I −w (i)et] (6)

where I is a r-dimensional vector with each element being 1, and
◦ is element-wise multiplication. Similar to the reading case, the
weighting w(i) tells us where to focus our erasing. In this way,
the value location is reset to 0 if the corresponding weight and
the erased vector element are both 1, and if either is 0, the value
location remains unchanged. Following the erasing operation, a
r-dimensional add vector at is calculated for updating the value
memory in a similar manner:

at = Tanh(Wav + ba) (7)

where Wa and ba are linear transformation matrix and bias vector
with size r × r and r . Finally, the value memory matrix at time t + 1
is updated to be Mv

t+1(i) as follows:

Mv
t+1(i) = M̃v

t+1(i) +w (i)at (8)

2.5 Pairwise Loss Function
Inspired by [19, 22, 32], we design a pairwise loss function based
on Hinge-loss. Our intuition is that a user’s proxy preference vec-
tor s should be similar with the interacted items while dissimilar
with the non-interacted items in order to act as a proper proxy be-
tween users and items. Therefore, the loss function should pull the
positive items (i.e., neighbors) closer and push the negative items
(i.e., impostors) further from the proxy preference vector. As the

number of non-interacted items of each user is huge, we adopt the
negative sampling method to perform model optimization instead
of using all unobserved examples, following skip-gram model [25].
The pairwise loss function is defined as follows:

L =
∑

(u,v)∈S,v−∼V−
u
wu,v ∗ [m + d (u, v) − d (u, v−)]+ (9)

where [z]+ = max(z; 0) denotes the standard Hinge-loss, wu,v is
the ranking loss weight (described later) andm > 0 is the safety
margin size; S is the user activities data currently available for
training, V−

u is a set of items that u has never interacted with,
currently, we simply assume that each negative item v− is uni-
formly drawn from V−

u , but we will introduce a better-designed
adaptive negative sampling method based on GAN in Section 3;
d(u,v)/d(u,v−) is the distance between u’s proxy preference vector
s and the positive/negative item vector v/v−.

2.6 Ranking Loss Weights and Regularization
A rank-based weighting scheme called Weighted Approximate-
Rank Pairwise (WARP) loss [46, 47] is adopted to penalize items at
a lower rank. Given a user u, let ranku,v denote the rank of item v
in u’s recommendation list, we penalize a positive item v based on
its rank by setting:

wu,v = log(ranku,v + 1) (10)

This scheme penalizes a positive item at a lower rank much more
heavily than at the top. However, it is computationally inefficient to
rank all items for each user. To avoid ranking all items, we adopt the
following approximate method to obtain ranku,v : for each positive
item v of user u, it needs to draw Nu,v negative items until a v−
satisfying d(u,v) − d(u,v−) +m > 0, i.e., an impostor, is found.
Then the approximate rank is calculated as:

ranku,v ≈ ⌊
N − 1
Nu,v

⌋ (11)

Recall that N is the total number of items.
If the data points in a high-dimensional space spread too widely,

the model would fail due to the curse of dimensionality [12]. To
solve it, we bound the norm of all user/item vectors within 1 to
ensure the model robustness [19]: ∥u∥ ≤ 1 and ∥v∥ ≤ 1.

2.7 Top-k Recommendations with NMRN
Generating top-k recommendations for a online user u at time t
is straightforward with NMRN: u is transformed into her proxy
preference vector s by embedding matrix A, key memoryMk

t and
value memoryMv

t . Then s is compared with all items vectors trans-
formed by embedding matrix B to find out the most similar k items
according to d(s,v). Due to the nice property of Euclidean distance,
NMRN has the advantage of significantly speeding up the retrieval
process with approximate nearest-neighbor (ANN) algorithms, such
as location-sensitive hashing (LSH), especially when a well-known
industrial LSH library Annoy is adopted. After that, the model gets
updated based on this new item with the writing operation.

3 ADVERSARIAL TRAINING FRAMEWORK
In this section, we propose a GAN-based adversarial training frame-
work to overcome the drawbacks of existing sampling methods.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2470

𝑣1

P=0.7

𝑣2

𝑣3

𝑣4

𝑣5

P=0.1

P=0.05

P=0.05

P=0.1

reward

𝑩

𝑀𝑡−1
𝑣

𝑢

𝑀𝑡
𝑣

𝑀𝑡
𝑘

𝑙𝑜𝑠𝑠

𝑀𝑡+1
𝑣

𝑨

𝒗

𝒗−

Softmax

Sigmoid Tanh

𝑒𝑡 𝑎𝑡

𝒖

1-

𝑣

𝑠

𝒘

𝑣− = 𝑣3

D

𝑬

𝑭

𝑑𝐺

G

𝑃𝐺

Sa
m
p
ler

M
LP

𝑢

Figure 2: Overview of the Adversarial Training Framework

3.1 Problems of Existing Sampling Methods
To obtain a negative item, the most straightforward and widely
adopted method is random sampling [1, 7, 8, 24, 38] or popularity-
biased sampling strategies [5, 11]. However, there exist some prob-
lems that make them unsuitable for our application. For random
sampling methods, the major problem is that the randomly gener-
ated items create too many “easy” tasks for the model to learn, i.e.,
these items might be completely unrelated to the user, so the model
could easily discriminate them from the observed ones. These easy
tasks contribute very little for the model optimization and hinder
the model to discover more complex hidden user/item represen-
tations. On the contrary, a good and “difficult” item should be
informative and could confuse the model if it has not captured the
deep user/item representations. Moreover, the common problem
for both methods is that they are not adaptive enough to generate
adversarial negative items, i.e., they are static and do not consider
the change of similarity or proximity between a user and an item
during training. For example, before the training, the item v is sam-
pled as noise because its similarity with user u is high, however,
after several optimization iterations, the degree of similarity might
drop, this item v with little information is still considered as noise.
Another common problem is that the sampling probability distribu-
tion is usually global that applies to every user, but different users
have different interests, thus that global distribution dose not reflect
how informative a noise item is w.r.t a specific user. To this end, we
propose an adversarial training framework to adaptively generate
“difficult” and informative negative examples, highly inspired by
KBGAN [2].

3.2 Framework Description
The proposed training framework is shown in Figure 2. In parallel
to the GAN literature, we name the two models in the proposed
framework as Discriminator and Generator denoted by D and G
respectively. The target for the discriminator is to tell apart the
true items from false items produced by the generator while for
the generator is to adaptively generate an adversarial negative

item and use it to deceive the discriminator. In the adversarial
training settings, the generator and the discriminator are trained
with respective to its own loss function.

3.2.1 Discriminator. For the discriminator in our framework,
its loss function is:

LD =
∑

(u,v)∈S

wu,v ∗ [m + dD (u, v) − dD (u, v−)]+

(u, v−) ∼ PG (u, v− |u, v)
(12)

where PG (u,v− |u,v) is the probability distribution for generating
negative tuple (u,v−) by the generator given a positive tuple (u,v)
(defined below); dD denotes the distance measured by the discrimi-
nator, which is identical to d defined in in Eq (9). The optimization
procedures follow what we described above. It is clear that the only
difference between Eq (9) and Eq (12) is that the negative item v−

in Eq (12) is generated by the generator while it is drawn randomly
in Eq (9).

3.2.2 Generator. The objective of the generator maximizes the
expectation of −dD (u,v−) using the generated items so as to en-
courage the generator to generate plausible items to confuse the
discriminator:

LG =
∑

(u,v)∈S

E[−dD (u, v−)]

(u, v−) ∼ PG (u, v− |u, v)
(13)

The distribution PG (u,v
− |u,v) is modeled as:

PG (u, v− |u, v) =
exp(−dG (u, v−))∑

v̄∈V−
u
exp(−dG (u, v̄))

(14)

where dG is the Euclidean distance between user u and item v mea-
sured by the generator though a neural network. We embed u with
matrix E and embed v with matrix F, the resulting vectors are sepa-
rately forward-propagated by a multilayer perceptron (MLP) such
that user u and item v are in the same space, and dG is measured
between the output user and item vectors, as shown in Figure 2.
V−
u is a set containing all items not interacted with user u in the

history, however, this set might be large, witch would significantly
damage the efficiency. In order to reduce computational complexity,
we only uniformly randomly select T items from the original whole
V−
u to form a new but smaller V−

u .
However, the challenge in the optimization process is that LG

can not be directly optimized by SGD because it involves a discrete
sampling step which blocks the flow of gradients. Following the
work [2, 56], we consider it as a reinforcement learning problem,
where, analogously, (u,v) is the state, PG (u,v− |u,v) is the policy,
(u,v−) is the action and −dD (u,v

−) is the reward.
A common optimization approach is to adopt policy gradient

based reinforcement learning (REINFORCE) [48, 56]. According to
that, the gradient of LG with respect to its parameters is:

∇θG LG =
∑

(u,v)∈S

E(u,v−)∼PG [−dD (u, v−)∇θG loдPG (u, v− |u, v)]

≃
∑

(u,v)∈S

1
T

T∑
(ui ,v

−
i)∼PG ,i=1

[−dD (ui , v−
i)∇θG loдPG (ui , v−

i |u, v)]
(15)

REINFORCE algorithm often suffers from the issue of high vari-
ance. A widely adopted solution is subtracting a baseline b from the
policy gradient. Although a good baseline should be the function
of the state value [31], it could also be chosen arbitrarily without

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2471

Algorithm 1: The Adversarial Training Algorithm

1 INPUT: user-item interaction history (u, v) ∈ S, margin m and learning rates λD and λG;
2 OUTPUT: the discriminator D, the generator G and their distance measurement function dD and dG;
3 Initialize the parameters θD and θG for D and G;
4 b = 0; //initiate the baseline
5 Pre-train D and G w.r.t. to θD and θG;
6 while not convergent do
7 Sample a mini-batch Sbatch ∈ S; ∆G = 0; ∆D = 0; Rbatch = 0;//zero the gradients of D and G and rewards
8 for (u, v) ∈ Sbatch do
9 Compute its ranking weight w(u,v);

10 Uniformly randomly sample T negative items: V−u ;

11 Measure the sampling probability distribution: PG(u, v−|u, v) =
exp(−dG(u,v−))∑

v̄∈V−u
exp(−dG(u,v̄))

;

12 Sample a negative item v− forming (u, v−) by the distribution PG(u, v−|u, v);
13 Freeze the weights of G;

14 ∆D = ∆D +∇θD{wu,v ∗ [m+ dD(u, v)− dD(u, v−]+}; // accumulate the example gradient to ∆D

15 Rbatch = Rbatch + (−D(u, v−));
16 Freeze the weights of D ;
17 ∆G = ∆G + (Rbatch − b)∇θG log pG; // accumulate the example gradient to ∆G

18 end
19 θD = θD − λD∆D;θG = θG + λG∆G; //minimize the loss of D while maximize the likelihood of G

20 b = Rbatch
|Sbatch| ; //update the baseline

21 end

changing the expectation to avoid introducing new parameters [48].
In our case, we fix keep b fix as the average reward of the whole
training set, i.e., b =

∑
(u,v)∈S E(u,v−)∼PG (u,v− |u,v)[−dD (u,v

−)].
For implementation, only recent generated negative items are used
to approximate b.

Note that like many typical GAN models [40, 58], both the dis-
criminator and the generator are pre-trained separately. In particu-
lar, the discriminator is pre-trained according to Eq (9) with random
negative items and the generator is pre-trained by maximizing the
log-likelihood of Eq (14). Algorithm 1 summaries this adversarial
training process.

4 EVALUATION
In this section, we first introduce the experimental settings and
then report the experimental results.

4.1 Datasets
To evaluate our streaming recommendation model, we select two
large-scale and publicly available datasets, i.e., Movielens and Net-
flix, that contain time information of user-item interactions in order
to simulate the real streaming scenario.

Movielens: Movielens is a widely adopted movie dataset for
evaluating recommender systems. We choose the 20M Dataset that
contains 20 million interaction records generated by 138493 users
on 26744 movies. All interaction records are associated with times-
tamps ranging from the 01/09/1995 to 03/31/2015.

Netflix: Netflix is another movie dataset that consists of 24
million interaction records, 470758 users and 4499 movies. This
dataset was sampled between November, 1999 and December, 2005
and reflects the distribution of all interactions received during this
period, and the temporal granularity is a day..

4.2 Baseline Methods
We compare our proposed models with three state-of-the-art rec-
ommendation models that support online updating. To validate

the effect of our proposed GAN-based adaptive negative sampling
approach (called NMRN-GAN for the rest of this paper), we design
a baseline called NMRN-RS that adopts the simple non-adaptive
random sampling method to draw negative items.

RRN Recurrent Recommender Networks (RRN) [49] are able
to predict future behavioral trajectories. This is achieved by en-
dowing both users and movies with a Long Short-Term Memory
(LSTM) [18] autoregressive model that captures temporal dynam-
ics of user interests, in addition to a more traditional low-rank
factorization to capture users’ stable interests.

RKMF Regularized Kernel Matrix Factorization (RKMF) is pro-
posed by Rendle et. al in [33], inspired by that the nonlinear in-
teractions between feature vectors are possible with kernels. A
flexible online learning algorithm is developed for RKMF to update
on selected data instances. We use a RKMF implemented bymfrec 1.

WARPWeighted Approximate-Rank Pairwise (WARP) [46] loss
is the state-of-the-art top-k recommendation method specifically
designed for implicit feedbacks. WARP uses SGD and a smart sam-
pling trick to approximate ranks, resulting in an efficient online
optimization strategy. A WARP implemented by LightFM2 is used.

NMRN-RSNMRN-RS is a NMRN implementation that only uses
uniformly random sampling strategy to draw negative items. We
compare with it to validate the benefits brought by our proposed
GAN-based adaptive negative sampling approach.

4.3 Evaluation Setup
In this section, we describe how to simulate real streaming recom-
mendation scenarios and the evaluation protocol and measurement.

4.3.1 Scenario Simulation. To mimic a real streaming recom-
mendation scenario, we need to split the datasets properly. Besides
online streaming recommendation, we also test our model in a tra-
ditional offline batch-based temporal recommendation setting [52].

1github.com/mlaprise/mfrec
2github.com/lyst/lightfm

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2472

1 2 3 4
test set

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H
its

@
5

NMRN-GAN
NMRN-RS

RRN
RKMF

WARP

(A) Hits@5

1 2 3 4
test set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
its

@
10

NMRN-GAN
NMRN-RS

RRN
RKMF

WARP

(B) Hits@10

1 2 3 4
test set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
its

@
20

NMRN-GAN
NMRN-RS

RRN
RKMF

WARP

(C) Hits@20

1 2 3 4
test set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
its

@
30

NMRN-GAN
NMRN-RS

RRN
RKMF

WARP

(D) Hits@30

1 2 3 4
test set

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

H
its

@
5

NMRN-GAN
NMRN-RS

RRN
RKMF

WARP

(E) Hits@5

1 2 3 4
test set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
its

@
10

NMRN-GAN
NMRS-RS

RRN
RKMF

WARP

(F) Hits@10

1 2 3 4
test set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
its

@
20

NMRN-GAN
NMRN-RS

RRN
RKMF

WARP

(G) Hits@20

1 2 3 4
test set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
its

@
30

NMRN-GAN
NMRS-RS

RRN
RKMF

WARP

(H) Hits@30

Figure 3: Hits@k on Movielens (A-D) and Netflix (E-H) with Increasing k for Online Streaming Setting

For online streaming recommendation, we follow the data split-
ting strategy introduced in [3]. We order all interaction records
by timestamp and evenly split them into 6 parts. The first 2 parts
form a base training set are denoted as Dtrain and the remaining
4 parts are test sets denoted as Dtest

1 . . .Dtest
4 , which are used to

mimic the online streaming inputs. All the comparison methods are
first trained over Dtrain to determine the initial model parameters
and the best hyper parameters (e.g., the number of latent factors
and the shapes of embedding). Once the initial training is com-
pleted, the 4 test sets are sequentially predicted. During testing,
the previous test set Dtest

i is used to update the model, then the
updated model predicts the current test set Dtest

i+1 . Formally, the
model is first trained with Dtrain , resulting in M0, then M0 is
used to perform evaluation on Dtest

1 . After that, M0 is updated
with Dtest

1 to beM1 and so on. For new users not contained in the
training set, we recommend the most popular items.

For offline batch recommendation, we order all user interaction
records in datasetD by their timestamps and split them into halves,
denoted as Dtrain and Dtest . Dtrain is used to learn model pa-
rameters and Dtest is for evaluating trained model.

4.3.2 Evaluation Methodology. The evaluation methodology we
adopt for all comparison methods is Hits@k that is widely applied
in the recommendation research area [6, 20, 43]. For each user
interaction record (u,v) with time t in the test set: 1) We randomly
sample J items that user u has never interacted with before t . It is
worth mentioning that J is set to 5000 and 500 for theMovielens and
Netflix respectively in our experiments; 2) Compute u’s preference
scores for these J items and v; 3) Sort these J+1 items by their
scores to form a ranked list. Let p denote the position of v within
the list and thus the best result happens when v precedes all the
other items (i.e, p = 1); 4) A top-k recommendation list is formed by
picking the k items with highest scores. If p ≤ k , we get a hit (i.e.,
the ground truth v appears in u’s recommendation list), otherwise,
we get a miss. The hit probability would rise as k increases or J
decreases, thus we need to fix k and J for all comparison methods
to ensure fairness. 4) The Hit@k is finally computed as:

Hits@k =
#hit@k
|Dtest |

(16)

where #hit@k is the number of hits within test set Dtest .

4.4 Experimental Results
In this section, we present the experimental results in both on-
line streaming and offline batch recommendation settings, and the
optimal hyper-parameters are also given for the convenience of
repeating our experiments.

Our proposed NMRN-GAN achieves its best performance with
the hyper-parameters r=64, L=128, T=200 and m=3 on the Movie-
lens dataset, and r=32, L=64, T=100 and m=4 for the Netflix dataset.
Figure 3 reports the online streaming recommendation accuracy in
terms of Hits@5, Hits@10, Hits@20 and Hits@30 on both datasets.
The horizontal axis is the timeline, four reference time points are
chosen to simulate the “the current time”. Obviously, our proposed
NMRNmodels (including NMRN-GAN and NMRN-RS) significantly
outperform the other comparison methods on both datasets. In ad-
dition, several other observations are made from the results. (1)
The LSTM based recommender RRN performs much better than
other comparison methods WARP and RKMF. which validates our
statement that a streaming recommender system should preserve
long-term stable personal interests as well as capture the short-term
newly emerging interests. (2) However, RRN falls far behind our
NMRS models, although it also considers both long-term stable and
short-term dynamic user interests. This is because RRN uses two
separate models (i.e., LSTM and the traditional matrix factorization)
to model users’ two types of interests respectively and then simply
adds the results of these two models together to produce the final
recommendations. In contrast, our NMRS models with external key-
value memories naturally capture and store both long-term stable
and newly emerging interests in a unified manner. (3) NMRN-GAN

5 10 20 30
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
its
@
k

NMRN-GAN
NMRN-RS

RRN
WARP

(A) Movielens

5 10 20 30
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
its
@
k

NMRN-GAN
NMRS-RS

RRN
WARP

(B) Netflix

Figure 4: Batch Recommendation on Movielens and Netflix

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2473

performs better than NMRN-RS, which demonstrates the signif-
icance of adaptively generating adversarial negative items to, in
turn, improve the discriminator. (4) Although the Hits@k values
of models on the Movielens dataset look similar to that achieved
on the Netflix dataset, in fact all of them perform worse on the
Netflix dataset, since a much smaller J is adopted for the Nexflix
dataset to ensure that Hits@k values in both datasets are on the
same scale (refer to Section 4.3.2). This is because the Netflix dataset
is a sample dataset, and the average number of movies associated
with each user is much smaller than that on the Movielens dataset.
This sparsity issue is exacerbated and augmented in the streaming
recommendation scenario.

Since WARP and RRN are not originally proposed for streaming
recommendation, we also perform evaluations under the offline
batch recommendation setting described in Section 4.3.1. We report
the results in Figure 4, and find that NMRN-GAN still beats other
competitors in the traditional top-k recommendation task, validat-
ing that NMRN-GAN is capable of preserving and storing users’
long-term stable interests. We also observe that (1) WARP in this
setting performs much better than in the streaming recommenda-
tion setting; (2) All models achieve higher Hits@k recommendation
accuracy values in this recommendation setting, and actually their
performances in this setting are an upper bound for their perfor-
mance in the online streaming recommendation scenario.

5 RELATEDWORK
5.1 Online Recommender Systems
Temporal information is a significant factor to consider when de-
signing personalized recommender systems [39, 41, 42, 45, 50, 52, 53,
55]. Streaming recommendation treats temporal information in a
temporally ordered, continuous and high-velocity setting. There are
two main categories of existing streaming recommender systems
by the way they get online updated.

The first category is neighborhood-based streaming recommender
systems. These recommendation methods heavily rely on an offline
phase where typically a neighborhood-based method is employed
to calculate the similarity among users, which is used to make
recommendations for the user based on the current preferences
of his/her most similar users obtained in the past [9, 21, 36]. [9]
proposed online models to generate personalized recommendations
for Google News users. [21] leveraged the considerable compu-
tation ability of Storm, a data access component and a specially
developed data storage component. The largest drawback for these
models is that every update requires re-computing all similarities
for the offline model, and clearly, the retraining process makes it
extremely inefficient for the streaming recommendation task. An-
other problem is that they assume all historical user interaction
records can fit into the main memory, which is not always possible.
Our proposed model cost much less memory usage because it dose
not need to store the whole historical interaction records, rather,
they are abstracted into key memory and value memory.

Another category is model-based streaming recommender sys-
tems, which incrementally update a trained model based on user
interactions arriving in the temporal order constantly, thus the
model is expected to get updated for every one or batch of new
user interaction(s). Various online update methods are designed

for these models [4, 10, 11, 16, 44]. [10, 16] focused on improving
the online recommendation with implicit feedbacks and they paid
more attention to the negative sampling in the streaming settings.
[11] assumed that the system cannot deal with all input data in
streaming setting and they update the model only based on the
sampled data maintained in a well-designed reservoir. A flexible
online-update algorithm is developed for RKMF model [33] which
updates the model on selected new data instances.

5.2 Neural Memory Networks
The neural memory network (MemNN) is a concept inspired by
computer architectures and it has strong abilities to capture long-
term dependencies [14]. MemNN saw its success in many applica-
tions such as question answering [26, 37], neural language transla-
tion [15] and knowledge tracking [57] but they are rarely studied
in the field of recommendation systems, especially in streaming
settings. Typically, a MemNN model consists of two parts, a mem-
ory to store the information and a controller to interact with data,
in particular, to read from and write to the memory. Our model is
based specifically on Key-value paired memory networks, which
are a generalization of the way contexts (e.g. knowledge bases or
documents to be read) are stored in memory. The lookup (address-
ing) stage is based on the key memory while the reading stage
(given the returned address) uses the value memory. This provides
more flexibility and effectiveness [26].

MemNN that our model is based on can be considered as a gen-
eralization of traditional RNN/LSTM and they are different in two
main aspects. First, MemNN encourages local changes in memory,
which can discover not only the structures in the training data but
can also generalize to structures beyond that. The other difference is
that MemNN has larger external memories compared to RNN/LSTM
that use a single hidden state vector to store information.

6 CONCLUSIONS
User activity data arrive at real-world recommender systems rapidly
and continuously, which determines the use of recommender sys-
tems in streaming settings. In this paper, we proposed a novel
streaming recommender model based on the key-value memory
networks to capture and store both long-term stable interests and
short-term dynamic interests in a unified way. To improve the ef-
fectiveness of model training, we designed an adaptive negative
sampling scheme based on GAN to generate adversarial negative
samples for each user. To validate our statements, we conducted
extensive experiments to evaluate the performance of our proposed
streaming recommender models qualitatively and quantitatively.
The experimental results showed that our streaming recommender
models significantly outperform some strong and state-of-the-art
online or streaming recommender models.

7 ACKNOWLEDGEMENT
This work was supported by ARC Discovery Early Career Re-
searcher Award (Grant No. DE160100308), ARC Discovery Project
(Grant No. DP170103954) and New Staff Research Grant of The
University of Queensland (Grant No. 613134). It was also partially
supported by National Natural Science Foundation of China (Grant
No. 61572335 and No. 61628206).

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2474

REFERENCES
[1] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the Gru: Multi-

Task Learning for Deep Text Recommendations. In RecSys. 107–114.
[2] Liwei Cai and William Yang Wang. 2017. KBGAN: Adversarial Learning for

Knowledge Graph Embeddings. arXiv (2017).
[3] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-

Johnson, and Thomas S Huang. 2017. Streaming Recommender Systems. In
WWW. 381–389.

[4] Chen Chen, Hongzhi Yin, Junjie Yao, and Bin Cui. 2013. Terec: A Temporal
Recommender System over Tweet Stream. VLDB 6, 12 (2013), 1254–1257.

[5] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On Sampling Strategies
for Neural Network-based Collaborative Filtering. In SIGKDD. 767–776.

[6] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
Recommender Algorithms on Top-N Recommendation Tasks. In RecSys. 39–46.

[7] Peng Cui, Shaowei Liu, and Wenwu Zhu. 2018. General Knowledge Embedded
Image Representation Learning. IEEE Transactions on Multimedia 20, 1 (2018),
198–207.

[8] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A Survey on Network
Embedding. arXiv (2017).

[9] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google News Personalization: Scalable Online Collaborative Filtering. In WWW.
271–280.

[10] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic Matrix
Factorization with Priors on Unknown Values. In SIGKDD. 189–198.

[11] Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, and Wolfgang Nejdl.
2012. Real-Time Top-n Recommendation in Social Streams. In RecSys. 59–66.

[12] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of
Statistical Learning. Vol. 1. Springer.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In NIPS. 2672–2680.

[14] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing Machines.
arXiv (2014).

[15] Edward Grefenstette, Karl Moritz Hermann,Mustafa Suleyman, and Phil Blunsom.
2015. Learning to Transduce with Unbounded Memory. In NIPS. 1828–1836.

[16] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
Matrix Factorization for Online Recommendation with Implicit Feedback. In
SiGIR. 549–558.

[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-Based Recommendations with Recurrent Neural Networks. arXiv
(2015).

[18] SeppHochreiter and Jürgen Schmidhuber. 1997. Long Short-termMemory. Neural
Computation 9, 8 (1997), 1735–1780.

[19] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative Metric Learning. InWWW. 193–201.

[20] Bo Hu and Martin Ester. 2013. Spatial Topic Modeling in Online Social Media for
Location Recommendation. In RecSys. 25–32.

[21] Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu. 2015. Tencentrec:
Real-Time Stream Recommendation in Practice. In SIGMOD. 227–238.

[22] Yehuda Koren. 2008. Factorization Meets the Neighborhood: a Multifaceted
Collaborative Filtering Model. In SIGKDD. 426–434.

[23] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective
Approaches to Attention-Based Neural Machine Translation. arXiv (2015).

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. arXiv (2013).

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In NIPS. 3111–3119.

[26] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-value Memory Networks for Directly Reading
Documents. arXiv (2016).

[27] VolodymyrMnih, Nicolas Heess, Alex Graves, and others. 2014. Recurrent Models
of Visual Attention. In NIPS. 2204–2212.

[28] David Moth. 2013. 94% of businesses say personalisation is crit-
ical to their success. (2013). https://econsultancy.com/blog/
62583-94-of-businesses-say-personalisation-is-critical-to-their-success

[29] Subhabrata Mukherjee, Hemank Lamba, and Gerhard Weikum. 2017. Item Rec-
ommendation with Evolving User Preferences and Experience. arXiv (2017).

[30] Grace Noto. 2017. Alipay Dominates Alibaba Singles Day With
90% of Transactions. (2017). https://bankinnovation.net/2017/11/
alipay-dominates-alibaba-singles-day-with-90-of-transactions/

[31] Jan Peters and Stefan Schaal. 2008. Reinforcement Learning of Motor Skills with
Policy Gradients. Neural Networks 21, 4 (2008), 682–697.

[32] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. 452–
461.

[33] Steffen Rendle and Lars Schmidt-Thieme. 2008. Online-Updating Regularized
Kernel Matrix Factorization Models for Large-Scale Recommender Systems. In
RecSys. 251–258.

[34] GTanmay Seth. 2017. M-Commerce Trends To Watch Out For In 2017. (2017).
https://www.knowarth.com/m-commerce-trends-to-watch-out-for-in-2017/

[35] Amit Sharma and Baoshi Yan. 2013. Pairwise Learning in Recommendation:
Experiments with Community Recommendation on Linkedin. In RecSys. 193–
200.

[36] Karthik Subbian, Charu Aggarwal, and Kshiteesh Hegde. 2016. Recommendations
for Streaming Data. In CIKM. 2185–2190.

[37] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, and others. 2015. End-To-End
Memory Networks. In NIPS. 2440–2448.

[38] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-Scale Information Network Embedding. In WWW. 1067–1077.

[39] Hao Wang, Yanmei Fu, Qinyong Wang, Hongzhi Yin, Changying Du, and Hui
Xiong. 2017. A Location-Sentiment-Aware Recommender System for Both Home-
Town and Out-of-Town Users. In KDD. 1135–1143.

[40] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In SIGIR. ACM, 515–524.

[41] Sibo Wang and Yufei Tao. 2018. Efficient Algorithms for Finding Approximate
Heavy Hitters in Personalized PageRanks. In SIGMOD. ACM.

[42] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:
Simple and Effective Approximate Single-Source Personalized PageRank. In
SIGKDD. ACM, 505–514.

[43] Weiqing Wang, Hongzhi Yin, Ling Chen, Yizhou Sun, Shazia Sadiq, and Xiaofang
Zhou. 2015. Geo-Sage: A Geographical Sparse Additive Generative Model for
Spatial Item Recommendation. In SIGKDD. 1255–1264.

[44] Weiqing Wang, Hongzhi Yin, Qinyong Huang, Zi Wang, Xingzhong Du, and
Nguyen Quoc Viet Hung. 2018. Streaming Ranking Based Recommender Systems.
In SIGIR.

[45] Weiqing Wang, Hongzhi Yin, Shazia Sadiq, Ling Chen, Min Xie, and Xiaofang
Zhou. 2016. SPORE: A Sequential Personalized Spatial Item Recommender System.
In ICDE. 954–965.

[46] Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling Up to
Large Vocabulary Image Annotation. In IJCAI, Vol. 11. 2764–2770.

[47] Jason Weston, Hector Yee, and Ron J Weiss. 2013. Learning to Rank Recommen-
dations with the K-Order Statistic Loss. In RecSys. 245–248.

[48] Ronald J Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8, 3-4 (1992), 229–256.

[49] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent Recommender Networks. InWSDM. 495–503.

[50] Min Xie, Hongzhi Yin, Hao Wang, Fanjiang Xu, Weitong Chen, and Sen Wang.
2016. Learning Graph-based POI Embedding for Location-Based Recommenda-
tion. In CIKM. 15–24.

[51] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, Attend And Tell:
Neural Image Caption Generation with Visual Attention. In ICML. 2048–2057.

[52] Hongzhi Yin, Bin Cui, Ling Chen, Zhiting Hu, and Zi Huang. 2014. A Temporal
Context-Aware Model for User Behavior Modeling in Social Media Systems. In
SIGMOD. 1543–1554.

[53] Hongzhi Yin, Bin Cui, Ling Chen, Zhiting Hu, and Xiaofang Zhou. 2015. Dynamic
User Modeling in Social Media Systems. TOIS 33, 3 (2015), 10.

[54] Hongzhi Yin, Bin Cui, Xiaofang Zhou,WeiqingWang, Zi Huang, and Shazia Sadiq.
2016. Joint Modeling of User Check-In Behaviors for Real-Time Point-Of-Interest
Recommendation. TOIS 35, 2 (2016), 11.

[55] Hongzhi Yin, Weiqing Wang, Hao Wang, Ling Chen, and Xiaofang Zhou. 2017.
Spatial-Aware Hierarchical Collaborative Deep Learning for POI Recommenda-
tion. TKDE 29, 11 (2017), 2537–2551.

[56] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient.. In AAAI. 2852–2858.

[57] Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. 2017. Dynamic Key-
Value Memory Networks for Knowledge Tracing. InWWW. 765–774.

[58] Yizhe Zhang, ZheGan, and Lawrence Carin. 2016. Generating Text via Adversarial
Training. In NIPS workshop on Adversarial Training.

[59] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo
Xu. 2016. Attention-Based Bidirectional Long Short-Term Memory Networks for
Relation Classification. In ACL, Vol. 2. 207–212.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2475

https://econsultancy.com/blog/62583-94-of-businesses-say-personalisation-is-critical-to-their-success
https://econsultancy.com/blog/62583-94-of-businesses-say-personalisation-is-critical-to-their-success
https://bankinnovation.net/2017/11/alipay-dominates-alibaba-singles-day-with-90-of-transactions/
https://bankinnovation.net/2017/11/alipay-dominates-alibaba-singles-day-with-90-of-transactions/
https://www.knowarth.com/m-commerce-trends-to-watch-out-for-in-2017/

	Abstract
	1 Introduction
	2 Model Description
	2.1 Model Preliminaries
	2.2 Memory Addressing
	2.3 Memory Reading
	2.4 Memory Writing
	2.5 Pairwise Loss Function
	2.6 Ranking Loss Weights and Regularization
	2.7 Top-k Recommendations with NMRN

	3 Adversarial Training Framework
	3.1 Problems of Existing Sampling Methods
	3.2 Framework Description

	4 Evaluation
	4.1 Datasets
	4.2 Baseline Methods
	4.3 Evaluation Setup
	4.4 Experimental Results

	5 Related Work
	5.1 Online Recommender Systems
	5.2 Neural Memory Networks

	6 Conclusions
	7 ACKNOWLEDGEMENT
	References

