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ABSTRACT

There is an influx of heterogeneous information network (HIN)

based recommender systems in recent years since HIN is capa-

ble of characterizing complex graphs and contains rich semantics.

Although the existing approaches have achieved performance im-

provement, while practical, they still face the following problems.

On one hand, most existing HIN-basedmethods rely on explicit path

reachability to leverage path-based semantic relatedness between

users and items, e.g., metapath-based similarities. These methods

are hard to use and integrate since path connections are sparse or

noisy, and are often of different lengths. On the other hand, other

graph-based methods aim to learn effective heterogeneous network

representations by compressing node together with its neighbor-

hood information into single embedding before prediction. This

weakly coupled manner in modeling overlooks the rich interactions

among nodes, which introduces an early summarization issue. In

this paper, we propose an end-to-end Neighborhood-based Interac-

tion Model for Recommendation (NIRec) to address above problems.

Specifically, we first analyze the significance of learning interac-

tions in HINs and then propose a novel formulation to capture

the interactive patterns between each pair of nodes through their

metapath-guided neighborhoods. Then, to explore complex inter-

actions between metapaths and deal with the learning complexity

on large-scale networks, we formulate interaction in a convolu-

tional way and learn efficiently with fast Fourier transform. The

extensive experiments on four different types of heterogeneous

graphs demonstrate the performance gains of NIRec comparing

with state-of-the-arts. To the best of our knowledge, this is the first

work providing an efficient neighborhood-based interaction model

in the HIN-based recommendations.
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1 INTRODUCTION

During the recent decade, the techniques of recommender systems

have developed from pure collaborative filtering based on only

user-item interactions [12] to deep neural networks with various

kinds of auxiliary data containing complex and useful information

[6, 19].

Recently, the heterogeneous information network (HIN)1, con-

sisting of multiple types of nodes and/or links, has been leveraged

as a powerful modeling method to fuse complex information and

successfully applied to many recommender system tasks, which are

called HIN-based recommendation methods [22, 24]. In Figure 1, we

present an instance of movie data characterized by an HIN. We can

easily see that the HIN contains multiple types of entities connected

by different types of relations. A variety of graph representation

learning methods have been proposed on HINs to capture the rich

semantic information, which roughly fall into the following two

categories.

One school is graph-based methodologies such as HetGNN [35],

where deep neural network architectures such as GCN [11] on ho-

mogeneous graphs are extended to enhance aggregating feature

information of neighboring nodes on heterogeneous graphs. How-

ever, these technologies usually compress the information of a node

and its neighborhood into single embedding vector before making

prediction [4, 22]. In this case, only two nodes and one edge are acti-

vated, yet other nodes and their connections are mixed and relayed,

which introduces an early summarization issue [18]. The other

school is metapath-based approaches. A metapath means composite

relation connecting two objects in network schema level. It has

been adopted to capture the semantic information [13, 31]. Taking

the movie data in Figure 1 as an example, the relations between

user and item can be revealed by the metapath User-User-Movie

(UUM) for the co-user relation and User-Director-Movie (UDM) for

the co-director relation. However, as Shi et al. [22] stated, metapath-

based methods, heavily relying on explicit path reachability, may

obtain bad performance when path connections are sparse or noisy.

1The terms łheterogeneous information networkž and łheterogeneous graphž are
used interchangeably in the related literature [22, 31]. In this paper, we mainly use
łheterogeneous information networkž (HIN).
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Figure 1: Heterogeneous information network and network

schema. (a) movie mA and its metapath-guided neighbors

(e.g, N2
UMD(uA) = {(uA,mA,dA), (uA,mA,dC), (uA,mB,dB)}) (b)

three types of nodes (user, movie, director) and two types of

relations/interactions (user-movie, movie-director) in solid

line, potential interactions (user-director) in dashed line. (c)

metapaths invloved (e.g., User-Movie (UM) and User-Movie-

Director (UMD)).

Also, rich structural information of nodes outside metapaths, i.e.,

their neighborhoods, is omitted in these approaches.

Based on the above analysis, when designing HIN, state-of-the-

art methods have not well solved, even may not be aware of, the

following challenges faced by HIN-based recommendation, which

we address in this paper:

• (C1) How to tackle the early summarization issue? Due to the

complex structures and large scales of the graphs, it is hard to

make predictions directly. Hence, we consider the interactive lo-

cal structures are valuable and helpful. For example, a system is

recommending a user to a user uA based on an HIN as Figure 1

shows. When we consider a candidate user such as uB, it is nat-

ural to consider their co-movies and co-directors; namely there

may exist a relationship between uA and uB since they share the

same moviemB. Actually, this is an example of łANDž operation

between users’ neighborhoods. Also, it is easy to extend this into

co-rating. In other words, the co-ratings betweenuA touB’s neigh-

borhood and uB to uA’s neighborhood indicate the similarity of

users’ preferences, which could be helpful for recommendation.

We argue that this interactive local structures are hidden and not

fully utilized in previous methods.

• (C2) How to design an end-to-end framework to capture and

aggregate the interactive patterns between neighborhoods? A re-

cent attempt [13] focused on measuring the semantic proximity by

interactive-paths connecting source and target nodes. However,

it overlooked rich information hidden in these node neighbor-

hoods. An HIN contains diverse semantic information reflected by

metapaths [27]. Also, there are usually various nodes in different

types involved in one path. Different paths/nodes may contribute

differently to the final performance. Hence, besides a powerful

interaction module, a well-designed aggregation module to distin-

guish the subtle difference of these paths/nodes and select some

informative ones is required.

• (C3) How to learn the whole system efficiently? Learning interac-

tive information on HINs is always time-consuming; especially

when faced with paths in different types and lengths for metapath-

based approaches [13] and large-scale high-order information for

graph-based approaches [18]. A methodology to both efficiently

and effectively learn the rich interactive information on HINs is

always expected.

To tackle these challenges, we propose NIRec, a neighborhood-

based interaction model for HIN-based recommendation. First, we

extend the definition of neighborhood in homogeneous graphs into

metapath-guided neighborhood in heterogeneous graphs. Next, we

design a heterogeneous graph neural network architecture with

twomodules to aggregate feature information of sampled neighbors

in previous step. The first module, namely interaction module, con-

structs interactive neighborhood and captures latent information

between łANDž operation. The second module, namely aggrega-

tion module, mainly consists of two components: (i) node-level

attention mechanism to measure the impacts of different nodes in-

side a metapath-guided neighborhood, and (ii) path-level attention

mechanism to aggregate content embeddings of different neighbor-

hoods. Finally, we formulate interaction in a convolutional way and

learn efficiently with fast Fourier transform (FFT). To summarize,

the main contributions of our work are:

• We formalize and address an important, but seldom exploited,

early summarization issue on HIN.

• We present an innovative convolutional neighborhood-based in-

teraction model for recommendation on HINs, named NIRec,

which is able to capture and aggregate rich interactive patterns in

both node- and path-levels.

• Wepropose an efficient end-to-end learning algorithm incorported

with fast Fourier transform (FFT).

We conduct extensive experiments on four public datasets. Our

results demonstrate the superior performance of NIRec over state-

of-the-art baselines.

2 RELATEDWORK

Heterogeneous Information Network based Recommenda-

tion. As a newly emerging direction, heterogeneous information

network (HIN) [23] can naturally characterize complex objects

and rich relations in recommender systems. There is a surge of

works on learning representation in heterogeneous networks, e.g.

metapath2vec [2], HetGNN [35], HIN2vec [4], eoe [32]; and their ap-

plications, e.g. relation inference [26], classification [36], clustering

[20], author identification [1]. Among them, HIN based recommen-

dation has been increasingly attracting researchers’ attention in

both academic and industry fields. For instance, Feng and Wang

[3] proposed to alleviate the cold start issue with heterogeneous

information network contained in social tagged system. Metapath-

basedmethods were introduced into hybrid recommender system in

[34]. Yu et al. [33] leveraged personalized recommendation frame-

work via taking advantage of different types of entity relationships

in heterogeneous informaiton network. Luo et al. [14] proposed

a collaborative filtering based social recommendation containing

heterogeneous relations. Shi et al. [25] introduced weighted het-

erogeneous information network In [24], the similarities of both

users and items are evaluated unser dual regularization framework.

Recently, Hu et al. [9] leveraged metapath-based context in top-N
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recommendation. As stated in [22], most existing HIN based recom-

mendation methods rely on the path-based similarity, which may

not fully mine latent features of users and items. In this paper, we in-

troduce metapath-guided neighborhood, and propose an innovative

model to capture interactive patterns hidden in neighborhoods.

Graph Representation. Graph representation learning is mainly

leveraged to learn latent, low dimensional representations of graph

vertices, while preserving graph structure, e.g., topology structure

and node content. In general, graph representation algorithms can

be categorized in two types. One school is unsupervised graph

representation algorithm, which aims at preserving graph structure

for learning node representations [5, 17, 21, 28, 30]. For instance,

DeepWalk [17] utilized random walks to generate node sequences

and learn node representations. Node2vec [5] further exploited a

biased random walk strategy to capture more flexible contextual

structures. Struc2vec [21] constructed a multilayer graph to encode

structural similarities and generate structural context for nodes.

LINE [28] proposed an edge-sampling algorithm improving both

the effectiveness and the efficiency of the inference. SDNE [30]

implied multiple layers of non-linear functions to capture highly

non-linear network structure. Another school is semi-supervised

model [10, 11, 29], where there exist some labeled vertices for rep-

resentation learning. For example, LANE [10] incorporated label in-

formation into the attributed network embedding while preserving

their correlations. GCN [11] proposed a localized graph convolu-

tions to improve the performance in a classification task. GAT [29]

used self-attention network for information propagation, which

leverages a multi-head attention mechanism. GCN and GAT are

popular architectures of the general graph networks and can be

regarded as plug-in graph representation modules in heterogeneous

graph, such as HetGNN [35], HAN [31] and HERec [22]. In this

work, our propose is not only to deliver graph representation learn-

ing techniques on heterogeneous graph, but also propose a novel

efficient neighborhood-based interaction methods, which should

be the first time to our knowledge.

3 PRELIMINARY

In this section, we introduce the concept of the content-associated

heterogeneous information network that will be used in the paper.

Definition 3.1. Neighborhood-based Interaction-enhanced

Recommendation. The HIN-based recommendation task can be

representetd as a tuple ⟨U,I,A,R⟩, whereU = {u1, . . . ,up } de-

notes the set of p users; I = {i1, . . . , iq } means the set of q items;

a ∈ A denotes the attributes associated with objects, and r ∈ R

presents the interaction behaviors between different types of ob-

jects. The purpose of recommendation is to predict the interaction

r (us , it ), i.e., click-through rate or link, between two objects, namely

source user us and target item it . In our setting, interactions be-

tween source and target neighbors are leveraged to enhance the

performance.

To clarify the definition of the term łneighborhoodž, we model

our recommendation task in the setting of Heterogeneous Infor-

mation Network (HIN). An HIN is defined as a graph G = (V, E),

which consists of more than one node type or link type. In HINs,

network schema is proposed to present the meta structure of a

network, including the object types and their interaction relations.

Figure 1(a) shows a toy example of HINs and the corresponding

network schema is presented in Figure 1(b). We can see that the HIN

consists of multiple types of objects and rich interaction relations.

The set of objects, i.e., U (user), I (movie) and A (director); inter-

action relations, i.e., R (relation), constitute V and E in the HIN,

respectively. The interactions here can be explained as preferences

between different types of nodes, e.g., r (uA,dC); and similarities

between the same type of nodes, e.g., r (uA,uC). In this case, user-

item rating history, user-director preference, and movie-director

knowledge constitute the interaction set R. When predicting inter-

action r (uA,mC) between source user uA and target moviemC, we

consider existing interactions between their neighborhood, namely

r (mA,dC), r (mB,uC), to help the final recommendation.

In order to capture the structural and semantic relation, the

metapath [27] is proposed as a relation sequence connecting two

objects. As illustrated in Figure 1(c), the User-Movie-Director (UMD)

metapath indicates that users favor movies, and that these movies

are guided by some directors. Based on metapaths, we introduce

metapath-guided neighborhoods as follows.

Definition 3.2. Metapath-guided Neighborhood.Given an ob-

ject o and a metapath ρ (start from o) in an HIN, the metapath-

guided neighborhood is defined as the set of all visited objects

when the object o walks along the given metapath ρ. In addition,

we denote the neighbors of object o after i-th steps sampling as

N i
ρ (o). Specifically, N

0
ρ (o) is o itself. For convenience, let Nρ (o)

denote N I−1
ρ (o), where I means the length of metapath. It should

be noted that different from similar concept proposed in [31] uti-

lized to derive homegeneous neighbors on heterogeneous graph,

metapath-guided neighborhood here preserves semantic content

since it consists of heterogeneous information.

Taking Figure 1 as an instance, given the metapath łUser-Movie-

Director (UMD)ž and a user uA, we can get metapath-guided neigh-

borhood as N1
ρ (uA) = {(uA,mA), (uA,mB)}, Nρ (uA) = N2

ρ (uA) =

{(uA,mA,dA), (uA,mA,dC), (uB,mB,dB)}.

Many efforts have been made for HIN-based recommendations.

While, most of these works focus on leveraging graph neural net-

works to aggregating structural message, but overlook the effect of

early summarization issue and rich interaction information. Given

the above preliminaries, we are ready to introduce our NIRec model

as a solution.

4 METHODOLOGY

4.1 Overview

The basic idea of NIRec is to design a neighborhood-based interac-

tion model to enhance the representations of objects. With the help

of HINs built on recommender systems, NIRec leverages metapaths

to guide the selection of different-step and -type neighbors and

design a heterogeneous interaction module to capture the abundant

interaction message, and a heterogeneous aggregation module to

obtain the rich embeddings of objects. Moreover, we represent dif-

ferent types of metapaths with a uniform learning procedure and

conduct the fast Fourier transform (FFT) as an efficient learning

algorithm.

We provide the overall framework of NIRec in Figure 2. First,

we utilize the multiple-object HIN containing ⟨user, item, attribute,
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Figure 2: The overall architecture of NIRec: (a) it first samplesmetapath-guided neighborhood (Section 4.2); (b) next constructs

interactive information via interaction layer (Section 4.3); (c) finally combines rich information through aggregation layer

(Section 4.4).

relation⟩ as the input. Second, we select metapath-guided neighbors

for source and target nodes via neighbor samplings (Figure 2(a)).

Third, we introduce the interactive convolutional operation to gen-

erate potential interaction information among their neighborhoods

(Figure 2(b)). After that, we capture the key interactions and aggre-

gate information via attention mechanism in both node and path

level (Figure 2(c)). Finally, NIRec provides the final prediction. We

illustrate the architecture in detail in the following subsections.

4.2 Neighborhood Sampling

To generate meaningful node sequences, the key technique is to

design an effective random walk strategy that is able to capture the

complex semantics reflected in HINs. Hence, we propose to use the

metapath guided random walk method. Giving a HIN G = {V, E}

and a metapath ρ : A0, · · · ,Ai , · · · ,AI−1, where Ai ∈ Ai denotes

i-th node guided by metapath ρ. Note that we include user set U

and item set I in attribute set A for convenience. The walk path is

generated according to the following distribution:

P(nk+1 = x |nk = v) =





1

|N1
ρ (v)|

, (v,x) ∈ E and v,x ∈ Ak ,Ak+1

0, otherwise.

(1)

where nk is the k-th node in the walk, N1
ρ (v) means the first-order

neighbor set for node v guided metapath ρ. A walk will follow the

pattern of the metapath repetitively until it reaches the predefined

length. It is worth noting that, according to Definition 3.2, there is

no need to sample a complete metapath from source to target node.

4.3 Interaction Module

In previous HIN-based recommendations, most approaches lever-

age graph representation techniques to find key nodes or metapaths

[31] and capture the complex structure [35]. To further mine inter-

action information and deal with the early summarization issue, we

propose an interaction module based on metapath-guided neigh-

bors.

Due to the heterogeneity of nodes, different types of nodes have

different feature spaces. Hence, for each type of nodes (e.g., node

with type ϕi ), we design the type-specific transformation matrix

Mϕi to project the features of different types of nodes into a unified

feature space. The project process can be shown as follows:

e ′i = Mϕi · ei , (2)

where ei and e
′
i are the original and projected features of node i ,

respectively. By type-specific projection operation, our model is

able to handle arbitrary types of nodes.

Considering that neighbors in different distances to the source/target

node usually contribute differently to the final prediction, we di-

vide the sampled metapath-guided neighborhood into several inner-

distance and outer-distance neighbor groups. As illustrated in Fig-

ure 3, when we set distance as 1, we can get inner-distance Group 1

and outer-distance Group 5. In a similar way, we can obtain 2I − 1

groups, where I denotes the metapath length. We argue that in-

teractions should only be employed in corresponding groups. In

order to perform interaction in each neighbor group, we need to

face two situations. If there is only one node in Group, we adopt

element-wise product (łANDž) operation to measure their simi-

larity or co-ratings, e.g., r (uA,mB) in Group 0 case. When there is

source (0 hop neighbor)

0 & 1 hop neighbor

source (0) & 1 & 2 & 3 hop neighbors target (0) & 1 & 2 & 3 hop neighbors

target (0 hop neighbor)

0 & 1 hop neighbor

0 & 1 & 2 hop neighbor

0 & 1 & 2 hop neighbor

Interaction ( & )

1 & 2 & 3 hop neighbor

1 & 2 & 3 hop neighbor

Group 0

2 & 3 hop neighbor

2 & 3 hop neighbor

3 hop neighbor

3 hop neighbor

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Figure 3: An illustrated example for the motivation in inter-

action module design. Neighborhood is grouped according

to the distance to the source/target node. Interaction is only

employed between corresponding neighborhoods.
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more than one node, we first do interaction by production and then

aggregate by summarization, e.g., r (uA,dC) + r (mB,mB) in Group 1

case.

Inspired by signal processing [16], this neighborhood division

and inner group interaction can be formulated as a unified operation

named convolution. Roughly speaking, the convolution mainly

contains three kinds of operations, namely shift, product, and sum,

which are employed repeatedly until they meet the end of the path.

Take Figure 4 for example. Our task is to calculate the interaction

between source user neighborhooduA,mB,dB,mD and targetmovie

neighborhoodmB,dC,mC,uC. First, we inverse the order of target

movie neighborhood and obtain uC,mC,dC,mB. We shift it from

left to right and observe the overlapping nodes during the shift.

As shown in Figure 4(a), the first overlapping happens between

source and target nodes, namely 0-hop neighbor. We utilize the

product operation and obtain the co-ratings between different types

of nodes r (uA,mB) (as Figure 4(b) shows). Then, we repeatedly shift,

product, and sum, and then reach the situation where all nodes are

overlapped. The result in this situation is the similarity between the

same type of nodes r (uA,uC) + r (mB,mC) + r (dB,dC) + r (mD,mB)

(as shown in Figure 4(c)). In a similar way, the last interaction

happens between different types of nodes r (mD,uC) (as shown in

Figure 4(d)).

LetH[Nρ (o)] denote the embedding matrix of metapath ρ guided

neighbors of object o, which can be formulated as

H[Nρ (o)]l = [e
ρ
0 ⊕ e

ρ
1 ⊕ · · · ⊕ e

ρ
I−1

], (3)

where l represents the l-th metapath, e
ρ
i means the embedding

of the node in the i-th step of one metapath, ⊕ denotes the stack

operation, I means the metapath length. Hence, as illustrated in

Figure 5, H[Nρ (o)] is a R
L×I×E matrix, where L is the number of

metapaths, I is the length of the metapath, E means the dimension

of the node embedding. Based on convolutional operations, we

further define the interaction between neighborhoods of source

and target objects as

H[Nρ (s),Nρ (t)]l = H[Nρ (s)]l ⊙ H[Nρ (t)]l , (4)

(c)

?

node similar ity (same)node co-rat ings (different)

(b)

0 hop neighbor 0&1&2&3 hop neighbors

... ...

3 hop neighbor

node co-rat ings (different)

shift

(a)

(d)

Figure 4: An illustrated example for the result after convo-

lutional interaction operation. The result contains informa-

tion of both node similarity (c) and node co-ratings (b) & (d).

where ⊙ denotes the convolutional operation. According to the

definition of convolution, one can write formulation as

H[Nρ (s),Nρ (t)]l,n =
∑

a,b
a+b mod N=n

H[Nρ (s)]l,a ·H[Nρ (t)]l,b . (5)

One can find thatH[Nρ (s),Nρ (t)] ∈ R
L×N×E , N is the length of

convolution outputs and it equals to Is + It − 1 where Is , It denote

the metapath length of source and that of target nodes respectively.

The well-known convolution theorem states that convolution op-

erations in the spatial domain are equivalent to pointwise products

in the Fourier domain. Let F denote the fast Fourier transformation

(FFT) and F −1 its inverse, we can compute convolutions as

H[Nρ (s),Nρ (t)] = F −1(F (H[Nρ (s)]) · F (H[Nρ (t)])). (6)

Let H[Nρ ] denote H[Nρ (s),Nρ (t)] in the following sections for

convenience. As stated in [15], the time complexity of plain con-

volution is O(I2), and it is reduced to O(I log(I )) when using FFT.

According to the analysis above, we can conclude that not only

can this structure capture both node similarity and co-ratings in

grouped neighborhood, but also it can implement with high effi-

ciency.

4.4 Aggregation Module

In this section, we consider the aggregation module in two sides.

On the first side, from Figure 5, we can see that elements in in-

teraction matrix H[Nρ ] = H[Nρ (s),Nρ (t)], contain interactions

between various types of nodes. Hence, it is natural to capture the

key interaction in element/node-level during aggregation proce-

dure. On the other side, every object o on HIN contains multiple

types of semantic information represented with different metap-

ath ρ0, ρ1, · · · , ρP−1. This further causes various interaction matrix

H[Nρ0 ], H[Nρ1 ], · · · , H[NρP−1 ]. To capture key message in a com-

plex graph, we need to fuse multiple semantics revealed by different

metapath, i.e., in path/matrix-level.

Node/Element-level Attention. Similar as [31], we leverage a

self-attention mechanism to learn the weights among various kinds

of nodes in metapath ρ as

h
ρ
i j = (h

ρ
i WT ) · (h

ρ
jWS ), (7)

0 hop
Figure 

4(c)

I-1 
hop

...

... ...0&1 
hop

E

L

I

I-2&I-1 
hop

...

...

(a) (b)

(c)N

Figure 5: An illustrated example of the embeddingmatrix of

metapath ρ guided neighborhood of source node s (H[Nρ (s)]),

and target node t (H[Nρ (t)]) generated according to Eq. 3; and

interaction matrix (H[Nρ (s),Nρ (t)]) calculated according to

Eq. 5.
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where h
ρ
i , h

ρ
j are elements of interaction matrixH[Nρ ] andWT ,WS

are trainable weights. h
ρ
i j can show how important interaction hj

will be for interaction hi . To retrieve a general attention value in

metapath ρ, we further normalize this value in neighborhood scope

as

α
ρ
i j = softmax(h

ρ
i j ) =

exp(h
ρ
i j/ι)

∑
j ∈Nρ

exp(h
ρ
i j/ι)
, (8)

where ι denotes the temperature factor, and Nρ here covers all the

interaction elements/nodes guided by ρ, namely the entirelyH[Nρ ].

To jointly attend to the neighborhoods from different representation

subspaces and learn stably, we leverage the multi-head attention as

in previous works [31] to extend the observation as

z
ρ
i = σ (Wq · (

1

H

H∑

n=1

∑

j ∈Nρ

α
ρ
i jn (h

ρ
jW

n
C )) + bq ), (9)

where H is the number of attention heads, and Wq ,WC ,bq are

trainable parameters. Hence, the metapath based embedding z
ρ
i is

aggregated based on metapath-guided neighborhood with single

metapath and semantic-specific information, i.e., H[Nρ ]. Given

the metapath set {ρ0, ρ1, · · · , ρP−1}, after feeding into node-level

attention, we can obtain P groups of semantic-specific interaction

embeddings, denotes as {Z[Nρ0 ],Z[Nρ1 ], · · · ,Z[NρP−1 ]}.

Path/Matrix-level Attention. To obtain the importance of each

metapath, we first transform the semantic-specific embedding through

a nonlinear transformation. We then measure the path-level atten-

tion value as the average of the importance of all the semantic-

specific node-level embeddings. The importance of each metapath

ρ j , denoted as ωρ j , is shown as follows:

ωρ j
=

1

|V|

∑

i ∈V

wT · tanh(Wq · z
ρ j
i + bq ), (10)

where w is a path-level attention vector. We then normalize the

above importance of all metapaths via a softmax function

βρ j = softmax(ωρ j ) =
exp(ωρ j /τ )

∑P−1
j=0 exp(ωρ j /τ )

, (11)

where τ is the temperature factor. It can be explained as the con-

tribution of the metapath ρ j in a specific task. With the learned

weights as coefficients, we can fuse these semantic-specific embed-

dings to obtain the final embedding Z via

Z =

P−1∑

j=0

βρ j · Z[Nρ j ]. (12)

Hence, we have obtained the final aggregation result, which in-

volves interaction information in both node- and path-level.

4.5 Optimization Objective

The final prediction result Ŷ can be derived from final embedding

Z via a nonlinear projection (e.g., MLP). The loss function of our

model is a log loss:

L(Y , Ŷ ) =
∑

i, j ∈Y+
⋃

Y−

(yi j log ŷi j + (1 − yi j ) log(1 − ŷi j )) (13)

whereyi j is the label of the instance andY
+,Y− denote the postive

instances set and the negative instances set, respectively.

4.6 Model Analysis

The learning algorithm of NIRec is given in Section A.1 in the

appendix. Here we give the analysis of the proposed NIRec as

follows:

Complexity.The proposed NIRec is highly efficient and can be

easily parallelized. We provide the model efficiency analysis for

both interaction module and aggregation module. As stated in [15],

in interaction module, the complexity of the FFT-based method

requires O(L2ρ Iρ log(Iρ )) where Lρ and Iρ denote the number of

path guided by ρ and metapath length respectively. As for aggrega-

tion module, given a metapath ρ, the time complexity of node-level

attention is O(VρK + EρK), where Vρ is the number of nodes, Eρ
is the number of metapath based node pairs, K is the number of

attention heads. The computation of attention can compute indi-

vidually across all nodes and metapaths. The overall complexity is

linear to the number of nodes and metapath based node pairs. The

proposed model can be easily parallelized, because the node- and

path-level attention can be parallelized across node pairs and meta-

paths, respectively. The overall complexity is linear to the number

of nodes and metapath based node pairs.

Interpretability. The proposed model has potentially good inter-

pretability for the learned interaction embedding through similarity

and co-ratings among neighbor nodes. Also, with the learned im-

portance in node- and path-level, the proposed model can pay more

attention to some meaningful interactions or metapaths for the

specific task and give a more comprehensive description of a het-

erogeneous graph. Based on the attention values, we can check

which interactions or metapaths make the higher (or lower) contri-

butions for our task, which is beneficial to analyze and explain our

results.

5 EXPERIMENTS

In this section, we present the details of the experiment setups

and the corresponding results. To illustrate the effectiveness of

our proposed model, we compare it with some strong baselines on

recommendation task. We start with three research questions (RQ)

to lead the experiments and the following discussions.

• (RQ1) Compared with the baseline models, does NIRec achieve

state-of-the-art performance in recommendation tasks on HINs?

• (RQ2) What is the influence of different components in NIRec?

Are the proposed interaction and aggregation modules necessary

for improving performance?

• (RQ3) What patterns does the proposed model capture for the

final recommendation decision?

• (RQ4) How do various hyper-parameters, i.e., the length and

type of metapath-guided neighborhood, impact the model perfor-

mance?

5.1 Dataset Description

We adopt four widely used datasets from different domains, namely

Movielens movie dataset2, LastFM music dataset3, AMiner paper

2https://grouplens.org/datasets/movielens/
3https://grouplens.org/datasets/hetrec-2011/
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Table 1: The results of CTR prediction in terms of AUC, ACC. Note: ł*ž indicates the statistically significant improvements

over the best baseline, with p-value smaller than 10−6 in two-sided t-test.

Model
Movielens LastFM AMiner Amazon

AUC ACC AUC ACC AUC ACC AUC ACC

NeuMF [7] 0.7890 0.7378 0.8900 0.8102 0.8130 0.7897 0.6841 0.6405

HAN [31] 0.8110 0.7530 0.9113 0.8289 0.8451 0.8284 0.7207 0.6831

HetGNN [35] 0.7830 0.7411 0.9020 0.8270 0.8202 0.7939 0.7061 0.6627

LGRec [8] 0.8030 0.7504 0.9127 0.8331 0.8308 0.8130 0.7058 0.6572

MCRec [9] 0.8161 0.7622 0.9274 0.8471 0.8512 0.8339 0.7274 0.6940

IPE [13] 0.8186 0.7693 0.9235 0.8440 0.8411 0.8209 0.7173 0.6789

NIRecCNN 0.8342 0.7777 0.9353 0.8593 0.8734 0.8504 0.7397 0.7060

NIRecGCN 0.8290 0.7630 0.9290 0.8571 0.8636 0.8475 0.7379 0.7042

NIRec 0.8468∗ 0.7896∗ 0.9404∗ 0.8665∗ 0.8760∗ 0.8562∗ 0.7493∗ 0.7110∗

dataset4 and Amazon e-commerce dataset5. We treat a rating as

an interaction record, indicating whether a user has rated an item.

Also, we provide the main statistics of four datasets are summarized

in Table 2 in appendix to help with reproducibility. The first row of

each dataset corresponds to the numbers of users, items and inter-

actions, while the other rows correspond to the statistics of other

relations. We also report the selected metapaths for each dataset in

the last column of the table. The detailed data preprocessing of is

given at Section 5.1 in appendix.

5.2 Compared Methods

We use six baseline methods containing heterogeneous and attrib-

uted graph embedding models such as HAN, HetGNN, and IPE,

as well as recommendation models such as NeuMF, LGRec, and

MCRec. It is worth noting that, HAN, HetGNN, IPE, and MCRec

are recently proposed, state-of-the-art models.

• NeuMF: He et al. [7] introduced a generalized model consisting

of a matrix factorization (MF) component and an MLP component.

• HAN:Wang et al. [31] introduced hierarchical attention to capture

node-level and semantic-level information.

• HetGNN: Zhang et al. [35] introduced an unified framework to

jointly consider heterogeneous structural information as well as

heterogeneous contents information, adaptive to various HIN

tasks.

• LGRec: Hu et al. [8] proposed a unified model to explore and fuse

local and global information for recommendation.

• MCRec: Hu et al. [9] leveraged rich metapath-based context to

enhance the recommendation performance on HINs.

• IPE: Liu et al. [13] proposed interactive paths embedding to cap-

ture rich interaction information among metapaths.

In order to investigate the impact of different components in our

model, we set several variants of NIRec model as baselines.

• NIRecCNN: a variant of NIRec model which employs Convolu-

tional Neural Networks (CNN) to capture contextual information

within the source/target neighborhood without any interaction.

• NIRecGCN: is another variant of NIRec model which employs

Graph Convolutional Networks (GCN) to aggregate interaction

information instead of attention mechanism adopted in this paper.

4https://AMiner.org/data
5http://jmcauley.ucsd.edu/data/amazon/

One can observe that NIRecCNN, NIRecGCN are designed to test

performance gains from interaction and aggregation module, re-

spectively. We also provide detailed configuration in Section A.3 in

the appendix.

5.3 Result Analysis

We evaluate thesemodels on the click-through rate prediction (CTR)

task. We use the metrics Area Under Curve (AUC) and Accuracy

(ACC), which are widely used in binary classification problems. The

details of the implementation is given in Section A.4.

Experimental Results and Analysis (RQ1). The comparison re-

sults of our proposed model and baselines on four datasets are

reported in Table 1. The major findings from experimental results

are summarized as follows:

• Our model NIRec is consistently better than all baselines on the

four datasets. The results indicate the effectiveness of NIRec on

the task of CTR prediction, which has adopted a principled way to

leverage interaction information for improving recommendation

performance.

• Among the two kinds of baselines, most metapath-based meth-

ods (HAN, MCRec, IPE) outperform graph-based or feature-based

methods (HetGNN, NeuMF) in most cases. An intuitive explana-

tion is that those metapath-based methods can better capture the

rich high-order structural information on HINs. It should be noted

that our model NIRec based on metapath-guided neighborhood

is able to jointly consider first-order neighbor information with

high-order semantic message.

• AmongHIN-based baselines, the recently proposedmethodsMCRec

and IPE gain better performance than the others. It is easy to notice

that both of them try to capture context information or interactive

patterns among paths. A possible reason is that simple aggrega-

tion of semantic message on paths may lose some key information.

It should be noted that NIRec not only captures interaction infor-

mation but also has potentially good interpretability.

Ablation Study (RQ2). In order to investigate the contribution

of each component to the final recommendation performance, we

design two variants of NIRec, namely NIRecCNN and NIRecGCN,

to study interaction and aggregation modules, respectively. The

results are shown in Table 1. The findings are in two aspects. First,

it (NIRec > NIRecCNN) indicates that our convolutional interac-

tion strategy is able to better capture interaction information (i.e.,
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similarities between the same type of nodes and ratings between

different types of nodes) than simply employing CNN layers. Also, it

(NIRec > NIRecGCN) shows that the attention mechanism can better

utilize the metapath-based interactive information. The node-level

interactions and path-level metapaths may contribute differently

to the final performance. Ignoring such influence may not be able

to achieve optimal performance.
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Figure 6: An illustrative example of the interpretability of

interaction-specific attention distributions for NIRec. The

number denotes the logic flow of interpretation.

Case Study (RQ3). A major contribution of NIRec is the incor-

poration of the node- and path-level attention mechanism, which

takes the interaction relation into consideration in learning effec-

tive representations for recommendation. Besides the performance

effectiveness, another benefit of the attention mechanism is that

it makes the recommendation result highly interpretable. To see

this, we select the user u692 in the Movielens dataset as an illus-

trative example. Two interaction records of this user have been

used here, namely m805 and m920. In Figure 6, we can see that

each user-movie pair corresponds to a unique attention distribution,

summarizing the contributions of the metapaths. The relation be-

tween u692-m805 pair mainly relies on the metapaths UMUM and

UMMM, while u692-m920 pair mainly relies on metapath UMGM

(denoted by 0 in Figure 6). By inspecting into the dataset, it is

found that at least five first-order neighbors of u692 have watched

m805, which explains why user-oriented metapaths UMUM and

UUUM play the key role in the first pair. As for the second pair, we

find that the genre of m805 is g3, which is the favorite movie genre

of u692. This explains why genre-oriented metapath UMGM plays

the key role in the second interaction. Our path-level attention is

able to produce path-specific attention distributions.

If we wonder more specific reasons, we can have a look at the

node-level attention. Here, we plot the interactive attention values

in Figure 6. We can observe that the attention value of the similarity

for the same type nodes is very high (denoted by 1 in Figure 6).

By inspecting into the dataset, we can find that there are metapaths

connected between u692 and m920. In other words, some parts of

the metapath-guided neighborhood of u692 and m920 overlap each

other, which causes high similarity. Also, the co-ratings between

two neighborhoods play another key role (denoted by 2 in Fig-

ure 6). It is natural, since in these neighborhoods, many users are

fans of g3 and movies are in type of g3, which causes the co-ratings

among them becoming really high. According to the analysis above,

we can see that the distributions of attention weights are indeed

very skew, indicating some interactions and metapaths are more

important to consider than the others.

Impact of Metapath (RQ4). In this section, we investigate the

impact of different metapaths on the recommendation performance

through gradually incorporatingmetapaths into the proposedmodel.

For ease of analysis, we include the NeuMF as the reference baseline.

In Figure 7, we can observe that the performance of NIRec overall

improves with the incorporation of more metapaths. Meanwhile,

metapaths seem to have different effects on the recommendation

performance. Particularly, we can find that, when adding UMGM,

NIRec has a significant performance boost in the Movielens dataset

(Figure 7(a)). Similar situation happens when adding UIVI in the

Amazon dataset (Figure 7(b)). These findings indicate that different

metapaths contribute differently in the final result, consistent with

previous observations in Section 5.3,

Impact of N-Hop Neighborhood (RQ4). In this section, we in-

vestigate the impact of different lengths of neighborhoods, i.e.,

n-hop neighborhood. When changing the length of the neighbor-

hood, we make other factors, e.g., metapath type fixed. For example,

when the metapath is UMGM, we study UM for length 2, UMGM

for length 4, and UMGMGM for length 6. We conduct similar proce-

dures for the other metapaths and obtain the results in Figure 8. We

can observe that the performance first improves and then declines

when the length of the neighborhood increases. Particularly, we

can find that NIRec reaches the best performance in the metapath

with length 4. The possible reason may be that as the length of the

neighborhood increases, the metapath-guided neighborhood can

maintain more information. When the length of the neighborhood

is smaller than 4, the information is mainly useful for the final

performance. However, when the length exceeds 4, the information

includes noisy message which harms the recommendation perfor-

mance. These findings indicate that different lengths of metapaths

contribute differently to the final performance. Also, it should be

noted that our model is able to interact and aggregate neighbors in

different lengths, as illustrated in Figure 2.

6 CONCLUSION AND FUTUREWORK

In this paper, we introduced the problem of łearly summarizationž

and proposed a neighborhood-based interaction-enhanced recom-

mendation model, i.e., NIRec, to address this problem. We first

introduce the definition of metapath-guided neighborhoods to pre-

serve the heterogeneity on HINs. Then, we elaborately designed

an interaction module to capture the similarity of each source and

target node pair through their neighborhoods. To fuse the rich

semantic information, we proposed the node- and path-level at-

tention mechanism to capture the key interaction and metapath,

respectively. Extensive experimental results have demonstrated the

superiority of our model in both recommendation effectiveness and

interpretability. Currently, our approach is able to capture inter-

active information only in the structural (graph) side effectively.

However, there is rich semantic information on both the structural

(graph) and non-structural (node) sides. In the future, a promising

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

82



(a) Movielens (d) Amazon(c) AMiner(b) LastFM

N
e
u
M
F

N
I
R
e
c

None

0.68

0.70

0.72

0.74

+UIBI +UIUI +UICI +UIVI

0.68

0.70

0.72

0.760.76

0.66

0.74

0.66

N
e
u
M
F

N
I
R
e
c

None
0.76

0.78

0.80

0.82

0.84

0.86

+UMUM +UMGM +UMMM +UOUM
0.76

0.78

0.80

0.82

0.84

0.86

N
e
u
M
F

N
I
R
e
c

None
0.86

0.88

0.90

0.92

0.94

0.96

+UAAA +UUUA +UATA+UAUA
0.86

0.88

0.90

0.92

0.94

0.96

N
e
u
M
F

N
I
R
e
c

None

0.80

0.82

0.84

0.86

0.88

+APAP +APLP +APCP+APRP

0.80

0.82

0.84

0.86

0.88

Figure 7: Performance change of NIRec when gradually incorporating metapaths in terms of AUC.
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Figure 8: Performance change of NIRec with different neigh-

borhood length in terms of AUC and ACC.

direction is extending neighborhood interaction and aggregation

modules to capture key message from two sides and adapt to more

general scenarios.
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A APPENDIX

A.1 Pseudocode of NIRec Training Procedure

The pseudocode of the NIRec training procedure is described in

Algorithm 1. In the HIN-based recommendation scenario, each

source node ns corresponds to a user us , and each target node

nt corresponds to an item it . The task in this work can be either

stated as link predictions on HINs or CTR predictions on HIN-based

recommendation.

Algorithm 1 NIRec

INPUT: HIN G = (V, E); node feature {e
,
i ∈ V}; metapath set

{ρ0, ρ1, · · · , ρP−1}; source code ns and target node nt
OUTPUT: final link prediction Ŷ between ns and nt

1: Initialize all parameters.

2: repeat

3: for each metapath ρk ∈ {ρ0, ρ1, · · · ρP−1} do

4: Find metapath-guided neighborhoods of ns , nt : Nρk (ns ),

Nρk (nt ) according to Eq. 1.

5: Obtain interaction result H[Nρk (ns ),Nρk (nt )] according

to Eq 6.

6: Calculate node/element-level embedding zρk according

to Eq. 9.

7: end for

8: Fuse path/matrix-level embedding Z according to Eq. 12.

9: Obtain final predication Ŷ via MLP.

10: Calculate loss L(Y , Ŷ ) according to Eq. 13, and Back propa-

gation.

11: until convergence

As Algorithm 1 shows, we first generate neighborhoodsNρk (ns ),

Nρk (nt ) of ns , nt guided by metapath ρk in line 4. We then obtain

interactive information H[Nρk (ns ),Nρk (nt )] through the interac-

tion module described in Section 4.3 in line 5. To fuse the interac-

tion results, we leverage the node-level attention mechanism to

obtain representation zρk in line 6. We repeat the above procedure

for different metapaths and obtain various node-level embeddings

zρ0 , zρ1 , · · · , zρP−1 . To capture the key metapath in the current task,

we employ the path-level attention mechanism to get embedding Z

in line 8. Finally, we obtain the final predication Ŷ via MLP layers

in line 9.

A.2 Data Preproccess

Each dataset is processed as follows. Since the relations between

users and items are originally in rating format, we convert ratings

to binary feedbacks: ratings with 4ś5 stars are converted to positive

feedbacks (denoted as ł1ž), and other ratings are converted to neg-

ative feedbacks (denoted as ł0ž). After the datasets are processed,

we split each dataset into training/validation/test sets at a ratio of

6:2:2.

A.3 Model Variants Configuration

• NIRecCNN: This variant does not consider the interpretability

in the interaction module. That is, it directly fuses the neighbor-

hood of each source and target node via Convolutional Neural

Networks (CNN). This context embedding method is quite similar
with the path instance embedding technique in [9]. The aggrega-

tion module is the same as NIRec. Hence, this variant is designed

to show the performance gain by our interaction module.

• NIRecGCN: This variant replaces the attention mechanism of

NIRec with a standard Graph Convolutional Network (GCN). That

is, both the node- and path-level features are fed to GCN layers

to get content embeddings without fully considering different

types of nodes and metapaths on HINs. The interaction module

is the same as NIRec. Hence, this variant is designed to show the

performance gain by our aggregation module.

Table 2: Statistics of the four datasets. The last column re-

ports the selected metapaths in each dataset.

Datasets Relations (A-B) A B A-B Metapath

Movielens

User-Movie 943 1,682 100,000 UMUM
Movie-Movie 1,682 1,682 82,798 UMMM

User-Occupation 943 21 943 UOUM
Movie-Genre 1,682 18 2,861 UMGM

LastFM

User-Artist 1,892 17,632 92,834 UAUA
User-User 1,892 1,892 18,802 UUUA
Artist-Artist 17,632 17,632 153,399 UAAA
Artist-Tag 17,632 11,945 184,941 UATA

AMiner

Author-Paper 164,472 127,623 355,072 APAP
Paper-Conference 127,623 101 127,632 APCP

Paper-Label 127,623 10 127,623 APLP
Paper-Reference 127,623 147,251 392,519 APRP

Amazon

User-Item 3,584 2,753 50,903 UIUI
Item-View 2,753 3857 5,694 UIVI
Item-Brand 2,753 334 2,753 UIBI

Item-Category 2,753 22 5,508 UICI

A.4 Implementation Details

Hyper-parameters. The embedding dimension of NIRec is set

to 128. As stated in Section 4.2, we perform the metapath-guided

random walk method. The size of sampled neighbors set of each

node equals to 20 guided by the current metapath. The length of

metapath-guided neighborhood equals to the length of the meta-

path. We investigate the impacts of different lengths of neighbor-

hoods, i.e., n-hop neighborhoods in Section 5.3.

Baseline settings. For fair comparisons, we employ the proposed

method and baselines as following: (i) In the data processing proce-

dure, we sample and store paths guided by metapaths in a unified

framework. For instance, when sampling data from Movielens fol-

lowing UMUM-path, we can obtain 10 metapaths between u0 and

m0, i.e., ρ(u0 −m0), as well as 10 metapath-guided neighborhoods

of u0, i.e., N(u0), and 10 metapath-guided neighborhoods of m0,

i.e., N(m0). That is, the first node of both metapath ρ(u0 −m0)

and metapath-guided neighborhoodN(u0) is the same source node

u0. The difference is that the metapath must end with target node

m0 while the neighborhood can end with any node in the type of

movie. (ii) For metapath-based baselines such as MCRec and IPE, we

feed models with the same paths. For GNN-based baselines, such

as HAN and HetGNN, we generate n-hop neighbor nodes from

sampled paths. (iii) The embedding dimensions of all baselines are

set to 128 (same as NIRec).
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