
An Efficient Drug-Target Interaction
Mining Algorithm in Heterogeneous

Biological Networks

Congcong Li1(&), Jing Sun1, Yun Xiong1, and Guangyong Zheng2

1 Shanghai Key Laboratory of Data Science, School of Computer Science,
Fudan University, Shanghai 200433, People’s Republic of China

{congcongli12,jingsun,yunx}@fudan.edu.cn
2 CAS-MPG Partner Institute for Computational Biology,

Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences, Shanghai 200031,

People’s Republic of China
zhenggy@sibs.ac.cn

Abstract. The identification of interactions between drugs and targets is a key
area in drug research. Exploring targets can help identify potential side effects
and toxicities for drugs, as well as new applications of existing drugs. Because
of the enormous scale of biological dataset, most of the existing algorithms for
drug-target mining are time-consuming. In this paper, we proposed an optimi-
zation algorithm called LSH-HeteSim to mine the drug-target interaction in
heterogeneous biological networks, where the relationship between drugs and
targets is various. It means drugs and targets are connected with complicated
semantic path. In practice, the similarity measure used for semantic path is a
path-dependent method, called HeteSim, which had been utilized in some pre-
vious studies of relevance search. Experiment results in real biological networks
show that our algorithm can effectively predict drug-target interaction with the
AUC measure achieving 0.943. Simultaneously, the running time of our algo-
rithm is much less than the state-of-art methods.

Keywords: Drug target � Link prediction � Heterogeneous biological net-
works � Meta-path � Similarity measure

1 Introduction

The key issue of modern drug development is to recognize drug targets. Drug targets
are binding sites of drug and biological macromolecules regulated by the drug, such as
receptors, enzymes, ion channels, transporters, genes and the like [1]. As the basis of
drug discovery and designing, prediction of drug-target interactions is an important
issue in the field of biological research field [2].

In traditional biological studies, whether there is a link between the drug and target
gene is inferred from biology experiment results which have a long and costly
experimental period [3]. In recent years, many endeavors have been made in drug-
target interaction prediction, for accelerating drug targets finding, shortening research
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cycle, and reducing development costs [4]. However, most of the endeavors only
considered partly characteristics of drug biological networks, such as drug chemical
characteristics, or local link information. A biological network is a complex hetero-
geneous network, which either contains multiple types of objects or multiple types of
links [7, 8]. Commonly, in a biological network, the relationship between drug and
target is heterogeneous [9, 11], where two objects connected via different paths have
different meaning [10]. Hence, for drug target similarity measurement, the semantic
paths must be taken into account. Besides, the dataset of biological network is general
large, and similarity search algorithms frequently cost a long time. To solve the
problem mentioned above, we propose a new drug-target interaction mining algorithm,
for similarity path search in heterogeneous biological networks. The new algorithm is
named LSH-HeteSim, which is based on the locality sensitive hash method (LSH) [17].
The HeteSim similarity measure method has been utilized in some relevance search
problem of social network [10], and it is also employed in our study. Experiments
results show that the algorithm we proposed can predict missing links between drugs
and targets and identify drug-target interaction with a fairly high accuracy (the AUC
measure achieve 0.943). Specially, the running time of our algorithm is much less than
the state-of-art methods.

The rest of this paper is organized as follows. In Sect. 2, we review some related
work about link prediction and existing predictors for drug-target interaction finding.
Next, in Sect. 3, we provide detail information of the relevance search algorithm
HeteSim and our new drug-target interaction mining algorithm LSH-HeteSim. Then in
Sect. 4, we perform two groups of experiments to prove the effectiveness and effi-
ciency of our algorithm. Finally, in Sect. 5, we give discussion and conclusion of this
study.

2 Related Work

2.1 Link Prediction

Link prediction aims at estimating the likelihood of the existence of a link between two
nodes [12]. In some networks, especially biological networks such as PPI, metabolic
networks and food webs, the discovery of links is costly in the laboratory [13]. Instead
of blindly checking all possible links, predictions based on the observed links and
focusing on those links which are most likely to exist can sharply reduce the experi-
mental costs assuming that the prediction algorithm is accurate.

Node similarity based link prediction method can be roughly categorized into two
types: feature based approaches and link based approaches. The feature based
approaches measure the similarity of nodes based on their feature values, such as
cosine similarity, Jaccard coefficient and Euclidean distance. The link based approaches
measure the similarity of nodes based on their link structures in a network. The sim-
ilarity measure (HeteSim) used in our proposed LSH-HeteSim algorithm is a link based
method, especially, it takes the semantic paths into account.
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2.2 Methods for Drug-Target Interaction Prediction

The prediction of drug-target interaction is an important research problem in the drug
discovery filed. Traditional methods for drug target prediction are based on biological
experiments. Due to the long test period and its high cost, there have been more
and more drug target prediction methods by calculating. For example, Campillos and
Monica proposed a method for identifying drug target genes by the similarity of side
effects [4]. He Zhisong and Zhang Jian proposed a method based on the drug and
biological characteristics of the functional group [5]. Chen Bin and Ying Ding used a
statistical model called SLAP to measure the relationship between the drug and target
gene in a biological network [6, 18]. As SLAP takes the heterogeneity of biological
networks and the impacts of different semantic paths to the drug targets’ similarities
into consideration during its statistical computation, it achieves good prediction
accuracy. However, due to its complicate computation, the experiments are conducted
with sub-datasets on small scale. Once it applies to large scale dataset, the query task
will be very time-consuming. Besides considering the semantic paths in heterogeneous
biological networks, the optimized algorithm proposed in paper, called LSH-HeteSim,
also adopt the LSH. It can reduce the running time sharply without losing the pre-
diction accuracy. We will compare the prediction accuracy of these two algorithms on
the same dataset in experimental section.

3 Drug-Target Interaction Mining in Heterogeneous
Biological Networks

3.1 Heterogeneous Biological Networks

A heterogeneous network is a special type of network which either contains multiple
types of objects or multiple types of links [10], while a heterogeneous biological
network is composed of multiple biological objects. In many applications, the network
object is no longer constituted with a simple type, but includes various types of objects
and links, such as the gene regulatory networks. Here, we give a definition of heter-
ogeneous biological networks as shown in Definition 1.

Fig. 1. Network schema of Slap
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Definition 1. Heterogeneous biological Networks
Given a network schema SG ¼ A;Rð Þ which consists of a set of biological objects

types A ¼ fAg and a set of relations R ¼ fRg, an biological network is defined as a
directed graph G ¼ ðV ;EÞ with an object type mapping function ;ðvÞ 2 A and a link
type mapping functionuðeÞ 2 R. Each object v 2 V belongs to one particular object type
;ðvÞ 2 A, and each link e 2 E belongs to a particular relation uðeÞ 2 R. When the types
of objects Aj j[ 1 or the types of relations Rj j[ 1; the network is called heterogeneous
biological network. Otherwise it is a homogeneous biological network.

Figure 1 is the network schema of a heterogeneous biological network Slap [6]. Each
circle represents a biological object type, such as drug, disease, gene, and etc. Each
horizontal line represents a relation type, such as the treatment between drug and
disease.

Definition 2. Meta-Path
A meta-path P is a path defined on the graph of network schema TG ¼ A;Rð Þ, and

is denoted in the form of A1 !R1 A2 !R2
. . .!Rl Alþ1, which defines a composite relation

R ¼ R1 � R2. . . � Rl between types Ai and Al + 1, where � denotes the composition
operator on relations.

Different from those in homogeneous network, the paths in heterogeneous network
called meta-path have semantics, as Definition 2 defined, which make the relatedness
between two objects different on different search paths. Taking the heterogeneous
network in Fig. 2 for example, the relationship between the drug and the disease is
treatment and being treated, and between genes and disease is the causing and caused
by. Obviously, drug C1 is not related to gene G2 based on CDG path. It means that
drugs can treat diseases caused by genes. However, drug C1 is related to gene G2 based
on CDCDG path because of drug C2 which can also treat disease D2.

3.2 Relevance Search

Shi Chuan and Kong Xiangnan have defined the relevance search problem in hetero-
geneous networks. They proposed an algorithm based meta-path a meta-path called
HeteSim to measure the similarity between objects of different types [10]. In this paper,
HeteSim was used to assess the interactions between drugs and targets in heteroge-
neous networks.

Fig. 2. A simple heterogeneous network example
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Definition 3. HeteSim [10]

HeteSimðs; tjR1 � R2 � . . . � RlÞ ¼ 1
O sjR1ð Þj j I tjRlð Þj jXjOðsjR1Þj

i¼1

XjIðtjRlÞj
j¼1

HeteSimðOi sjR1ð Þ; IjðtjRlÞjR2 � . . . � Rl�1Þ
ð1Þ

Given a meta-path P ¼ R1 � R2. . . � Rl, HeteSim(s, t|P) is the similarity between
object s and t. Here, O(s|R1) is the out-neighbors of s based on the path P, and I(s|Rl) is
the in-neighbors of t based on P. The result it returns is a similarity value between 0
and 1. The larger HeteSim value is, the more similar the two objects are. The similarity
of drug C1 and gene G1 was calculated as follows:

HeteSim ¼ 1
O C1jCDð Þj j I G1jDGð Þj j

XjOðC1jCDÞj

i¼1

XjIðG1jDGÞj

j¼1

HeteSimðOiðC1jCDÞ; IjðG1jDGÞÞ

where O C1jCDð Þ ¼ D1;D2f g; I G1jDGð Þ ¼ D1;D2f g. So the HeteSim value of C1 and
G1 is 0.5.

In order to facilitate the calculation, the formula in Definition 3 can be normalized as
Eq. (2):

Definition 4. NormHeteSim [10]

NormHeteSim xi; xjjP
� � ¼ MPL xi; :ð ÞMP�1

R
ðxj; :Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jMPL xi; :ð ÞjjMP�1
R
ðxj; :Þj

q ð2Þ

where M is the relation matrix defined as follows:

Definition 5. Relation Matrix

M ¼ UA1A2UA2A3 . . .UAl�1Al ð3Þ

where UAiAj is the adjacency matrix Ai and Aj.

In addition, MP(i, j) represents the number of path instances of meta-path P ¼
A1A2. . .Alð Þ which start from object xi 2 A1 to object xj 2 Al, and MPLðxi; :Þ represents
the feature vector of object xi whose length is decided by the target object type Al and
MP�1

R
ðb; :Þ represents the feature vector of object xj, so the HeteSim value is the cosine

similarity of the two feature vector. The path PL and PR in NormHeteSim defini-
tion is the decomposition of the path P from the middle position. That is,
PL ¼ ðA1A2. . .AmidÞ and PR ¼ ðAmidAmidþ1. . .AlÞ:

In biological heterogeneous network, measuring the similarity of drug and target is
suited to the relevance search problem definition. Therefore, HeteSimQuery is con-
sidered baseline algorithm to measure the similarity between drug and target as
Algorithm 1 shows. For any given meta-path which starts with drug type and end with
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target type, we can use HeteSimQuery to calculate the similarity of the query pairs
(p, q). For example, if the similarity of one drug and gene pair under the path CGCDG
(Compound-Gene-Compound-Disease-Gene) was queried, HeteSimQuery will return
the similarity value of the query pair.

.

Obviously, when the inputing meta-path P ¼ A1A2. . .Alð Þ of HeteSimQuery is
symmetrical or the starting object type is the same as the end object type, that is A1 and
Al are the same object type, such as CDC or CDGDC, HeteSimQuery can be used to
measure the similarity between objects with the same types. Therefore, our baseline
algorithm HeteSimQuery can be used to measure the similarity between objects of the
same types as well as different types.

3.3 Locality Sensitive Hash

Locality Sensitive Hash (LSH) functions were introduced to solve the approximate
nearest neighbor problem in high dimensional spaces [14]. It is designed in such a way
that if two objects are close in the intended distance measure, the probability that they are
hashed to the same value is high, and if they are far in the intended distance measure, the
probability that they are hashed to the same value is low [15]. Here the meaning of ‘close’
and ‘far’ depend on the similarity measure used, and the exact formulation of LSH
functions varies with the exact distance definition of the similarity measure. Nevertheless,
all LSH functions should always comply with the locality sensitive hashing schema [16].

However, not every similarity measure has its corresponding LSH functions satis-
fying locality sensitive hashing schema. Moses proposed a triangle inequality that
existing LSH families satisfy [17]. Since HeteSim could eventually be placed under the
cosine similarity of hash vectors, we just need to prove h xi; xj

� �� h xi; yð Þ þ h xj; y
� �

:
if xi, xj and y all lie in a plane, then it is obvious that the angle between xi and xj must be
no greater than the sumof the angles between xi and y and xj and y; if xi, xj and y do not lie in
a plane, and y′ is the projection of y in the plane defined by xi and xj, then it holds that
h xi; xj
� �� h xi; y0ð Þ þ h xj; y0

� �
. Note the sum of angles between xi and y and xj and y are

greater than those between xi and y′ and xj and y′, sowe have h xi; xj
� �� h xi; yð Þ þ h xj; y

� �
.

Therefore, HeteSim satisfies the locality sensitive hashing schema.
As the dataset scale of biological networks is always huge, and similarity com-

puting is time-consuming, we use a relatively simple random hyperplane hash function
as Definition 6 shows.
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Definition 6. Hash Function

hrðxÞ ¼ 1; r � x� 0
0; r � x\0

�
ð4Þ

r is a d dimensional random vector with each value drawn from the standard
Gaussian distribution N(0, 1), if r � x� 0, return 1, otherwise return 0. Then each
d dimensional vector is hashed to one binary bit [16].

Given an integer m, we select m hash functions randomly and independently from the
family defined in Definition 6, denoted as Hm ¼ fhr1 ; . . .; hrmg. By applying each of
them to a dimensional vector x, we can map x to an m dimension vector in {0, 1}m,
denoted as Hm(x). Then Hm(x) is referred to the hash vector for x and m is the corre-
sponding hash vector dimension. For any data set D 2 Rd;Hm xð Þ can generate a set
consists of hash vectors, which is called the hash table of D. Given an integer t, we
choose H1

m;H
2
m; . . .H

t
m from Hm independently and randomly. Each hash family gen-

erates a ri 1� i� tð Þ dimensional hash table.

3.4 LSH-HeteSim

The biological networks dataset used in the prediction of interactions between drugs
and targets is large-scale, usually consisted of numbers of biological databases.
Moreover, mining the interactions between drugs and targets need large amount of
similarity measure computations of high-dimensional vectors. These facts lead to that
using the naive algorithms can be very time-consuming. Based on the characters above,
we proposed an optimized algorithm based on LSH called LSH-HeteSim which can
reduce a lot of similarity measure computation with the strategy that using a candidate
subset generated by hashing reduces the computation times. As the relationship
between the drug and the target is heterogeneous, the similarity measure we used in our
method is HeteSim which is suitable for relevance search problem in heterogeneous
networks as introduced in Sect. 3.2.

.
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The input data of Algorithm 2 is network dataset D, query object p, dimension of
hash vector m, number of hash tables t and meta-path P, and the output result is a
collection of objects which are in the candidate set with a similarity value. Firstly,
Algorithm 2 creates a LSH indexing structure for given data set D (step 1); then it
produces t hash tables cyclically, and eventually gets a collection of all objects which
are mapped to the same hash bucket, as the candidate set Q (step 2–5); finally, it
calculates the similarity between the query object p and each target object in candidate
set Q using HeteSim, and returns a result set of all objects with a similarity value.

4 Experiments and Results

In order to completely inspect performance of our algorithm, we use several real
biological networks as experiment data sets, rather than artificial data sets. Conducting
experiments in real biological networks, it can direct compare capability and running
time of our algorithm and existing methods.

4.1 Datasets

An integrated biological networks dataset Slap [6] is utilized as experimental material
in this study. The network is constructed from 17 public data sources, which contains
305,792 nodes and 670,546 edges (Fig. 1). For the network, nodes are categorized into
10 types, in which 11 connections are existed. In addition, a single node is an instance
of a corresponding type, for example: a node for drug Clofarabine (CID: 119182,
Molecular Formula: C10H11ClFN5O3) is an instance of type Chemical Compound.
A path is an instance of a corresponding meta-path, defined in Definition 2, for
example: Troglitazone-Disease(776)-VEGE is an instance of the meta-path: Com-
pound-Disease-Genes, here Troglitazone is a drug that can treat the disease 776 caused
by VEGE.

4.2 Effectiveness

Assessing Drug Similarity. In Sect. 3.2, we have already mentioned when we choose
the right meta-path which is to ensure the starting object type is the same as end object
type, such as drugs, HeteSimQuery can be used to measure the similarity between
objects with the same type. Here we use HeteSimQuery to cluster drugs. We took 40
kinds of drugs from 4 disease areas (headache, diabetes, HIV and asthma) to determine
whether our method is able to distinguish drugs from different therapeutic areas. For
each drug, we calculated its similarity value with the other 39 drugs. Then we selected
all the drug-drug pairs whose similarity values were greater than a predefined threshold.
In practice, drug-target interactions were visualized by the Cytoscape software [19],
and functions of drug target genes were annotated through the iGepros server [21].

Since the path we used is CDGDC, namely two drugs can be regarded as similar
when they can treat diseases caused by same genes. Therefore drugs related to same kind
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of diseases have a higher probability to connect together. Our experiment results support
this viewpoint. As shown in Fig. 3, the drugs in each group tend to have an ability to
treat the same kind of disease, for example, the grey-colored drugs like Ibuprofen,
Chlorpheniramine, Fomepizole can treat the headache and they connected together.

Comparison with SLAP. To further evaluate the drug-target interaction mining effect
of the our optimized algorithm LSH-HeteSim, we compare LSH-HeteSim with the
baseline algorithms HeteSimQuery and SLAP respectively. The experimental dataset
used here is a subset extracted from the Slap dataset, including 1000 drugs, 127 targets
and 3762 drug-target links. Then we have 127,000 drug target pair samples (3762
positive and 123,238 negative samples). The algorithm HeteSimQuery and SALP need
to compute the similarities over the whole 127,000 drug-target pairs. However, LSH-
HeteSim only needs to compute similarity for each query object with its corresponding
candidate set. In our experiments, the parameter m and t are assigned 20 and 5
respectively, therefore LSH-HeteSim takes 22,170 times similarity computation in total.

Fig. 3. Drug similarity network

Fig. 4. ROC curves among different methods
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To compare the accuracy effects of these three algorithms, we performed a ROC
[20] (receiver operating characteristics) statistical analysis over the results. The
ROC curves are shown in Fig. 4 which present achievable true positive rates (TP) with
respect to all false positive rates (FP). The AUC (area under an ROC curve) values of
HeteSimQuery, SLAP and LSH-HeteSim are 0.982, 0.940 and 0.943 respectively.
Obviously, these three algorithms all have good prediction accuracy in the dataset.
However, compared with our LSH-HeteSim algorithm, HeteSimQuery and SLAP
algorithms require more running times. We will compare and describe in the experi-
ment of Sect. 4.3. For drug target query in the large-scale biological data, time effi-
ciency is very important. Our LSH-HeteSim algorithm reduced the similarity
calculation times of high dimensional vector by LSH so that it can reduce the query
time while ensure the prediction accuracy.

4.3 Efficiency

Efficiency is measured by the running time of algorithm. Since the hash functions are
randomly picked, each experiment is repeated 10 times and the average is reported. The
input of LSH-HeteSim algorithm has two parameters: the hash vector dimension m, the
number of hash tables t. Here we take m and t into account to discuss how the running
time changes.

As HeteSim is a path-dependent method, the running time is various when different
path is selected. In out experiment, we use the meta-path: CGCDG (Compound-Gene-
Compound-Disease-Gene). To better describe the running time with different param-
eters, we divide the experiments into two groups, and discuss the impact of parameters
t and m on the running time.

Firstly, we randomly select a compound (noted as CID) as the query object such as
CID = 5880, and the parameter m was assigned 20, then run programs for t = 1, 2, 3, 4, 5
respectively. Results of experiment are shown in Fig. 5(a). Clearly the trend of curve can
be seen from the diagram, running time increases with the value of the parameter
t added, mainly because a bigger value of t means more hash tables, and therefore more
time to require for calculation.

Fig. 5. Running time on Slap
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Then we set parameter t as 1 and let the value of parameter m be 10, 15, 20, 25, and
30 respectively. Each experiment was repeated 10 times to take the average running
time as the result. Obviously with the parameter m increases, the running time is
growing, and this is mainly due to the increase in dimension of the random vector, it
will take more time to calculate the similarity of two objects.

For a certain query object, the running times for SLAP and HeteSimQuery are
almost fixed and more than LSH-HeteSim’s, so their cures are linears. It is mainly due
to our candidate sets generated by LSH, which greatly reduce the computation times of
high-dimensional vectors. Considering results of effectiveness and efficiency assesses,
the LSH-HeteSim algorithm has less running time compared with the state-of-art
methods, and its prediction accuracy is still comparable to these methods. In addition,
there is no fixed range of the two parameters, and the suitable values of the two
parameters should be assigned through value trials. With the increase of the parameters
m and t, the times of similarity calculations and the dimension of feature vectors
increase. Despite the prediction accuracy will rise, however, the running time is also
rapidly increasing.

5 Discussion and Conclusion

For the LSH-HeteSim algorithm, it accelerates computing of similarity search in high-
dimensional space through the LSH method, which results in a slightly decrease of
search accuracy (experiments in Fig. 4). In the future, we will use the MP-LSH method
[22] instead of the LSH method to optimize our algorithm. In this way, accuracy of the
LSH-HeteSim algorithm can be improved, and its less running time characteristics can
be kept. In addition, the meta-path CGCDG used in this study is based on certain
biological information, while meta-paths coming from other biological information
should be inspected in the future.

In this study, we proposed an efficient drug-target interaction mining algorithm for
heterogeneous biological networks called LSH-HeteSim. Experiment results show that
our proposed algorithm can effectively predict interactions between drugs and targets.
Specially, for larger-scale biological data, LSH-HeteSim has less running time com-
pared with the state-of art methods.
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