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ABSTRACT
Measuring network similarity is a fundamental data mining prob-
lem. The mainstream similarity measures mainly leverage the struc-
tural information regarding to the entities in the network without
considering the network semantics. In the real world, the heteroge-
neous information networks (HINs) with rich semantics are ubiqui-
tous. However, the existing network similarity doesn’t generalize
well in HINs because they fail to capture the HIN semantics. The
meta-path has been proposed and demonstrated as a right way to
represent semantics in HINs. Therefore, original meta-path based
similarities (e.g., PathSim and KnowSim) have been successful in
computing the entity proximity in HINs. The intuition is that the
more instances of meta-path(s) between entities, the more similar
the entities are. Thus the original meta-path similarity only applies
to computing the proximity of two neighborhood (connected) en-
tities. In this paper, we propose the distant meta-path similarity
that is able to capture HIN semantics between two distant (isolated)
entities to provide more meaningful entity proximity. The main
idea is that even there is no shared neighborhood entities of (i.e., no
meta-path instances connecting) the two entities, but if the more
similar neighborhood entities of the entities are, the more similar
the two entities should be. We then find out the optimum distant
meta-path similarity by exploring the similarity hypothesis space
based on different theoretical foundations. We show the state-of-
the-art similarity performance of distant meta-path similarity on
two text-based HINs and make the datasets public available.1

1 INTRODUCTION
Measuring network similarity (i.e., entity proximity in networks) is
a fundamental problem of data mining with successful applications
1https://github.com/cgraywang/TextHINData
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in information retrieval, similarity search and machine learning
algorithms. Under a common assumption that the “entities are
without types” (i.e., the networks don’t carry semantics), most of
the state-of-the-art network similarity methods only leverage the
structural information of the entities to compute the proximity
in homogeneous networks. However, heterogeneous information
networks (HINs) [9] (e.g., social networks and biological networks)
with rich semantics are ubiquitous in the real world. The traditional
network similarity has been shown not generalized well in HINs.

The reason is that when measuring HIN similarity, besides con-
sidering the structural information of the entities, the entity prox-
imity should be able to capture the HIN semantics. The meta-path
represents semantics in HINs. The meta-path based similarity, e.g.,
PathSim [28] and KnowSim [34], naturally incorporates the HIN se-
mantics and becomes very useful in computing the entity proximity.
For example, the text-based HIN has recently been proposed to rep-
resent the texts in an HIN [33], where texts are regarded as one type
of entities. By applying meta-path similarity to the text-based HIN,
we observe significant improvements in text similarity computation,
as well as in text clustering [33] and classification [35].

For instance, to compute the document proximity in a text-based
HIN, for two documents talking about politics, a meaningful meta-
path as the following defined over entity types may be very useful:

Document→Military→Government→Religion→Document.2
Whereas, for the two documents talking about sports, a path in-
stance following the meta-path below may be more meaningful:

Document→Baseball→Olympics→Baseball→Document.
Given the meta-path(s), most original meta-path similarities are
derived following the intuition: the more instances of meta-path(s)
between entities, the more similar the entities are. We can see that
original meta-path similarities can only compute the proximity
of two neighborhood (connected) entities, between which path
instances follow the meaningful meta-path(s) must exist.

We expect a similarity measure that can be generalized to com-
pute the proximity of two distant (isolated) entities, between which
the meaningful meta-path instances don’t exist. This is of great
need in most of the real world HINs. For example, given a meta-path
Document→Athlete→Document, and a pair of documents D0 and

2Different from original meta-path similarities that assume the meta-path(s) are sym-
metric, we allow any meta-path(s) to be used in the similarity measures in this study.



Michael	Jordan	is	an	American	
retired	professional	basketball
player	in	the	NBA.

A noted basketball fan, former	
President	Barack	Obama	
welcomed	Steve	Kerr from	the	
greatest	team	in	NBA history.

D0 D1
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Jordan
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Figure 1: A text-based heterogeneous information network
example.

D1 in a text-based HIN as shown in Figure 1, we want to compute
the proximity of the documents. Since there doesn’t exist any path
instance of the meta-path directly connecting D0 and D1 (Michael
Jordan and Steve Kerr are not the same entity), the document proxim-
ity computed based on an original meta-path similarity will be zero.
However the two documents are talking about sports and should be
similar. This indicates that the original meta-path similarity cannot
capture the HIN semantics between the distant entities.

In this paper, we propose the distant meta-path similarity to fully
capture the semantics between entities in an HIN to provide more
meaningful proximity of two distant entities. Intuitively, the dis-
tant meta-path similarity aims to bridge the gap between distant
(relatively isolated) entities whenever there doesn’t exist any mean-
ingful path instance of a meta-path in between but originally carry
similar semantics. Formally, distant meta-path similarity indicates
the proximity of the two entities’ neighborhood entities. The more
similar neighborhood entities with the same type of the two enti-
ties are, the more similar the two entities are. The neighborhood
entities of an entity refer to the entities linked via direct meta-paths
to that entity. Then the two entities become distant neighbors to
each other. The semantics regarding to the relationship(s) of the
entity pair are thus better preserved by the distant neighbors.

Following the example in Figure 1, besides the meta-path
Document→Athlete→Document, D0 and D1 have two shared neigh-
borhood entities NBA and Basketball connected by meta-paths
Document→Organization and Document→Sports respectively. Then
for example, a simple similarity measure can be developed by con-
sidering the intersection in the neighborhood entity set of the two
documents. The proximity of D0 and D1 is thus 2/3 (i.e., among six
neighborhood entities, four of them are the same) and more mean-
ingful. For the sake of distinction, we regard the original meta-path
similarity as the neighborhood meta-path similarity. Compared
to the neighborhood meta-path similarity, in distant meta-path
similarity, even if two entities are isolated following the given meta-
path(s), the more similar or the same neighborhood entities of the
two entities are, the more similar the two entities should be.

To find out the optimum distant meta-path similarity, we explore
similarity hypothesis space by deriving 53 different similarity mea-
sures falling into nine families. Given different assumptions, such
as set assumption or probabilistic assumption, we can represent
the meta-path similarities of one entity to all the other entities as
different feature vectors. Then we can apply set theory or informa-
tion theory to derive the corresponding similarities between two
feature vectors.

To evaluate the proposed distant meta-path similarities, we de-
velop two text-based HINs (i.e., 20NG-HIN and GCAT-HIN) based

on benchmark text datasets, i.e., 20Newsgroups [18] and RCV1 [19].
We construct 20NG-HIN and GCAT-HIN by using the unsuper-
vised semantic parsing framework [33] to ground the texts to world
knowledge base, Freebase. The resultant 20NG-HIN and GCAT-HIN
consist of 20 and 43 entity types, as well as 325 and 1, 682 meta-
paths respectively. To our best knowledge, these two datasets are
the annotated HIN datasets with the largest numbers of entity types
and meta-paths. Then based on the two datasets, we conduct com-
prehensive experiments on text clustering and classification tasks.
For clustering, we employ spectral clustering algorithm [21] that
can use similarities as the weights on the graph edges constructed
by the data points. For classification, we use support vector ma-
chine (SVM) to incorporate the similarities into kernels [35]. Then
we compare different similarity measures within intra-family and
inter-families. We conclude with the best family of distant meta-
path similarities as well as the correlation among families for the
two datasets. We non-surprisingly find that the optimum distant
meta-path similarity can be significantly better than the original
neighborhood meta-path similarities (around 20% gain in clustering
NMI and 20% gain in classification accuracy).

The contributions of this work can be summarized as follows.

• We define distant meta-path similarity to fully capture HIN
semantics in disconnected entity proximity computation.
• We explore the similarity hypothesis space by proposing
53 newly derived distant meta-path similarities based on
different theoretical foundations.
• We present the optimum meta-path similarity by conducting
comprehensive experiments on two text-based HIN bench-
mark datasets, and show the state-of-the-art performance of
the best distant meta-path similarity.
• We make the two text-based HIN datasets public available.

The rest of the paper is organized as follows. Section 2 introduces
some basic concepts of the HIN. Section 3 briefly revisits neighbor-
hood meta-path similarity and mainly presents distant meta-path
similarity on the HIN. Experiments and results are discussed in
Section 4. We conclude this study in Section 5.

2 PRELIMINARIES
In this section, we introduce the key related concepts of HIN. We
first define the HIN and its network schema.

Definition 2.1. A heterogeneous information network (HIN)
is a graph G = (V, E) with an entity type mapping ϕ:V → A and
a relation type mappingψ : E → R, whereV denotes the entity set,
E denotes the link set,A denotes the entity type set, and R denotes
the relation type set, and the number of entity types |A| > 1 or the
number of relation types |R | > 1.

Definition 2.2. Given an HIN G = (V, E) with the entity type
mapping ϕ: V → A and the relation type mapping ψ : E → R,
the network schema for network G, denoted as TG = (A,R), is
a graph with nodes as entity types from A and edges as relation
types from R.

The network schema provides a high-level description of a given
heterogeneous information network. It defines the topology of



the entity type relationships. Another important concept, meta-
path [28], is proposed to systematically define relations between
entities at the schema level.

Definition 2.3. A meta-path P is a path defined on the graph
of network schema TG = (A,R), and is denoted in the form of
A1

R1−−→ A2
R2−−→ . . . RL−−→ AL+1, which defines a composite relation

R = R1 · R2 · . . . · RL between types A1 and AL+1, where · denotes
relation composition operator, and L is the length of P.

We say a meta-path is symmetric if the relation R is symmetric.
For simplicity, we use type names connected by “−” to denote
the meta-path when there exist no multiple relations between a
pair of types: P = (A1 − A2 − . . . − AL+1). For example, in the
Freebase network, the composite relation two Person co-founded an

Organization can be described as Person found−−−−→ Organization
found−1−−−−−−→

Person, or Person-Organization-Person for simplicity. We say a path
p = (v1−v2− . . .−vL+1) betweenv1 andvL+1 in network G follows
the meta-path P, if ∀l ,ϕ(vl ) = Al and each edge el = ⟨vl ,vl+1⟩
belongs to each relation type Rl in P. We call these paths as path
instances of P, denoted as p ∈ P. R−1l represents the reverse order
of relation Rl .

The commuting matrix is defined by Y. Sun et al. [28] to compute
the frequencies of all the paths related to a meta-path.

Definition 2.4. Commutingmatrix.Given a networkG = (V, E)
and its network schema TG , a commuting matrixMP for a meta-
pathP = (A1 − A2 − . . . − AL+1) is defined asMP =WA1A2WA2A3
. . .WALAL+1 , whereWAiAj is the adjacency matrix between types
Ai and Aj . MP (i, j) represents the number of path instances be-
tween objects xi andyj , where ϕ(xi ) = A1 and ϕ(yj ) = AL+1, under
meta-path P.

We introduce two meta-path based similarities as below.

Definition 2.5. PathSim [28] : A meta-path based similarity mea-
sure. Given a symmetricmeta-pathP, PathSim between two entities
i and j of the same entity type is:

PathSim(i, j) =
2 × | {pi⇝j ∈ P} |

| {pi⇝i ∈ P} | + | {pj⇝j ∈ P} |

=
2 ·MP (i, j)

MP (i, i) +MP (j, j)
, (1)

where pi⇝j ∈ P is a path instance between i and j following meta-
path P, pi⇝i ∈ P is that between i and i , and pj⇝j ∈ P is that
between j and j. Based on Definition 2.4, we have |{pi⇝j ∈ P}| =
MP (i, j), |{pi⇝i ∈ P}| = MP (i, i), and |{pj⇝j ∈ P}| = MP (j, j).

Definition 2.6. KnowSim [35]: Given a collection of symmetric
meta-paths, denoted as P = {Pm }Mm=1, KnowSim between two
entities i and j is defined as:

KnowSimω (i, j)

=
2 ×∑M

m ωm | {pi⇝j ∈ Pm } |∑M
m ωm | {pi⇝i ∈ Pm } | +

∑M
m ωm | {pj⇝j ∈ Pm } |

=
2 ·∑M

m ωmMPm (i, j)∑M
m ωmMPm (i, i) +

∑M
m ωmMPm (j, j)

. (2)

We use a vector ω = [ω1, · · · ,ωm , · · · ,ωM ] to denote the meta-
path weights, where ωm is the weight of meta-path Pm .

3 HIN SIMILARITIES
In this section, we first revisit neighborhood meta-path similarities
and then define distant meta-path similarities.

3.1 Neighborhood Meta-Path Similarity
We formalize the original meta-path similarity as the neighborhood
meta-path similarity as defined in Def. 3.1.

Definition 3.1. Neighborhoodmeta-path similarity.The neigh-
borhood meta-path similarity indicates the pairwise proximity be-
tween entities linked by meta-path(s) (entities are neighborhood
entities to each other). Given two entities i and j connected by a
meta-path P, if MP (i, j) > 0, the neighborhood meta-path similar-
ity is positive. Otherwise, the neighborhood meta-path similarity
between i and j is 0.

The intuition is that the more instances of meta-path(s) between
entities, the more similar the entities are. Both the PathSim and
KnowSim are neighborhood meta-path similarities. Let’s take the
following two scenarios for example to see how neighborhood
meta-path similarity works. Particularly, we use the PathSim and
KnowSim as examples of neighborhoodmeta-path similarities. First,
we consider a simple document-word HIN schema consisting of
two types of entities, Document and Word. Then if the meta-path is
Document→Word→Document, the PathSim between documents i
and j can be interpreted as:

PathSim =
2 · #shared words in two documents

#words in document i + #words in document j
, (3)

when only the appearance of words instead of frequency of words in
a document is considered. In the document-wordHIN, this measures
the semantic similarity between documents by considering the one-
hop meta-path based neighborhood entities.

Second, if we consider all the possible meta-paths in a network,
then the unweighted version of KnowSim degenerates to the fol-
lowing formulation:

KnowSim∞ =
2 · #paths between two entities

#cirles with entity i + #circles with entity j
, (4)

which computes the document proximity based on the two-hop
meta-path based neighborhood entities.

Both above similarities are able to capture the HIN semantics
but do not consider the meta-path connection of the two entities
with other entities, i.e., only consider the direct multi-hop meta-
path based neighborhood entities. Thus, we call both PathSim and
KnowSim as neighborhood meta-path similarities, meaning that
they consider the neighborhood entities connected by a meta-path.

As we can see, the neighborhood meta-path similarity works
pretty well when calculating the proximity of two neighborhood
entities, between which the path instances of the meaningful meta-
path(s) exist. However, in the real world HINs, such as the example
in Figure 1, when the two entities are distant entities (between
which no path instances of a meta-path exist), the neighborhood
meta-path similarities cannot be applied to compute the proximity
of the entities (because the similarity will always equal to zero). This
indicates the neighborhood meta-path similarity fails to capture
HIN semantics between distant entities.



Table 1: Representative meta-path based similarity measures from ten families. The first two similarities are neighborhood
meta-path similarities, the others are distant meta-path similarities.

Family Similarity Formulation (all are the similarities for entities i and j of the same type)

Neighborhood similarity KnowSim SKnowSim =
2 ·∑M

m MPm (i, j)∑M
m MPm (i, i) +

∑M
m MPm (j, j)

(5)

Neighborhood similarity Avg(PathSim) SAvд(PathSim) =
1
M

M∑
m

2 ·MPm (i, j)
MPm (i, i) +MPm (j, j)

(6)

Intersection Hamming SHam =
MN∑M

m=1
∑N
k=1 |MPm (i, k ) −MPm (j, k ) |

(7)

Inner product Cosine SCos =

∑M
m=1

∑N
k=1 MPm (i, k )MPm (j, k )√∑M

m=1
∑N
k=1 MPm (i, k )

2
√∑M

m=1
∑N
k=1 MPm (j, k )

2
(8)

Lp Minkowski Euclidean L2
SEuc =

1√∑M
m=1

∑N
k=1 |MPm (i, k ) −MPm (j, k ) |2

(9)

L1 S�rensen SS�r = 1 −
∑M
m=1

∑N
k=1 |MPm (i, k) −MPm (j, k) |∑M

m=1
∑N
k=1(MPm (i, k) +MPm (j, k ))

(10)

Squared L2 Clark
SCla =

1√∑M
m=1

∑N
k=1 (

|MPm (i,k )−MPm (j,k )|
MPm (i,k )+MPm (j,k )

)
2

(11)

Binary Russell-Rao SRus = 1 −
MN −∑M

m=1
∑N
k=1 MPm (i, k )MPm (j, k )

MN
(12)

Fidelity Hellinger SHel = 2 × (1 −

√√√
1 −

M∑
m=1

N∑
k=1

√
MPm (i, k )MPm (j, k)) (13)

Shannon’s entropy Kullback-Leibler SKL =
1∑M

m=1
∑N
k=1 MPm (i, k) ln

MPm (i,k )
MPm (j,k )

(14)

Hybrids Avg(L1 , L∞) SAvд =
2∑M

m=1
∑N
k=1 |MPm (i, k ) −MPm (j, k ) | +maxj,k |MPm (i, k ) −MPm (j, k ) |

(15)

3.2 Distant Meta-Path Similarity
We then propose distant meta-path similarity aiming to fully cap-
ture the HIN semantics to provide more meaningful proximity of
distant (relatively isolated) entities in HINs.

For instance, in Figure 1, given two documents (D0 and D1) and
the meta-path Document→Athlete→Document, the proximity of
the two documents is zero based on the neighborhood meta-path
similarity. However both documents are talking about sports thus
should be relatively similar (similarity score greater than zero).
We expect to use distant meta-path similarity to bridge the gap
between such distant entities and provide entity proximity with
more accurate semantics. Formally, the distant meta-path similarity
is defined in Def. 3.2.

Definition 3.2. Distantmeta-path similarity.The distantmeta-
path similarity between an entity pair describes the proximity of
the pair’s neighborhood entities. Neighborhood entities are defined
as the entities linked via meta-path(s) to the pair. Let {MP (i,k)}Nk=1
denotes the meta-path instances between entity i and its neighbor-
hood entities. The distant meta-path similarity between i and j is
then decided by the proximity of {MP (i,k)}Nk=1 and {MP (j,k)}

N
k=1.

Entities i and j are called as distant neighbors to each other.

The intuition is that the more similar neighborhood entities with
the same type of two entities are, the more similar the two entities
are. For example, to consider all the neighborhood entities of the

same type, one simplest way is to use the intersection between the
two sets of neighborhood entities to compute the similarity:

SPI t (i, j) =
N∑
k=1

min(MP (i,k),MP (j,k)), (16)

which considers the intersection of all meta-paths between either
entities i or j with neighborhood entities. Note that here to imple-
ment intersection, we need to have MP (i,k) ← I [MP (i,k) > 0]
where I [true] = 1 and I [f alse] = 0 are indicator functions. If we
consider only all meta-paths, then the similarity is:

SI t (i, j) =
M∑

m=1

N∑
k=1

min(MPm (i,k),MPm (j,k)). (17)

Let’s revisit the two scenarios in Sec. 3.1 to see how distant meta-
path similarity usesmoreHIN semantics.We first useDocument→Word
→Document meta-path. Then in Eq. (16), we have

SPI t (i, j) =
∑
min(I [#shared words in document i and k],
I [#shared words in document j and k]). (18)

This means that, when there are more documents that are “similar”
(or sharing words) to both documents i and j, the two documents
are more similar. Interestingly, because there is no meta-path con-
necting two documents, the original network structure does not



support the neighborhood document proximity. We now can com-
pute the distant document proximity which preserves right HIN
semantics between the two documents.

For the second case, the distant similarity is approximately:

S∞I t = #paths between two entities bridged by other entities.
(19)

Again this similarity provides more accurate semantic proximity
that neighborhood meta-path similarity cannot provide.

From the above examples we can see that, distant meta-path sim-
ilarity captures the HIN semantics (i.e., distant semantics) between
disconnected entities that neighborhood meta-path similarities can-
not capture. This leads to distant meta-path similarity that provides
more meaningful entity proximity in HINs. Then the remaining
problem is that which is the best way to define a distant meta-path
similarity? In the rest of this section, we explore the similarity
hypothesis space based on different theoretical foundations, and
derive 53 different similarities categorized into nine families. In the
interests of space, we only mention the original names of different
similarities/distances, cite them, and show one example that is cus-
tomized to the meta-path based similarity in each family. We will
explain the meaning of that similarity as a representative of the
family. Note that even in the same family, the semantic meaning
of the similarity can be different. A summary of the families and
example similarities is shown in Table 1.

3.2.1 Intersection Family. The first family is intersection family
which involves the intersection operator inside the similarity. We
list the similarities we have implemented as following: 1. Intersec-
tion [6]. 2. Wave Hedges [10]. 3. Czekanowski Coefficient [4]. 4.
Motyka similarity [4]: half of Czekanowski Coefficient. 5. Ruzicka
similarity [4]. 6. 1 − SRuzicka is known as Tanimoto distance [6],
a.k.a., Jaccard distance. 7. Hamming distance [4] based similarity.
We have shown that using SI t can achieve new semantic mean-
ing of the similarity. For all the similarities in this family, we set
MP (i,k) ← I [MP (i,k) > 0]. The Hamming distance based sim-
ilarity is shown as Eq. (7) in Table 1. The distance is defined as
the number of entities with different meta-paths corresponding to
the two entities i and j. Then the similarity is referred to as the
inverse number of the distance. For each meta-path, this similarity
is related to intersection since larger intersection of entities means
lower number of Hamming distance.

3.2.2 Inner Product Family. The inner product family involves
the inner product value for each meta-path Pm :∑
k MPm (i,k)MPm (i,k). We have the following variants: 8. Simple

inner product [6]. 9. Harmonic mean [4]. 10. Cosine coefficient
(a.k.a., Ochiai [4, 23] and Carbo [23]). 11. Kumar and Hassebrook
based similarity measuring the Peak-to-correlation energy [16]. 12.
Jaccard coefficient (a.k.a. Tanimoto) [30]. 13. Dice Coefficient or
S�rensen, Czekannowski, Hodgkin-Richards [23] or Morisita [24].
14. Correlation (Pearson) [4]. The example of cosine meta-path
similarity is shown as Eq. (8) in Table 1. Inner product is similar to
intersection but also considers the weights of each meta-path value.
Cosine similarity normalizes the weights by each of the entity i
and j’s values.

3.2.3 Lp Minkowski Family. The Lp Minkowski family is a gen-
eral formulation of p-norm based distance. We derive the following

similarities: 15. L2 Euclidean distance based similarity. 16. L1 City
block distance [13] based similarity (rectilinear distance, taxicab
norm, and Manhattan distance, proposed by Hermann Minkowski).
17. Lp Minkowski distance based similarity [3]. 18. L∞ Chebyshev
distance (chessboard distance and the minimax approximation) [32]
based similarity where p goes to infinite. We show the L2 Euclidean
distance based similarity as Eq. (9) in Table 1. It simply computes
the Euclidean distance between two vectors comprised by meta-
path values from entities i and j to all the other entities, and then
uses the inverse value as the similarity. This distance is similar to
Hamming distance, but treats the values of each meta-path indepen-
dently. Moreover, for arbitrary Lp norm, it computes the distances
by making different geometric assumptions of the vectors in the
high-dimensional space.

3.2.4 L1 Family. Besides city block distance based similarity,
we show more L1 distance based similarities here: 19. S�rensen
distance [26] (a.k.a., Bray-Curtis [2, 4, 23] based similarity). 20.
Gower distance [8] based similarity. 21. Soergel [23] distance based
similarity. 22.Kulczynski [4] distance based similarity. 23.Canberra
similarity [4]. 24. Lorentzian similarity [4]. The differences among
these L1 distance based similarities and the city block distance
based similarity introduced previously are the way they weight
the distance and the way they convert distance to similarity. For
example, for the S�rensen distance based similarity, which is shown
in Eq. (10) in Table 1, it uses the sum of all the related meta-path
values as denominator to normalize the L1 distance in the range of
[0, 1] and regards “1 - the distance” as the similarity.

3.2.5 Squared L2 Family. Here we explore more similarities
related to the squared value of L2 norm: 25. Squared Euclidean
distance [4]. 26. Pearson χ2 divergence [25]. 27. Neyman χ2 [4].
28. Squared χ2 [7] (a.k.a. triangular discrimination [5, 31]). 29.
Probabilistic symmetric χ2 [4], which is identical to Sangvi χ2
between populations [4]. 30.Divergence [14]. 31.Clark [4]: squared
root of half of divergence as defined in the Eq. (11). 32. Additive
Symmetric χ2 [4, 37]. Squared L2 family incorporates the squared
L2 norms in the similarity function. For example, squared Euclidean
distance is the squared value of Euclidean distance. The difference
among the above similarities is how to weight the squared L2 norm.
For example, we show the Clark similarity as Eq. (11) in Table 1.
The way to normalize the squared L2 norm is similar to the way
S�rensen distance normalizes the L1 distance except for the squared
value and the way to sum all the values.

3.2.6 Binary Family. We introduce a set of distant meta-path
similarities based on binary values instead of scale values. In this
case, we set binary values as what we did in intersection. Then
the similarities are listed as follows: 33. Yule similarity [4]. 34.
Matching distance [4]. 35. Kulsinski is defined as a variation of
Yule similarity. 36. Roger-Tanimoto similarity [4]. 37. Russel-Rao
similarity [4] is formally defined in Eq. (12). 38. Sokal-Michener’s
simple matching [4] (a.k.a. Rand similarity). The corresponding
metric 1 − SSokal−Michener is called the variance or Manhattan
similarity (a.k.a. Penrose size distance). 39. Sokal-Sneath similar-
ity [4]. Binary similarity is more complicated than intersection
since it can introduce a lot of logical operators over the binary
values. We choose the simplest one of Russel-Rao similarity shown



Table 2: Statistics of entities in two text-based HINs: #(Doc-
ument) is the number of all documents; similar for #(Word)
(# of distinct words), #(FBEntity) (# of distinct Freebase en-
tities), #(Total) (the total # of distinct entities), and #Types
(the total # of entity types).

20NG-HIN GCAT-HIN
#(Document) 19,997 60,608

#(Word) 60,691 95,001
#(FBEntity) 28,034 110,344
#(Total) 108,722 265,953
#(Types) 1,904 1,937

as Eq. (12) in Table 1. In Russel-Rao similarity, we use an “AND”
operation to generate the similarity.

3.2.7 Fidelity Family. Fidelity family incorporates geometric
mean of both meta-path values of entities i and j, and further sum
or average the mean values. We summarize the similarities we
use here: 40. Fidelity similarity [4], a.k.a. Bhattacharyya coeffi-
cient or Hellinger affinity [4]. 41. Bhattacharyya distance based
similarity [1]. 42. Hellinger [4]. 43. Matusita [22]. 44. Squared-
chord distance based similarity [3] is the Matusita but without the
square root. A typical fidelity family similarity Hellinger is shown
in Eq. (13) in Table 1. Hellinger distance is originally defined with
measure theory based on two probability distributions. Therefore,
we normalize the frequencies of path instances to probabilities as
MP (i,k) ← MP (i,k)/

∑
k ′ MP (i,k ′). It can be proven that Hellinger

distance is in the range of [0, 1] based on the Cauchy-Schwarz in-
equality. Thus, in our case, we simply use “1 - Hellinger distance”
as the similarity.

3.2.8 Shannon’s Entropy Family. The Shannon’s entropy family
is listed as follows: 45. Kullback and Leibler (KL) [15] divergence
(relative entropy or information deviation). 46. Jeffreys or J diver-
gence [12, 15, 29]. 47. K divergence based similarity [4]. 48. K di-
vergence’s symmetric form Tops�e distance [4] (a.k.a. information
statistics [7]). 49. Jensen-Shannon divergence [4, 20]. 50. Jensen
difference [29]. Since the entropy is also defined on probabilities, we
normalize the frequencies to be probabilities as we did for Hellinger
distance, e.g., the KL divergence is shown as Eq. (14) in Table 1. KL
divergence is originally used to evaluate the difference between
two distributions. We regard the inverse value as the similarity.

3.2.9 Hybrid Family. We include some combinations of the
above similarities. 51. Taneja [11]: arithmetic and geometric means
that come up with the arithmetic and geometric mean divergence.
52. Symmetric χ2: arithmetic and geometric mean divergence is
presented according to [17]. 53. Avg(L1, L∞): average of city block
and Chebyshev distances [13] is shown as Eq. (15) in Table 1.

4 EXPERIMENTS
In this section, we report experimental results that demonstrate the
effectiveness of distant meta-path similarities compared with neigh-
borhood meta-path similarities. We also analyze the relationships
between different similarity families.

Table 3: Results of clustering and classification of different
meta-path based similarities on 20NG-HIN and GCAT-HIN
datasets. Clust.means clustering andClass.means classifica-
tion. We use underline to emphasize each best similarity in
every family. We use boldface to emphasize the overall best
similarity and the best mean value among all the families.

20NG-HIN GCAT-HIN
Clust. Class. Clust. Class.

KnowSim 0.223 52.4% 0.299 81.6%
Avg(PathSim) 0.218 13.0% 0.329 69.4%

Mean(neighborhood) 0.221 32.7% 0.314 75.5%
1. Intersection 0.218 65.1% 0.328 92.1%
2. Wave Hedges 0.057 39.0% 0.159 57.2%
3. Czekanowski 0.119 66.5% 0.229 90.7%

4. Motyka 0.219 66.9% 0.286 85.1%
5. Ruzicka 0.059 42.9% 0.043 46.9%
6. Tanimoto 0.044 28.6% 0.038 41.2%
7. Hamming 0.168 56.9% 0.188 83.6%

Mean(Intersection) 0.126 52.3% 0.182 71.0%
8. Inner Product 0.154 63.4% 0.237 92.7%
9. Harmonic Mean 0.191 62.1% 0.205 89.2%

10. Cosine 0.248 67.4% 0.242 93.1%
11. Kumar-Hassebrook 0.104 50.5% 0.233 82.4%

12. Jaccard 0.104 50.5% 0.225 82.4%
13. Dice 0.04 25.2% 0.037 56.5%

14. Correlation 0.243 67.4% 0.251 93.1%
Mean(Inner product) 0.155 55.2% 0.204 84.2%
15. Euclidean L2 0.254 65.2% 0.376 89.7%
16. City block L1 0.055 57.8% 0.309 77.6%
17. Minkowski Lp 0.278 62.8% 0.366 90.9%
18. Chebyshev L∞ 0.192 50.1% 0.288 88.1%

Mean(Lp Minkowski) 0.195 59.0% 0.335 86.6%
19. S�rensen 0.227 66.4% 0.333 91.8%
20. Gower 0.23 49.9% 0.311 89.3%
21. Soergel 0.044 28.6% 0.038 41.2%

22. Kulczynski 0.06 42.9% 0.042 46.9%
23. Canberra 0.197 26.0% 0.209 57.2%
24. Lorentzian 0.063 57.7% 0.31 77.6%
Mean(L1) 0.137 45.3% 0.207 67.3%

25. Squared Euclidean 0.099 61.2% 0.347 90.8%
26. Pearson χ 2 0.036 41.9% 0.105 73.5%
27. Neyman χ 2 0.041 10.1% 0.099 72.4%
28. Squared χ 2 0.187 30.5% 0.193 57.2%

29. Prob. Symmetric χ 2 0.186 15.7% 0.18 57.2%
30. Divergence 0.19 19.6% 0.273 57.2%

31. Clark 0.201 25.8% 0.238 78.6%
32. Add. Symmetric χ 2 0.236 41.3% 0.248 68.0%
Mean(Squared L2) 0.147 30.8% 0.21 69.4%

33. Yule 0.036 14.3% 0.039 47.6%
34. Matching 0.257 47.6% 0.344 75.6%
35. Kulsinski 0.171 47.6% 0.189 72.5%

36. Rogers-Tanimoto 0.257 47.6% 0.344 79.7%
37. Russell-Rao 0.156 47.6% 0.238 72.5%

38. Sokal-Michener 0.255 47.6% 0.345 79.7%
39. Sokal-Sneath 0.052 25.2% 0.086 57.1%
Mean(Binary) 0.169 39.6% 0.226 69.2%
40. Fidelity 0.243 65.9% 0.311 92.1%

41. Bhattacharyya 0.161 30.5% 0.285 76.9%
42. Hellinger 0.186 32.4% 0.29 47.1%
43. Matusita 0.191 31.4% 0.292 46.6%

44. Squared-chord 0.257 65.3% 0.321 92.1%
Mean(Fidelity) 0.208 45.1% 0.3 71.0%

45. Kullback-Leibler 0.032 43.8% 0.078 55.6%
46. Jeffreys 0.037 10.2% 0.016 47.4%

47. K divergence 0.043 41.9% 0.03 52.5%
48. Tops�e 0.112 62.8% 0.299 82.6%

49. Jensen-Shannon 0.144 64.8% 0.311 85.7%
50. Jensen difference 0.144 64.8% 0.312 85.8%
Mean(Shannon) 0.085 48.1% 0.174 68.3%

51. Taneja 0.147 62.6% 0.314 81.4%
52. Kumar-Johnson 0.247 47.6% 0.256 58.2%
53. Avg(L1 , L∞) 0.11 59.5% 0.278 81.2%
Mean(Hybrids) 0.168 56.6% 0.283 73.6%



4.1 Datasets
To evaluate the similarities, we use the framework that converts
texts as HINs [33]. In this case we have a lot of annotated docu-
ments for evaluation. Moreover, the meta-schema of the network
is much richer than the traditional HINs such as DBLP academic
network [28]. We use two benchmark text datasets to perform
clustering and classification:

20Newsgroups dataset. The 20newsgroups dataset [18] contains
about 20,000 newsgroups documents across 20 newsgroups. After
converting them to an HIN, we call the data 20NG-HIN.

GCAT in RCV1 dataset. The RCV1 dataset contains manually la-
beled newswire stories from Reuter Ltd [19]. The news documents
are categorized with respect to three controlled vocabularies: in-
dustries, topics and regions. There are 103 categories including all
nodes except for root in the topic hierarchy. We select the 60,608
documents under top category GCAT-HIN (Government/Social)
to convert them to another HIN: GCAT-HIN. There are 16 leaf
categories under GCAT.

After grounding the texts to the knowledge base, Freebase, the
numbers of entities in different datasets are summarized in Table 2.
We can see that there are more entity types than the entity types of
the data used before for HIN studies. The entity types are the types
of named entities mentioned in texts, such as Politician, Musician
and President. The Freebase also has relations between entity types.
The numbers of relation instances (logical forms parsed out by
semantic parsing and filtering [33]) in 20NG-HIN and GCAT-HIN
are 9, 655, 466 and 18, 008, 612. In practice we find that a lot of entity
types related to a small number of path instances, thus resulting
in meta-paths with few path instances. Therefore, we prune these
entities using a threshold. Moreover, we limited the length of meta-
paths to be less than seven. Finally we got 325meta-paths and 1, 682
meta-paths for 20NG-HIN and GCAT-HIN, respectively [34].

4.2 Evaluation Tasks
Now we introduce the two tasks: document clustering and classifi-
cation, to evaluate the similarities.

Spectral Clustering Using Similarities. To check the quality of dif-
ferent similarity measures in the real application scenario, we use
different similarity measures as the weight matrices in the spectral
clustering [36] for document clustering task. The spectral clustering
algorithm is self-tuning algorithm, which means the parameters in
the radial basis functions can automatically scale with the input. We
compare the clustering results of 55 different similarity measures
with each other. Two of them are neighborhood meta-path similari-
ties, as shown in Table 1. The Avg(PathSim) is the average PathSim
similarity over every single meta-path. The other 53 HIN similar-
ities are distant meta-path similarities introduced in Section 3.2.
We set the numbers of clusters as 20 and 16 for 20NG-HIN and
GCAT-HIN according to their ground-truth labels, respectively. We
employ the widely-used normalized mutual information (NMI) [27]
as the evaluation measure. The NMI score is 1 if the clustering
results match the category labels perfectly and 0 if the clusters are
obtained from a random partition. In general, the larger the scores,
the better the clustering results. Note that we have demonstrated
that HIN based similarity (i.e., KnowSim) performs significantly
better than BOW feature based similarities (e.g., cosine and Jaccard)

used in the spectral clustering on document datasets [34], so now
we focus on comparing the clustering performance between HIN
based similarities.

In Table 3, we show the performance of the clustering results
with different similarity measures on both 20NG-HIN and GCAT-
HIN datasets. The NMI is the average of five random trials per exper-
imental setting. The best NMI scores of both datasets are achieved
by Minkowski Lp and Euclidean L2 similarities respectively for
two datasets. On average, the neighborhood meta-path similarity
performs best for 20NG-HIN dataset, and Lp Minkowski family
performs best for GCAT-HIN dataset. Shannon family does not
perform as good as the other similarities for clustering. Especially
for the similarities that are not symmetric, i.e., Kullback-Leibler,
Jeffreys, and K divergence, the performances are the worst. This is
reasonable since our task of clustering prefers to have a symmetric
measure to evaluate pairwise document similarities. By comparing
the distant meta-path similarities with neighborhood meta-path
similarities, we can see that the best distant meta-path similarity is
better than the best neighborhood meta-path similarity.

SVM Classification Using Similarities. We also evaluate the ef-
fectiveness of the 55 similarity measures by using the similarity
measures as kernels in the document classification task with sup-
port vector machine (SVM). For the similarity measures that are
kernels, we use the similarity matrix as the kernel in SVM. For the
similarities that are not kernels, we adopt indefinite SVM to perform
kernel based classification [35]. We perform 20-class classification
and 16-class classification for 20NG-HIN and GCAT-HIN according
to the number of the corresponding ground-truth categories in the
dataset. Each dataset is randomly divided into 80% training and 20%
testing data. We apply 5-fold cross validation on the training set
to determine the optimal hyperparameter C for SVM. Then all the
classification models are trained based on the full training set, and
tested on the test set. We use classification accuracy as the eval-
uation measure. Note that we have demonstrated that HIN based
similarity (i.e., KnowSim) performs significantly better than BOW
feature based similarities used in the SVM classification on docu-
ment datasets [35], so we just focus on comparing the classification
performance between HIN based similarities.

We also show the results in Table 3. Each number is an average
based on five random trials. From the table we can see that, Lp
Minkowski family performs consistently the best for both datasets.
Cosine and correlation similarities perform almost the same and
are the best among all the similarities. The difference between
these two similarities is whether we centralize the vectors. For
correlation, we need to centralize the data while for cosine we do
not. However, it seems the classification results are not affected by
centralization. For the neighborhood meta-path similarities, we find
KnowSim performs relatively better than Avg(PathSim) but still
worse than the best distant meta-path similarity. Since classification
is more deterministic and clustering may contain more randomness
in the results, we would suggest using KnowSim when considering
neighborhood meta-path similarities.

Moreover, by considering both classification and clustering re-
sults, we can see that Lp Minkowski family is in general good for
both tasks and datasets. Cosine similarity, which is widely used for
text data, is also good, and for classification, it is the best among all
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Figure 2: Correlation results of 55 similarities based on two tasks, clustering and classification, on two datasets, 20NG-HIN and GCAT-HIN.

Table 4: Correlations of Top-10 best similarity measures. Each is with top-3 intra-family and inter-family similarity measures on both 20NG-
HIN and GCAT-HIN.

Intra-family
Datesets Top-10 Best Top 1 Corr. Top 2 Corr. Top 3 Corr.
20NG-HIN 10. Cosine 14. Correlation 1.0 8. Inner Product 0.605 9. Harmonic Mean 0.242

14. Correlation 10. Cosine 1.0 8. Inner Product 0.605 9. Harmonic Mean 0.242
4. Motyka 3. Czekanowski 0.736 1. Intersection 0.561 5. Ruzicka 0.551

3. Czekanowski 4. Motyka 0.736 7. Hamming 0.498 1. Intersection 0.299
19. S�rensen 23. Canberra 0.75 24. Lorentzian 0.721 21. Soergel 0.506
40. Fidelity 44. Squared-chord 1.0 43. Matusita 0.985 42. Hellinger 0.983

44. Squared-chord 40. Fidelity 1.0 43. Matusita 0.985 42. Hellinger 0.983
15. Euclidean L2 17. Minkowski Lp 0.982 18. Chebyshev L∞ 0.952 16. City block L1 0.671
1. Intersection 4. Motyka 0.561 5. Ruzicka 0.472 3. Czekanowski 0.299

49. Jensen-Shannon 50. Jensen difference 1.0 48. Tops�e 0.992 45. Kullback-Leibler 0.164
GCAT-HIN 10. Cosine 14. Correlation 0.999 8. Inner Product 0.873 13. Dice 0.662

14. Correlation 10. Cosine 0.999 8. Inner Product 0.875 13. Dice 0.662
8. Inner Product 14. Correlation 0.875 10. Cosine 0.873 13. Dice 0.612
1. Intersection 4. Motyka 0.617 2. Wave Hedges 0.365 3. Czekanowski 0.342
40. Fidelity 44. Squared-chord 1.0 43. Matusita 0.92 42. Hellinger 0.917

44. Squared-chord 40. Fidelity 1.0 43. Matusita 0.92 42. Hellinger 0.917
19. S�rensen 21. Soergel 0.699 22. Kulczynski 0.674 23. Canberra 0.669

17. Minkowski Lp 15. Euclidean L2 0.943 18. Chebyshev L∞ 0.449 16. City block L1 0.293
25. Squared Euclidean 26. Pearson χ 2 0.476 32. Add. Symmetric χ 2 0.47 31. Clark 0.338

3. Czekanowski 4. Motyka 0.73 6. Tanimoto 0.676 5. Ruzicka 0.662
Inter-family

Datesets Top-10 Best Top 1 Corr. Top 2 Corr. Top 3 Corr.
20NG-HIN 10. Cosine 3. Czekanowski 0.674 4. Motyka 0.609 35. Kulsinski 0.605

14. Correlation 3. Czekanowski 0.674 4. Motyka 0.609 35. Kulsinski 0.605
4. Motyka 19. S�rensen 0.685 34. Matching 0.678 36. Rogers-Tanimoto 0.678

3. Czekanowski 19. S�rensen 0.952 10. Cosine 0.674 14. Correlation 0.674
19. S�rensen 3. Czekanowski 0.952 31. Clark 0.762 7. Hamming 0.734
40. Fidelity 1. Intersection 0.815 20. Gower 0.815 53. Avg(L1 , L∞) 0.807

44. Squared-chord 1. Intersection 0.815 20. Gower 0.815 53. Avg(L1 , L∞) 0.807
15. Euclidean L2 25. Squared Euclidean 0.984 1. Intersection 0.976 20. Gower 0.976
1. Intersection 20. Gower 1.0 15. Euclidean L2 0.976 25. Squared Euclidean 0.948

49. Jensen-Shannon 51. Taneja 0.982 17. Minkowski Lp 0.799 15. Euclidean L2 0.797
GCAT-HIN 10. Cosine 3. Czekanowski 0.928 19. S�rensen 0.925 35. Kulsinski 0.875

14. Correlation 3. Czekanowski 0.926 19. S�rensen 0.924 35. Kulsinski 0.878
8. Inner Product 35. Kulsinski 1.0 37. Russell-Rao 1.0 19. S�rensen 0.82
1. Intersection 20. Gower 1.0 15. Euclidean L2 0.798 17. Minkowski Lp 0.77
40. Fidelity 36. Rogers-Tanimoto 0.883 38. Sokal-Michener 0.883 34. Matching 0.882

44. Squared-chord 36. Rogers-Tanimoto 0.883 38. Sokal-Michener 0.883 34. Matching 0.882
19. S�rensen 3. Czekanowski 0.989 10. Cosine 0.925 14. Correlation 0.924

17. Minkowski Lp 25. Squared Euclidean 0.883 20. Gower 0.773 1. Intersection 0.77
25. Squared Euclidean 15. Euclidean L2 0.978 17. Minkowski Lp 0.883 50. Jensen difference 0.82

3. Czekanowski 19. S�rensen 0.989 10. Cosine 0.928 14. Correlation 0.926

the similarities. Besides Cosine, another similarity measure, Corre-
lation, from inner product family performs competitive with Cosine
for classification. The reason is that the inner product operation
just fits the formulation of SVM kernel.

4.3 Correlation of Clustering/Classification
We further use the Pearson correlation coefficient to test the con-
sistency of clustering and classification. Figure 2(a) shows the cor-
relation of clustering NMI and classification accuracy results on
20NG-HIN dataset. Figure 2(b) shows the correlation of clustering
NMI and classification accuracy results on GCAT-HIN dataset. Both



Table 5: Correlations of Top-10 worst similarity measures. Each is with top-3 intra-family and inter-family similarity measures on both
20NG-HIN and GCAT-HIN.

Intra-family
Datesets Top-10 Worst Top 1 Corr. Top 2 Corr. Top 3 Corr.
20NG-HIN 27. Neyman χ 2 28. Squared χ 2 0.745 29. Prob. Symmetric χ 2 0.745 25. Squared Euclidean 0.679

46. Jeffreys 48. Tops�e 0.021 49. Jensen-Shannon 0.02 50. Jensen difference 0.02
Avg(PathSim) KnowSim 0.593 - - - -

33. Yule 34. Matching 0.021 36. Rogers-Tanimoto 0.021 38. Sokal-Michener 0.021
29. Prob. Symmetric χ 2 28. Squared χ 2 1.0 27. Neyman χ 2 0.745 25. Squared Euclidean 0.642

30. Divergence 32. Add. Symmetric χ 2 0.414 28. Squared χ 2 0.403 29. Prob. Symmetric χ 2 0.403
13. Dice 10. Cosine 0.006 14. Correlation 0.006 9. Harmonic Mean 0.004

39. Sokal-Sneath 35. Kulsinski 0.03 37. Russell-Rao 0.03 34. Matching 0.001
31. Clark 32. Add. Symmetric χ 2 0.138 26. Pearson χ 2 0.128 27. Neyman χ 2 0.111

23. Canberra 21. Soergel 0.788 19. S�rensen 0.75 24. Lorentzian 0.681
GCAT-HIN 6. Tanimoto 5. Ruzicka 0.984 3. Czekanowski 0.676 4. Motyka 0.261

21. Soergel 22. Kulczynski 0.984 19. S�rensen 0.699 23. Canberra 0.442
43. Matusita 42. Hellinger 1.0 41. Bhattacharyya 0.998 40. Fidelity 0.92
5. Ruzicka 6. Tanimoto 0.984 3. Czekanowski 0.662 4. Motyka 0.268

22. Kulczynski 21. Soergel 0.984 19. S�rensen 0.674 23. Canberra 0.423
42. Hellinger 43. Matusita 1.0 41. Bhattacharyya 0.999 40. Fidelity 0.917
46. Jeffreys 48. Tops�e 0.047 49. Jensen-Shannon 0.039 50. Jensen difference 0.039
33. Yule 34. Matching 0.006 36. Rogers-Tanimoto 0.006 38. Sokal-Michener 0.006

47. K divergence 50. Jensen difference 0.158 49. Jensen-Shannon 0.157 48. Tops�e 0.144
45. Kullback-Leibler 48. Tops�e 0.369 49. Jensen-Shannon 0.323 50. Jensen difference 0.318

Inter-family
Datesets Top-10 Worst Top 1 Corr. Top 2 Corr. Top 3 Corr.
20NG-HIN 27. Neyman χ 2 9. Harmonic Mean 0.757 1. Intersection 0.703 20. Gower 0.703

46. Jeffreys 51. Taneja 0.02 27. Neyman χ 2 0.017 53. Avg(L1 , L∞) 0.017
Avg(PathSim) 3. Czekanowski 0.416 19. S�rensen 0.387 4. Motyka 0.207

33. Yule 5. Ruzicka 0.026 22. Kulczynski 0.026 4. Motyka 0.021
29. Prob. Symmetric χ 2 9. Harmonic Mean 0.981 1. Intersection 0.725 20. Gower 0.725

30. Divergence 41. Bhattacharyya 0.78 42. Hellinger 0.78 43. Matusita 0.78
13. Dice KnowSim 0.023 27. Neyman χ 2 0.02 40. Fidelity 0.009

39. Sokal-Sneath 52. Kumar-Johnson 0.043 8. Inner Product 0.03 32. Add. Symmetric χ 2 0.03
31. Clark 23. Canberra 0.995 7. Hamming 0.981 11. Kumar-Hassebrook 0.981

23. Canberra 7. Hamming 0.995 11. Kumar-Hassebrook 0.995 12. Jaccard 0.995
GCAT-HIN 6. Tanimoto 21. Soergel 1.0 22. Kulczynski 0.984 40. Fidelity 0.811

21. Soergel 6. Tanimoto 1.0 5. Ruzicka 0.984 40. Fidelity 0.811
43. Matusita 6. Tanimoto 0.763 21. Soergel 0.763 36. Rogers-Tanimoto 0.751
5. Ruzicka 22. Kulczynski 1.0 21. Soergel 0.984 36. Rogers-Tanimoto 0.788

22. Kulczynski 5. Ruzicka 1.0 6. Tanimoto 0.984 36. Rogers-Tanimoto 0.788
42. Hellinger 6. Tanimoto 0.759 21. Soergel 0.759 36. Rogers-Tanimoto 0.747
46. Jeffreys 51. Taneja 0.057 11. Kumar-Hassebrook 0.056 12. Jaccard 0.056
33. Yule 52. Kumar-Johnson 0.015 2. Wave Hedges 0.008 KnowSim 0.007

47. K divergence 25. Squared Euclidean 0.141 15. Euclidean L2 0.135 4. Motyka 0.132
45. Kullback-Leibler 53. Avg(L1 , L∞) 0.384 16. City block L1 0.377 24. Lorentzian 0.377

the Pearson correlation coefficient and its significant test value
are shown in each caption of the sub-figure. The correlation on
20NG-HIN dataset is not as high as GCAT-HIN dataset, but it is
still significantly correlated at 0.01 level. Both results mean that
the clustering and classification results are consistent. There are
some differences between spectral clustering and SVM classifica-
tion. Spectral clustering assumes data points are on a manifold
and assumes local linearities. SVM using kernel assumes the high
dimensional Hilbert space is linearly separable given a kernel. The
similarities preserve more locality may be better for spectral clus-
tering, while the similarities that can map the data onto a linearly
separable space may work better for classification.

Moreover, Figure 2(c) shows the correlation of clustering results
between two datasets, and Figure 2(d) shows the correlation of
classification results between two datasets. It seems the correlation
scores are higher than the scores between clustering and classifica-
tion. This is reasonable as we have analyzed that spectral clustering
and SVM may have different preferences. This also indicates that
the similarities are robust and scalable.

4.4 Correlation Between Similarities
We finally analyze the correlation between each pair of similarity
measures. For both datasets, we have the similarities’ scores of
pairwise documents. Then for each pair of similarity measures, we
use the lists of similarity scores to compute the correlation between
the pair of similarity measures.

We sort Table 3 based on the classification results of both datasets,
and obtain the top ten best similarity measures and top ten worst
ones. For each similarity measure, we use the correlation to retrieve
top three similarity measures. For the ten best similarity measures,
we show the results in Table 4. For the tenworst similarity measures,
we show the results in Table 5.

From Table 4 we can see that, for the best similarity measures,
such as cosine, the top intra-family similar measures are 14. Correla-
tion, 8. Inner Product, and 9. Harmonic Mean for 20NG-HIN dataset,
and 14. Correlation, 8. Inner Product, and 13. Dice for GCAT-HIN
dataset. If we refer back to Table 3, we can see that 13. Dice similarity
performs on 20NG-HIN not as good as it performs on GCAT-HIN



dataset. For the inter-family similarities, we can also see some inter-
esting results. For example, for cosine, the most correlated similarity
measures are 3. Czekanowski (Intersection family), 4. Motyka (In-
tersection family), and 35. Kulsinski (Binary family) on 20NG-HIN
dataset, and 3. Czekanowski (Intersection family), 19. S�rensen (L1
family), and 35. Kulsinski (Binary family) on GCAT-HIN dataset.
Inner product is similar to intersection in the sense that the only dif-
ference is whether considering the weights. Intersection is further
similar to binary if the logic of binary operation is “AND.”

From Table 5 we can see that, for the worst similarity measures,
there are also interesting findings. Some of the bad similarity mea-
sures are highly correlated. For example, for GCAT-HIN dataset,
6. Tanimoto is highly correlated with 5. Ruzicka inside family, and
21. Soergel outside family. The classification results are 6. Tanimoto:
41.2%, 5. Ruzicka: 46.9%, and 21. Soergel: 41.2%. Moreover, the good
similarity measures in Shannon family such as 49. Jensen-Shannon
is relatively highly correlated with 45. Kullback-Leibler on GCAT-
HIN dataset. However the correlation score is not as high as the
other top similar scores. This is because 45. Kullback-Leibler is not
a symmetric similarity when 49. Jensen-Shannon is.

5 CONCLUSION
In this paper, we study the problem of entity proximity in HINs, and
propose distant meta-path similarity to fully capture HIN semantics
between entities when measuring the proximity. We then derive 53
distant meta-path similarity measures and experimentally compare
them in two text-based HIN datasets. Experimental results show
that cosine similarity is consistently good for general use, and the
Lp Minkowski family is outstanding on both datasets. Although
our similarities are tested on text-based HINs, they can be simply
applied to other HIN datasets such as academic networks (e.g.,
DBLP and PubMed) or social networks (e.g., Facebook and Twitter).
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