
Subgraph-augmented Path Embedding for Semantic User Search
on Heterogeneous Social Network

Zemin Liu
Zhejiang University

China

Vincent W. Zheng∗
Advanced Digital Sciences Center

Singapore

Zhou Zhao
Zhejiang University

China

Hongxia Yang
Alibaba Group

China

Kevin Chen-Chuan Chang
University of Illinois at
Urbana-Champaign

USA

Minghui Wu
Zhejiang University City College

China

Jing Ying
Zhejiang University

China

ABSTRACT
Semantic user search is an important task on heterogeneous social
networks. Its core problem is to measure the proximity between
two user objects in the network w.r.t. certain semantic user relation.
State-of-the-art solutions often take a path-based approach, which
uses the sequences of objects connecting a query user and a target
user to measure their proximity. Despite their success, we assert
that path as a low-order structure is insufficient to capture the rich
semantics between two users. Therefore, in this paper we intro-
duce a new concept of subgraph-augmented path for semantic user
search. Specifically, we consider sampling a set of object paths from
a query user to a target user; then in each object path, we replace
the linear object sequence between its every two neighboring users
with their shared subgraph instances. Such subgraph-augmented
paths are expected to leverage both path’s distance awareness and
subgraph’s high-order structure. As it is non-trivial to model such
subgraph-augmented paths, we develop a Subgraph-augmented
Path Embedding (SPE) framework to accomplish the task. We eval-
uate our solution on six semantic user relations in three real-world
public data sets, and show that it outperforms the baselines.

CCS CONCEPTS
• Computing methodologies → Statistical relational learn-
ing;

KEYWORDS
Heterogeneous Network; Subgraph-augmented Path Embedding

ACM Reference Format:
Zemin Liu, Vincent W. Zheng, Zhou Zhao, Hongxia Yang, Kevin Chen-
Chuan Chang, Minghui Wu, and Jing Ying. 2018. Subgraph-augmented Path

∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186073

Alice
(user)

Bob
(user)

Chris
(user)

Donna
(user)

UCLA
(college)

L.A.
(location)

Google
(employer)

Emily
(user)

Frances
(user)

Facebook
(employer)

Apple
(employer)

UIUC
(college)

Glen
(user)

Figure 1: Semantic user search on a heterogeneous social net-
work with rich user interactions with different objects.

Embedding for Semantic User Search on Heterogeneous Social Network. In
Proceedings of The 2018 Web Conference (WWW 2018). ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3178876.3186073

1 INTRODUCTION
Heterogeneous social networks are prevalent nowadays [37]. Be-
cause social networks are human-centric, it is common to observe
that users interact with many other types of objects. For example,
as shown in Fig. 1, on a social network, user interact with not only
other users, but also college, location and employer. These different
types of interactions suggest different semantics of the user-user
relationships. For example, Alice and Bob both attend UCLA, thus
they are schoolmates; whereas Chris and Donna both work for
Facebook, thus they are colleagues. Therefore, it gives us a unique
opportunity to do semantic user search. In general, semantic user
search is a task that given a query user (e.g., Alice) on a heteroge-
neous social network and a semantic relation (e.g., schoolmates), we
want to find the other users (e.g., Bob) that meet that relation with
the query user. Such semantic user search is very useful [19, 22]. For
example, we can use it to find colleagues, schoolmates and families
on social networks such as Facebook and LinkedIn, or find advisors
and advisees on academic networks such as DBLP.

Traditionally, path-based approach is used for solving semantic
user search. This is because in semantic user search, the target
user is often not immediately linked to the query user. A plausible
choice is then to consider paths from the query user to the target
user, and see whether they match the desired semantic relation. For
example, Meta-Path Proximity (MPP) [30] first relies on domain

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1613

https://doi.org/10.1145/3178876.3186073
https://doi.org/10.1145/3178876.3186073

Alice
(user)

Bob
(user)

Chris
(user)

Donna
(user)

UCLA
(college)

Facebook
(employer)

(a) An example object path connecting user Alice and user Donna.

m1

user

user
m2 m3

m1 : 1
m2 : 1
m3 : 1

Alice
(user)

Bob
(user)

Chris
(user)

Donna
(user)

user

user

col. user

user user emp.

user user loc.

user user col.

m4 m5

m1 : 1
m5 : 2

m1 : 1
m4 : 1

(b) Augmenting each pair of neighbor users with subgraphs.

(Alice, Bob) (Bob, Chris) (Chris, Donna)

m1 : 1
m2 : 1
m3 : 1

m1 : 1
m5 : 2

m1 : 1
m4 : 1

(c) Subgraph-augmented path.

Prox.
 Score

R
anking
Loss SPE

m1 : 1
m2 : 1
m3 : 1

m1 : 1
m5 : 2

m1 : 1
m4 : 1

m2 : 1
m5 : 1

m2 : 1
m5 : 1

m1 : 1
m3 : 1

…

(d) Training framework of SPE.

Figure 2: Combining path’s distance awareness and sub-
graph’s higher-order structure for semantic user search.

experts to specify a few path patterns (i.e., metapaths) that indicate
the desired semantic relation, and then enumerates the number of
metapath instances between the query user and a target user. Path
Ranking Algorithm (PRA) [18] first enumerates bounded-length
(relation) path patterns; then it recursively defines a score for each
path pattern; finally, for a target node, its proximity to the query
node is computed as a linear combination of its corresponding
path instances. Recently deep learning starts to exploit learning
representations for the paths between a query node and a target
node, and then using them for proximity estimation. For example,
ProxEmbed [20] first samples a number of paths from the query
node to the target node, and then uses a recurrent neural network
to embed each path as a vector; finally it aggregates multiple path
embedding vectors for proximity estimation.

Despite the success of such a path-based approach, we assert
that path as a low-order structure is insufficient to capture the rich
semantics between two users. Consider an object path connecting a
query user Alice and a target user Donna in Fig. 2(a). In fact, Alice
and Bob not only attended the same college UCLA, but also live in
the same city L.A.. Such information is missing in the path, but it
is possible to be captured by some higher-order subgraph structure.
We are inspired by the state-of-the-art work on exploting subgraph
patterns to organize complex networks [3]. Suppose we already
have some offline mined subgraph patterns in Fig. 2(b), such as user-
user (m1), user-college-user (m2), user-college& location-user (m3) and
so on. Then we can replace the linear object sequence between
Alice and Bob with richer subgraph instances form1,m2 andm3.
In this way, we have a more complete picture of the semantic
relation between Alice and Bob. We envision that, once we better
understand the semantic relation between every two neighboring
users in a path, we can better estimate the proximity between the
query user and the target user. Note that, we focus on augmenting
the neighoring user objects only. There are two reasons of avoiding
augmenting any two neighboring objects regardless of their types.
Firstly, in semantic user search, we wish to directly model the
semantic relation between users. Secondly, by constraining the

subgraph patterns to involve two users, we can significantly reduce
the number of subgraph patterns and thus greatly improve the
efficiency in offline subgraph indexing, as suggested in [11].

In this paper, we introduce a new concept of subgraph-augmented
path for semantic user search. Specifically, we consider sampling a
set of object paths from a query user to a target user; then in each
object path, we replace the linear object sequence between its every
two neighboring users with their shared subgraph instances. Such
subgraph-augmented paths are expected to leverage both path’s
distance awareness (i.e., able to model multi-hop connections be-
tween a query user and a target user) and subgraph’s high-order
structure (i.e., able to use more complex structures than linear se-
quences). Given these subgraph-augmented paths as new inputs,
we aim to embed them into low-dimensional vectors and then ag-
gregate them for proximity estimation. In this work, we assume the
subgraph patterns and subgraph instances are given as inputs. Such
an assumption is mild in practice, because frequent subgraphs are
useful, and often offline mined as basic graph indexing to support
many useful applications [10]. For example, frequent subgraphs are
used for fraud detection in Alibaba1, and user/content recommen-
dation in Twitter [13]. There also exist efficient algorithms to mine
frequent subgraph patterns and match subgraph instances [9, 31].

However, embedding subgraph-augmented path (or, s-path for
abbreviation) is not trivial. A straightforward approach is to apply
ProxEmbed [20]. For each s-path, we represent each of its node as
a key-value pair (Def. 3.5), where the key is the end user pair, and
the value denotes the number of each subgraph instances shared
by these two users. Then we apply a recurrent neural network
to encode each node in the s-path, and finally we pool all the
output vectors of the nodes as one. For multiple s-paths, we use
distance discounted pooling to de-emphasize those long paths. Yet,
such a straightforward approach overlooks two challenges. First
of all, subgraphs are structural and noisy. To represent a node
in an s-path, we have to take into account the structure of each
subgraph, as well as the fact that not all the subgraphs are useful
for a particular semantic user relation (e.g., m5 is less indicative
thanm2 for schoolmates). Secondly, s-paths are noisy in and among
themselves. In each s-path, its nodes are not equally useful for a
semantic relation; e.g., if Alice and Donna are truly schoolmates,
then node (Alice, Bob) in the s-path, which implies a schoolmates
relation, is more important than the other nodes in the same s-
path. Similarly, not all the s-paths are equally useful either; e.g., an
s-path constructed from Alice–Emily–Frances–Donna in Fig. 1 is
less indicative than the one in Fig. 2(c) for the schoolmates relation,
since it has no clear signal for that relation.

To model s-paths for semantic user search, we develop a novel
Subgraph-augmented Path Embedding (SPE) framework. In SPE, we
first represent an object in an s-path with an aggregation of its sub-
graphs’ embedding vectors. Specifically, we construct a structural
similarity matrix among the subgraphs, and based on this matrix we
learn an embedding vector for each subgraph to preserve the struc-
tural similarity. Then, we introduce the attention mechanism [40]
to automatically weigh the subgraphs in aggregation to represent
each s-path’s node. To deal with the noise in and among s-paths,
we also introduce the attention mechanism to automatically weigh

1https://www.alibabacloud.com/forum/read-492

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1614

https://www.alibabacloud.com/forum/read-492

each node in an s-path and each s-path between two users. In all,
we have a three-layer attention architecture on subgraphs, s-path’s
nodes and s-paths. Finally, we embed all the s-paths together into a
vector, based on which we compute the proximity score and thus
the ranking loss for model training.

We summarize our contributions as follows.
•We introduce a new concept of subgraph-augmented path, which
for the first time systematically combine path’s distance awareness
and subgraph’s high-order structure to solve semantic user search.
• We develop a novel SPE framework to embed these subgraph-
augmented paths for user proximity estimation.
•We evaluate SPE on six semantic user relations in three public
data sets, and show it outperforms the state-of-the-art baselines.

2 RELATEDWORK
Earlier graph semantic search work such as Personalized PageRank
[17] and SimRank [16] often consider homogeneous networks as
input, and they do not differentiate semantic classes. Recent work
starts to consider the rich network structure in heterogeneous
networks. For example, Supervised Random Walk (SRW) [1] tries
to bias a random walk on the network, so as to ensure the resulting
ranking result on the network to be consistent with the ground truth.
MPP [30] and PRA [18] try to match the paths between a query
node and a target node with some supervision (i.e., either metapath
patterns or ground truth labels) to see whether certain semantic
relation holds. Meta-Graph Proximity (MGP) [11] considers more
general subgraph patterns than metapaths. It first identifies a few
frequent subgraph patterns as metagraphs; then it leverages the
supervision to automatically learnwhichmetagraph is indicative for
a desired semantic relation; finally it counts the number of indicative
metagraphs between two users to measure their proximity. Thanks
to the higher-order structure of subgraph, MGP improves the path-
based methods such as SRW and MPP. But MGP lacks distance
awareness; i.e., if a query user and a target user are multi-hop away
and no metagraph is shared by them, then their proximity becomes
(close to) zero. Both MPP andMGP can be seen as exploiting explicit
graph features for proximity estimation.

With the development of neural networks, some recent studies
start to consider learning “implicit” graph features for proximity
estimation. For example, in graph embedding, DeepWalk [27], LINE
[32], node2vec [12], and many more [23, 25, 26] all try to learn an
embedding vector for each node in the graph, which can preserve
the graph structure. In particular, metapath2vec [8] extends Deep-
Walk by using metapath to guide the random walk for better node
embedding. Struc2vec [28] exploits additional structural equiva-
lence of two nodes for node embedding. A comprehensive survey of
graph embedding is recently available [5]. One possible approach
to make use of such a node-level embedding for semantic search is
to aggregate two nodes’ embedding vectors (e.g., first applying a
Hadamard product and then multiplying it with a parameter vec-
tor) for estimating their proximity. However, such an approach is
considered as “indirect”, as suggested by ProxEmbed [20], since it
does not directly encode the network structure between two possi-
bly distant nodes. In contrast, ProxEmbed expresses the network
structure between two objects by a set of paths connecting them,
and directly encodes these paths into a proximity embedding vector.

However, since ProxEmbed takes object paths as input, it is unable
to leverage the readily available subgraphs’ high-order structure.
Similarly, although D2AGE [21] manages to model multiple object
paths as one directed acyclic graph for proximity embedding, it is
also unable to leverage the offline mined subgraphs.

In the line of graph embedding, there exist several related, yet
different concepts. First of all, some recent work exploits the concept
of “high-order proximity” in graph embedding [6, 38]. They use
higher-order reachability to construct adjacency matrix of a graph,
and then run node embedding on this adjacency matrix. There are
two major differences with our method: 1) they do not exploit the
high-order structure of subgraph patterns; 2) they consider node
embedding instead of path embedding. Secondly, some other work
models high-order structure by graph convolution [14, 24]. These
methods are powerful to capture local graph patterns, but it is not
clear how to incorporate the path’s distance awareness for the task
of semantic user search. Besides, they cannot leverage the readily
available subgraph patterns. Thirdly, graph kernel methods [7],
especially Weisfeiler-Lehman graph kernels [29, 41], try to measure
the similarity between two (small) graphs w.r.t. their structures.
They often exploit some predefined subgraph structures, such as
edges, subtrees and shortest paths. But their goal of measuring
similarity between graphs is very different from ours of measuring
proximity between nodes. Besides, it is also not clear how to adapt
their methods with path distance awareness for our task. Finally,
in the field of knowledge base, recent work such as TransE [4],
TransH [39] and TransNet [34] has greatly advanced the study of
knowledge embedding. However, these methods are not directly
applicable to our task, due to the different problem settings. They
often require the edges to have explicit descriptions, and aim to
generate node/edge embedding instead of path embedding. Besides,
it is also not clear how to extend these methods with the subgraph’s
high-order structure and the path’s distance awareness for our task.

3 PROBLEM FORMULATION
We first introduce terminologies and notations (listed in Table 1).

Definition 3.1. A heterogeneous network is G = (V ,E,C,τ),
where V is a set of objects, E is a set of edges between the objects
inV ,C = {c1, ...,cK } is a set of distinct object types, and τ : V → C
is an object type mapping function.

For example, in Fig. 1, we haveC = {user,college, location,employer}.
For an object of Alice, τ (Alice) = user.

Definition 3.2. A subgraph pattern is m = (Cm ,Em), where
Cm is a set of object types, Em is a set of edges between object
types in Cm .

For example, Fig. 2(b) lists five subgraph patternsm1, ...,m5. We
denote the set of possible subgraph patterns onG asM . As discussed
in Sect. 1, we considerM as the frequent subgraph patterns offline
mined fromG , and readily available as the input. Note that unlikeC
in G , the object types in Cm may be nondistinct. E.g., for subgraph
patternm1 in Fig. 2(b), Cm1 = {user,user}.

Definition 3.3. An object subgraph д = (Vд ,Eд) is a subgraph
instance ofm = (Cm ,Em), if there exists a bijection between the
node set of д andm, ϕ : Vд → Cm , such that

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1615

Table 1: Notations used in this paper.

Notation Description
G,V , E,C Network G , objects V , edges E , object types C
M Set of frequent subgraph patterns from G
I Set of subgraph instances forM on G
D Set of training tuples
P Set of sampled object paths on G
P̂ Set of subgraph-augmented paths constructed from P
r A subgraph-augmented node
x Embedding vector for a subgraph
z Embedding vector for a subgraph-augmented path
f Proximity embedding vector between two users
π Proximity score
S Structural similarity matrix of subgraph patterns
γ , ℓ Number of paths per object γ , walk length ℓ

d, d ′ Embedding dimensions
ζ Average number of subgraph instances for a user

• ∀v ∈ Vд , we have τ (v) = ϕ (v);
• ∀v,u ∈ Vд , we have (v,u) ∈ Eд iff (ϕ (v),ϕ (u)) ∈ Em .

For example, Alice-UCLA-Bob is an instance ofm2 in Fig. 2(b).
We denote the set of possible subgraph instances forM on G as I.
For eachm ∈ M, there may be multiple subgraph instances on G.

Definition 3.4. An object path on G is a sequence of objects
v1 → v2 → ... → vt , where each vi ∈ V , and t is the path length.

For example, the sequence in Fig. 2(a) is an object path.

Definition 3.5. A subgraph-augmented node (or “s-node” for
abbreviation) r for two user objects u,v ∈ V is a key-value pair,
whose key is (u,v) and value is a set of tuples {m1 : e1, ...,ml : el }.
∀mi ∈ M , ei is the number ofmi ’s instances between u and v .

For example, in Fig. 2(b), the s-node for Alice and Bob is defined
as r .key = (Alice,Bob), r .value = {m1 : 1,m2 : 1,m3 : 1}. We skip the
subgraphs with zero instance in r .value . As discussed in Sect. 1,
we choose only augmenting two user objects with their shared
subgraphs to both focus on user-user semantic relation and improve
subgraph indexing efficiency. We leave as future work augmenting
any two objects regardless of their types for semantic search.

Definition 3.6. An subgraph-augmented path (or “s-path” for
abbreviation) is a sequence of s-nodes r1 → r2 → ... → rt .

For example, the sequence in Fig. 2(c) is an s-path.

Problem inputs and outputs. For inputs of our model, we have
a heterogeneous network G , a set of readily available frequent sub-
graph patternsM and their subgraph instances I onG , and finally a
set of training tuples D = {(qi ,vi ,ui) : i = 1, ...,n}, where for each
query user object qi , user vi is closer to qi than user ui . Besides,
we also offline sample some object paths fromG as inputs. We take
a similar approach as DeepWalk [27] for path sampling. Specifi-
cally, starting from each object in G, we randomly sample γ object
paths, each of length ℓ. As a result, we obtain a set of object paths,
denoted as P. These object paths are indexed to support efficient
training and testing. For each query object q ∈ {q1, ...,qn } and a
corresponding target object v ∈ {v1, ...,vn ,u1, ...,un }, we extract

multiple subpaths from P. We denote all the subpaths starting from
q and ending at v in P as P (q,v), and those from v to q as P (v,q).
For each object path from q to v , we use the subgraph patternsM
and their subgraph instances I to construct a subgraph-augmented
path. We will introduce the details of s-path construction in Sect. 4.

For outputs of our model, we generate a subgraph-augmented
path embedding vector z(q,v) ∈ Rd for each s-path between q
and v , where d > 0 is the embedding dimension. Since there are
multiple s-paths between q and v , we will reasonably aggregate
multiple z(q,v)’s into a proximity embedding vector f (q,v) ∈ Rd .
In this work, we consider both symmetric and asymmetric relations,
where for symmetric relations f (q,v) = f (v,q) and for asymmetric
ones f (q,v) , f (v,q). We will discuss how to compute z(q,v) and
f (q,v) by some hierarchical neural network model in Sect. 5. Finally,
we use f (q,v) to estimate a proximity score between q and v as

π (q,v) = θT f (q,v), (1)

where θ ∈ Rd is a parameter vector.
Ourmodel has two types of parameters: 1) the hierarchical neural

network parameters for getting z(q,v) and f (q,v); 2) the proximity
estimation parameter θ . In training, we aim to learn these model
parameters, such that π (qi ,vi) ≥ π (qi ,ui) for each (qi ,vi ,ui) ∈
D. We will introduce the details of training algorithm in Sect. 6.
Note that in offline training, we only need to compute subgraph-
augmented path embedding for those (qi ,vi) and (qi ,ui) for i =
1, ...,n, instead of all the possible object pairs inG . In online testing,
given a random query user q in G, we will quickly extract from P
a set of sample object paths from q to each possible target user v in
G. Then we construct the s-paths withM , and apply our model to
compute the π (q,v) for each target v for ranking.

4 S-PATH CONSTRUCTION
We introduce how to construct subgraph-augmented paths for a
query userq and a target userv , based on: 1) a set of already sampled
object paths from q to v on G; 2) a set of readily available frequent
subgraph patternsM and their subgraph instances I on G.

Running example: Take Fig. 2(b) as an example. For an object path
of Alice–UCLA–Bob–Chris–Facebook–Donna, we first extract ev-
ery pair of neighboring users by collapsing the non-user objects in
the path. As a result, we get (Alice, Bob), (Bob, Chris) and (Chris,
Donna). For each pair of neighboring users, we try to get each user’s
involved subgraph instances. In Fig. 2(b), we have listed five possible
subgraph patternsm1, ...,m5; due to space limit, we skip listing their
subgraph instances on the heterogeneous network in Fig. 1. Take
(Alice, Bob) as an example. For Alice, she has involved four sub-
graph instances w.r.t.m1,m2 andm3. Specificaly, form1, Alice has
two subgraph instances in Fig. 1: Alice–Bob and Alice–Emily. For
m2, Alice has one subgraph instances in Fig. 1: Alice–UCLA–Bob.
Form3, Alice has one subgraph instance in Fig. 1: Alice–UCLA &
L.A.–Bob. To replace the linear object path Alice–UCLA–Bob with
subgraphs, we want to find all the subgraph instances shared by
Alice and Bob. An easy way to find such shared subgraph instances
is to scan all the subgraph instances of Alice and see whether they
contain Bob. As we can see, Alice and Bob share one instance ofm1,
one instance ofm2 and one instance ofm3. Then we construct a
subgraph-augmented node (s-node) r1, with r1.key ← (Alice,Bob)

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1616

Algorithm 1 SPathConstruct
Require: a set of object paths P, a query user q, a target user v , a

set of subgraph patternsM and its instances I.
Ensure: a set of subgraph-augmented paths p’s for (q,v).
1: Q (q,v) ← GetSubpaths(P,q,v);
2: for each object path oi ∈ Q (q,v) do
3: pi ← ∅;
4: {(u,u ′)} ← GetNeighborUserPairs(o);
5: for each (u,u’) do
6: Iu,u′ ← GetSharedSubgraphInstance(I,u,u ′);
7: r .key ← (u,u ′);
8: r .value ← CountSubgraphInstance(Iu,u′ ,M);
9: pi .append(r);
10: return {pi }.

and r1.value ← [m1 : 1,m2 : 1,m3 : 1]. Similarly, we can construct
an s-node r2 for (Bob, Chris) and an s-node r3 for (Chris, Donna).
In the end, we obtain an subgraph-augmented path (s-path) of
p : r1 → r2 → r3.

We abstract the above running example, and summarize the s-
path construction algorithm in Alg. 1. In line 1, we first extract
all the object subpaths from q to v from P. Here we overload the
function “GetSubpaths” to get different subpaths for symmetric
and asymmetric semantic relations. In line 4, for each resulting
object path, we get all the neighboring user pairs. In line 6, for
each pair of neighboring users, we identify their shared subgraph
instances from the pre-indexed subgraph instance set I. After that,
we construct an s-node in lines 7 and 8, and further append it to
the previous s-node sequence to form an s-path in line 9.

Complexity analysis: as each object path’s length is bounded
by ℓ, getting the neighboring user pairs in line 4 takes O (ℓ). The
straightforward approach to get shared subgraph instances between
two users has to scan through all the subgraph instances of one
user. Denote the average number of subgraph instance for a user on
G as ζ . Because in practice the subgraph patterns have limited sizes
(e.g., less than six in our experiments), the above straightforward
approach to run line 6 takes O (ζ). This complexity can be further
reduced; as suggested by [11], if in the subgraph indexing stage
only those subgraph patterns that involved at least two users were
considered, then both the number of subgraph patterns and the
number of subgraph instances can be significantly reduced. By a
sophisticated indexing of which subgraph instance matching which
two users, we may reduce line 6’s complexity to a constant. In all,
constructing an s-path from an object path takes O (ℓ + ζ).

5 S-PATH EMBEDDING
We first introduce how to embed each subgraph-augmented path
to a vector z(q,v), and later aggregate multiple such vectors into
a single one f (q,v). We design a hierarchical neural network for
subgraph-augmented path embedding (SPE) as shown in Fig. 3. As
motivated in Sect. 1, we will take multiple factors into the design.
First of all, we embed each subgraph with structural information.
Then, we aggregate the subgraph embedding in each subgraph-
augmented node (s-node) with attention to obtain an s-node em-
bedding. To model the sequential information of each s-path, we

…

S-node
embedding

Subgraph embedding

αi
η

xi

y j

LSTM
…

S-path embedding

…

zk

f (q,a)Proximity embedding

π (q,a)Proximity score
θ

ʹα j
ʹη

…

ʹ́αk
ʹ́η

f (q,b)

π (q,b)

…

ℓ(π (q,a),π (q,b))

xi

si

′si

Stacked AutoEncoder

Subgraph
structural similarity

h j

Figure 3: Subgraph-augmented path embedding.

also employ a recurrent neural network architecture to learn an s-
path’s embedding. Finally, we aggregate all the s-paths’ embedding
with attention to obtain an overall proximity embedding vector for
(q,v). Next we introduce each step of embedding in Fig. 3.

Subgraph Embedding. To take the subgraph structure into ac-
count, we are inspired by the structural deep network embedding
[38] to consider embedding the subgraphs from a subgraph struc-
tural similarity matrix. In general, two subgraphs are similar if they
share some common structures. Therefore, we adopt the widely
used Maximum Common Subgraph (MCS) approach [35] to mea-
sure the similarity between two subgraphs. Given two subgraphsmi
andmj , we denotem∗ as their MCS. Then the structural similarity
between two subgraphs is defined as

S (mi ,mj) =
(|Cm∗ | + |Em∗ |)

2

(|Cmi | + |Emi |) × (|Cmj | + |Emj |)
. (2)

Ifm∗ is bigger, S (mi ,mj) is bigger. We use stacked AutoEncoder
[2] to learn an embedding xi ∈ Rd for each subgraphmi . Denote
si = [S (mi ,m1), ...,S (mi ,m |M |)]T . For simplicity, we use a three-
layer AutoEncoder to illustrate how we construct xi from its si . In
particular, we define the subgraph embedding vector xi formi as

xi = σ (W (a)si + b(a)), (3)

whereW (a) ∈ Rd×|M | and b(a) ∈ Rd are parameters; σ (·) is a
sigmoid function. We reconstruct si from xi by

ŝi = σ (W (b)xi + b(b)), (4)

whereW (b) ∈ R |M |×d and b(b) ∈ R |M | are also parameters. Fi-
nally, we minimize the reconstruction error:∑ |M |

i=1 ∥ŝi − si ∥2. (5)

Although it is possible to optimize xi ’s together with the proximity
embedding later, in this paper we choose to optimize xi ’s from S
separately, so as to keep the model simple.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1617

S-Node Embedding. In general, there are multiple subgraphs in-
volved in a subgraph-augmented node (s-node). To differentiate
their contributions, we introduce an attention mechanism to auto-
matically learn the weight for each subgraph in s-node embedding.
For an s-node r j .value = {m1 : e1, ...,ml : el }, we compute the
attention score αi for each subgraphmi in r j as

αi =
exp(βi)∑l
j=1 exp(βj)

, (6)

βi = ei [η · σ (Qxi + b)] , (7)

where η ∈ Rd
′

, Q ∈ Rd
′×d and b ∈ Rd

′

are parameters. As a result,
we compute the s-node embedding for r j as

yj =
∑l
i=1 αixi . (8)

S-Path Embedding. Once having the s-node embeddings in an
s-path pk : r1→ ...→rt , we learn the s-path embedding by LSTM
(Long Short Term Memory) [15]. Formally, for each input s-node
embedding yj , we output a vector hj ∈ Rd

′

, by computing a series
of neuron activations for an input gate g(i)j , an forget gate g(f)j , a

memory cell state g(c)j and an output gate g(o)j :

g(i)j = σ (W (i)yj +U (i)hj−1 + b(i)), (9)

g(f)j = σ (W (f)yj +U (f)hj−1 + b(f)), (10)

g(c)j = g(i)j ⊙ g̃(c)j + g
(f)
j ⊙ g(c)j−1, (11)

g(o)j = σ (W (o)yj +U (o)hj−1 + b(o)), (12)

hj = g(o)j ⊙ tanh(g
(c)
j), (13)

where g̃(c)t,j = tanh(W (c)yj +U (c)hj−1 + b(c)) and ⊙ is an element-
wise product. We denote the set of LSTM parameters as Θ(lstm) =

{W (i) ∈ Rd
′×d ,U (i) ∈ Rd

′×d ′ ,b(i) ∈ Rd
′

,W (f) ∈ Rd
′×d ,U (f) ∈

Rd
′×d ′ ,b(f) ∈ Rd

′

,W (c) ∈ Rd
′×d ,U (c) ∈ Rd

′×d ′ ,b(c) ∈ Rd
′

,W (o) ∈

Rd
′×d ,U (o) ∈ Rd

′×d ′ ,b(o) ∈ Rd
′

}.
To differentiate the contributions of s-nodes, we also compute

the attention score α ′j for each s-node r j as

α ′j =
exp(β ′j)∑t

k=1 exp(β
′
k)
, (14)

β ′j = η
′ · σ (Q ′hj + b′), (15)

where η′ ∈ Rd
′

, Q ′ ∈ Rd
′×d ′ and b′ ∈ Rd

′

are parameters. As a
result, we compute the s-path embedding for pk as

zk =
∑t
j=1 α

′
jhj . (16)

Proximity Embedding. Once having the s-path embedding for
each of the s-paths betweenq andv , we can compute their proximity
embedding. For a unified notation, we introduce P̂ (q,v) as the s-
path set between q and v . For asymmetric relations, we define
P̂ (q,v) as the s-paths from q to v . For symmetric relations, we
define P̂ (q,v) as the s-paths both from q to v and from v to q. To
differentiate the contributions of s-paths, we compute the attention

Algorithm 2 SPETrain
Require: heterogeneous network G, a set of subgraph patterns

M and its instances I, training tuples D, number of paths
per object γ , walk length ℓ, embedding dimensions d and d ′,
trade-off parameters {λ,µ}.

Ensure: SPE model parameters Θ.
1: Initialize an object path set P = ∅ and an s-path set P̂ = ∅;
2: for all v ∈ V do
3: for i = 1 : γ do
4: P ← P ∪ SamplePath(G,v, ℓ);
5: for all each (q,v,u) ∈ D do
6: P̂ (q,v) ← SPathConstruct(P,q,v,M,I);
7: P̂ (q,u) ← SPathConstruct(P,q,u,M,I);
8: B ← GenerateBatches(D);
9: for all batch b ∈ B do
10: Initialize loss for batch b as Lb = 0;
11: for all each (q,v,u) ∈ b do
12: Compute f (q,v) with P̂ (q,v), d and d ′ by Eq. 19;
13: Compute f (q,u) with P̂ (q,u), d and d ′ by Eq. 19;
14: Lb = Lb + ℓ(π (q,v),π (q,u)), according to Eq. 20;
15: Lb = Lb + µΩ(Θ);
16: Update Θ based on Lb by stochastic gradient descent.
17: return Θ.

score α ′′k for each s-path pk as

α ′′k =
exp(β ′′k)∑

pi ∈P̂ (q,v)
exp(β ′′i)

, (17)

β ′′k = η
′′ · σ (Q ′′ · zk + b

′′), (18)

whereη′′ ∈ Rd
′

,Q ′′ ∈ Rd
′×d ′ and b′′ ∈ Rd

′

are parameters. Finally,
we compute the proximity embedding for (q,v) as

f (q,v) =
∑
pk ∈P̂ (q,v)

α ′′k zk . (19)

This f (q,v) encodes the information of all the subgraph-augmented
paths betweenq andv . It will be later used to estimate the proximity
score of q and v by Eq. 1.

6 END-TO-END TRAINING
In training, for each tuple (qi ,vi ,ui), ∀i = 1, ...,n, we define a
ranking loss based on the proximity scores π (qi ,vi) and π (qi ,ui).
We define the ranking loss function as

ℓ(π (qi ,vi),π (qi ,ui)) = − logσλ (π (qi ,vi) − π (qi ,ui)), (20)

where σλ (x) = 1/(1+e−λx) and λ > 0 is a parameter. We denote the
parameter set of our three-layer attentions for subgraphs, s-nodes
and s-paths as Θ(att) = {η,Q ,b,η′,Q ′,b′,η′′,Q ′′,b′′}. In total, our
model parameters are Θ = {Θ(lstm) ,Θ(att) ,θ }. Our ultimate goal
in training is to minimize

L(Θ) =
∑n

i=1
ℓ(π (qi ,vi),π (qi ,ui)) + µ Ω(Θ), (21)

where µ > 0 is a trade-off parameter, Ω(·) is a regularization func-
tion (e.g., the sum of l2-norm for each parameter in Θ).

Training algorithm: we summarize the SPE training algorithm
in Alg. 2. In lines 2–4, we sample object paths onG . In lines 6 and 7,

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1618

Table 2: Summary of data sets and subgraphs.

Network Objects Edges Types Average Subgraph Subgraph
degree patterns instances

LinkedIn 65,925 220,812 4 6.7 173 604,848,383
Facebook 5,025 100,356 10 39.9 981 2,398,306,414
DBLP 165,728 928,513 5 11.2 88 740,682,735

we construct subgraph-augmented paths based on the object paths
for each (q,v) and (q,u) in the training tuples. In line 8, we split the
training tuples into batches, and then do batch stochastic gradient
descent. In lines 12 and 13, we compute the proximity embedding
vectors f (q,v) and f (q,u). In line 14, we compute the ranking loss
ℓ(π (q,v),π (q,u)). In lines 15 and 16, we accumulate the loss for
batch b and do stochastic gradient descent.

Complexity analysis: we analyze the time complexity for Alg. 2.
In lines 2–4, we sample γ object paths of length ℓ starting from
each object in G, hence it takes O (|V |γ ℓ). In lines 5–7, we in total
construct |P̂ | s-paths. According to Alg. 1, contructing an s-path
takes O (ℓ + ζ). Thus the complexity of lines 7-10 is O (|P̂ |(ℓ + ζ)).
In line 8, generating the batches takes O (n). In line 12, computing
proximity embedding f (q,v) requires three steps: 1) embedding an
s-node, which takesO (|M|(d ′d+d ′)) given at most |M| subgraphs;
2) embedding an s-path, which takes O (ℓ(d ′d + d ′2 + d ′)) given an
s-path’s length of at most ℓ; 3) proximity embedding, which takes
O (|P̂ (q,v) |(d ′2 + d ′)) given |P̂ (q,v) | s-paths between q and v . In
lines 9–16, we essentially compute f (q,v)’s and f (q,u)’s for all the
(q,v,u) ∈ D, which in total takes O (|P̂ |((d ′2 + d ′) + ℓ(d ′d + d ′2 +
d ′)+ℓ(|M|(d ′d+d ′)))) = O (|P̂ |(ℓd ′2+ℓ |M|d ′d+ℓd ′)). Computing
the loss in line 14 over all the training tuples takesO (nd ′). Updating
Θ in line 16 for |B| batches takes O (|B|(d ′d + d ′2)). Note that we
compute the subgraph embedding offline once. It takes O (|M|2) to
construct the structural similarity matrix, and O (|M|d + |M|) to
learn the subgraph embedding, which in total is O (|M|2 + |M|d).
In summary, the total complexity of Alg. 2 is O (|P̂ |ζ + |M|2 +
|M|d+ |P̂ |ℓ(d ′2+ |M|d ′d+d ′)). Since |P̂ | ≤ |V |γ ℓ, the complexity
of Alg. 2 becomes O (|V |γ ℓ(ζ + ℓ(d ′2 + |M|d ′d + d ′)) + |M|2).

7 EXPERIMENTS

Heterogeneous social networks.We conducted extensive exper-
iments on three real-world data sets collected by previous studies,
namely LinkedIn [19], Facebook [22] and DBLP [36]. Each data set
contains objects of various types. In particular, LinkedIn includes
the types of user, employer, location and college; Facebook includes
user, concentration, degree, school, hometown, last-name, location, employer,
work-location and work-project (other types are ignored due to their
sparsity or irrelevance); DBLP includes paper, author, year, conference
and keyword. We organized them into heterogeneous social net-
works, as summarized in Table 2.

Ground truth. On LinkedIn, the user relationships are already
labeled into different semantic classes. We tested two major classes:
schoolmate and colleague. On Facebook, the user relationships are
defined by [11] with two classes: family and classmate. On DBLP,
the adivsor and advisee in a co-author pair are identified based on
the website of some faculty members as well as the Mathematics

Table 3: Summary of semantic user relations and queries.

Network Semantic Symmetry Queries Results
relations per query

LinkedIn Schoolmate Yes 172 16.2
Colleague Yes 173 12.8

Facebook Family Yes 340 4.0
Classmate Yes 904 6.5

DBLP Advisor No 2,439 1.3
Advisee No 1,204 2.6

Table 4: Running time of offline subgraph indexing.

LinkedIn Facebook DBLP
Time (hour) 1.77 3.34 4.43

Genealogy and AI Genealogy projects [36]. All unidentified co-
author pairs are assumed to be negative. As summarized in Table 3,
the advisor and advisee classes are asymmetric, whereas the others
are all symmetric.

Training and testing. On each graph, a user q can be used as a
query node, if there exists another userv such that q andv have the
desired semantic relation in our ground truth. The number of query
users for each network and each semantic relation, and the average
number of results per query are shown in Table 3. We randomly
split these queries into two subsets: 20% reserved as training and the
rest as testing. We repeated such splitting for 10 times, and averaged
any result over these 10 splits. In each split, based on the training
queries, we further generated training examples (q,v,u) such that
q and v belong to the desired semantic relation whereas q and u do
not. For testing, we constructed an ideal ranking for each test query
user and each desired semantic relation. We compared this ideal
ranking against the ranking generated by various semantic user
search algorithms. We adopted NDCG and MAP [11] to evaluate
the quality of the algorithmic rankings at the top 10 results.

Subgraphs. We repeated the subgraph pattern mining and sub-
graph instance matching algorithms in [11] to obtain the set of
frequent subgraph patternsM and its instances I on each network.
Specifically, we first applied GRAMI [9] on each graph to mine
the set of frequent subgraph patterns. Then we filtered out those
clearly non-viable subgraphs: 1) since our ground truth is designed
for semantic user search, a viable subgraph must have at least two
user objects; 2) a subgraph must contain at least two different types
for capturing richer semantics; 3) to further constrain the number
of subgraphs, we restricted them to have at most five nodes on
LinkedIn and Facebook or six nodes on DBLP, which are found to
be adequate in expressing the interactions between two users. The
resulting number of subgraph patterns are shown in Table 2.

As shown in Table 4, the subgraph indexing (including mining
the frequent set of subgraph patterns, and matching each subgraph
pattern with its possible instances on the graph) can be done in a
reasonable time (i.e., a few hours). Since subgraph indexing is not
the focus of this paper, we consider subgraph indexing as already
done and the resulting subgraph patterns/instances are readily
available for our subgraph-augmented path embedding algorithm.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1619

Table 5: Result comparison under different amounts of labels (i.e., 10, 100, and 1000).

Methods
LinkedIn Facebook DBLP

Schoolmate Colleague Classmate Family Advisor Advisee
10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000

N
D
C
G
@
10

ProxEmbed 0.646 0.652 0.670 0.561 0.606 0.616 0.796 0.851 0.852 0.584 0.743 0.761 0.753 0.765 0.771 0.374 0.405 0.411
MGP 0.546 0.568 0.574 0.527 0.546 0.552 0.797 0.843 0.849 0.627 0.732 0.753 0.618 0.718 0.745 0.385 0.403 0.405
MPP 0.503 0.504 0.504 0.497 0.510 0.508 0.707 0.803 0.796 0.575 0.647 0.640 0.581 0.662 0.674 0.345 0.380 0.390
SRW 0.520 0.515 0.515 0.513 0.502 0.503 0.396 0.389 0.394 0.396 0.389 0.394 0.689 0.689 0.689 0.402 0.402 0.402
DWR 0.515 0.518 0.530 0.493 0.506 0.504 0.692 0.689 0.699 0.585 0.575 0.583 0.764 0.758 0.661 0.401 0.395 0.392
PES 0.650 0.676 0.687 0.552 0.647 0.668 0.720 0.851 0.862 0.482 0.748 0.752 0.741 0.768 0.773 0.374 0.406 0.416

SPE-A (ours) 0.541 0.603 0.640 0.545 0.597 0.630 0.587 0.565 0.547 0.424 0.451 0.411 0.436 0.451 0.449 0.325 0.353 0.356
SPE (ours) 0.660 0.690 0.694 0.644 0.686 0.704 0.764 0.866 0.869 0.467 0.761 0.774 0.763 0.782 0.789 0.373 0.413 0.417

M
A
P@

10

ProxEmbed 0.535 0.541 0.562 0.443 0.492 0.503 0.735 0.801 0.803 0.498 0.678 0.711 0.672 0.690 0.701 0.251 0.283 0.297
MGP 0.288 0.305 0.313 0.317 0.333 0.338 0.673 0.729 0.738 0.520 0.651 0.681 0.548 0.663 0.696 0.278 0.280 0.295
MPP 0.260 0.260 0.259 0.294 0.305 0.304 0.576 0.681 0.675 0.467 0.543 0.534 0.499 0.597 0.611 0.245 0.273 0.281
SRW 0.275 0.272 0.272 0.294 0.289 0.291 0.312 0.324 0.384 0.259 0.255 0.259 0.630 0.630 0.630 0.294 0.294 0.294
DWR 0.393 0.391 0.398 0.363 0.369 0.368 0.578 0.575 0.587 0.467 0.455 0.463 0.683 0.675 0.541 0.295 0.281 0.276
PES 0.547 0.567 0.581 0.432 0.535 0.559 0.617 0.797 0.815 0.354 0.685 0.691 0.667 0.693 0.699 0.267 0.282 0.293

SPE-A (ours) 0.447 0.508 0.545 0.439 0.490 0.525 0.457 0.436 0.418 0.294 0.326 0.277 0.287 0.297 0.305 0.231 0.254 0.243
SPE (ours) 0.547 0.581 0.587 0.529 0.575 0.602 0.682 0.822 0.826 0.368 0.704 0.723 0.679 0.700 0.703 0.249 0.298 0.299

Parameters and environment. For the fair comparison, we use
the same object path sampling design and parameters as ProxEmbed
[20]. Specifically, on LinkedIn, for both schoolmate and colleague we
set γ = 20, ℓ = 20. On Facebook, we set γ = 40, ℓ = 80 for classmate
and γ = 20, ℓ = 80 for family. On DBLP, we set γ = 20, ℓ = 80
for advisor and γ = 20, ℓ = 40 for advisee. By default, we set the
number of dimension d ′ = 12 for the parameters in Θ(att) , and
µ = 10−4 in Eq. 21. We tune different dimensions d of subgraph
embedding and λ for different semantic relations. We run these
experiments on Linux servers with 32GB memory, and use Theano
[33] for SPE implementation and Java jdk-1.8 for path sampling
and s-path construction.

Baselines. We compare our SPE with the following state-of-the-art
semantic search baselines.
• ProxEmbed [20]: ProxEmbed uses object paths to describe the
relations between two objects and measure their proximity.
•MGP [11]: Meta-Graph Proximity uses the number of meta-graph
instances between two objects as features to measure proximity.
• MPP [30]: Meta-Path Proximity uses the number of meta-path
instances between two objects as features to measure proximity.
• SRW [1]: Supervised Random Walk learns edge weights to bias
a random walk for generating consistent ranking results with the
ground truth. We define each edge’s feature as a binary vector based
on the types of its two objects.
• DWR: DeepWalk Ranking was introduced in [20]. It first learns
object embedding by DeepWalk [27], then outputs a Hadamard
product over two objects’ embedding as the proximity embedding.
• PES: ProxEmbed with s-paths is a straightforward solution to
model s-paths. It directly feeds s-paths into ProxEmbed without
subgraph embedding, s-node embedding and s-path embedding.
• SPE-A: SPE without Attention is a baseline for validating the need
to modeling attention. It replaces the attention mechanisms for
subgraph embedding, s-node embedding and s-path embedding in
SPE with mean pooling, max pooling and max pooling respectively.

Table 6: Relative improvement of SPE over the best baselines
in each relation when using 100 training tuples.

NDCG MAP
LinkedIn-schoolmate 5.8% (p < 0.01) 7.4% (p < 0.01)
LinkedIn-colleague 13.2% (p < 0.01) 16.9% (p < 0.01)
Facebook-family 2.4% (p < 0.05) 3.8% (p < 0.01)

Facebook-classmate 1.8% (p < 0.1) 2.6% (p < 0.01)
DBLP-advisor 2.2% (p < 0.05) 1.4% (p < 0.1)
DBLP-advisee 2.0% (p < 0.05) 1.4% (p < 0.1)

For MGP and MPP, we use the same parameter setting as [11].
For SRW, we set its regularization parameter λ = 10, random walk
teleportation parameter α = 0.2 and loss parameter b = 0.1. We set
the dimension of DWR as 128, the same as [27]. For SPE-A, we use
the same parameter values as our SPE. We input the same object
paths to ProxEmbed, DWR, PES, SPE-A and SPE.

Data and code availability. All the three data sets are publicly
available online from their corresponding references, as mentioned
earlier. We have made our code available online2.

7.1 Comparison with Baselines
We compare our proposed SPE with the seven state-of-the-art se-
mantic search baselines introduced above. We test all the methods
on the six semantic relations under different amount of training
tuples, i.e., 10, 100 and 1000. From the results reported in Table 5,
we make the following observations.

First of all, our SPE generally outperforms the baselines across
all the six semantic relations in terms of both NDCG and MAP.
The only exception is when training with 10 tuples, SPE does not
generate the best performance among all the baselines. This is
because SPE has more parameters to learn; when the number of

2https://github.com/vwz/SPE

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1620

https://github.com/vwz/SPE

0.3 0.5 0.7 0.9

Facebook-classmate Facebook-family LinkedIn-schoolmate LinkedIn-colleague DBLP-advisor DBLP-advisee

0.3

0.5

0.7

0.9

4 8 16 32 64

N
D

C
G

d

0.25

0.45

0.65

0.85

4 8 16 32 64
M

A
P

d

0.15

0.4

0.65

0.9

4 8 16 32 64

N
D

C
G

d'

0.1

0.35

0.6

0.85

4 8 16 32 64

M
A

P

d'

0.3

0.5

0.7

0.9

N
D

C
G

λ

0.15

0.4

0.65

0.9

M
A

P

λ

Figure 4: Impact of parameters: subgraph embedding dimension d , attention parameter dimension d ′, ranking loss discount λ.

training tuples is small, it does not perform well. As the number of
training tuples increases, SPE consistently outperforms others.

Secondly, SPE is better than ProxEmbed since s-paths carry more
semantics than simple o-paths used in ProxEmbed. Moreover, SPE
is also better than directly applying ProxEmbed on s-paths (i.e.,
PES). This is because PES is unable to deal with the subgraph struc-
tures and noises. Such results validate that, modeling s-paths for
proximity embedding is not trivial.

Thirdly, SPE is better than MGP and MPP, showing that feature
learning is more effective than feature engineering in proximity
learning. Although SPE uses the same subgraph inputs as MGP, SPE
further learns subgraph embedding, s-node embedding and s-path
embedding from the sampled o-paths. SPE clearly benefits from
the constructed subgraph-augmented paths, which leverage both
path’s distance awareness and subgraph’s high-order structure.

Fourthly, SPE outperforms SRW. which uses the biased random
walk to guide semantic ranking. SRW seems insensitive to the num-
ber of training tuples. Besides, SPE is better than DWR, which uses
the Hadamard product over two objects’ embedding as the proxim-
ity embedding. This observation shows that, the node embedding
method, as solving the semantic search in an indirect manner, is
less effective for proximity search.

Finally, SPE outperforms SPE-A, which validates the need of
modeling attentions. As can be seen in Table 5, SPE-A consistently
generates inferior performance than SPE. This implies that well
handling the noise in subgraph and s-paths is importantant.

We summarize the performance improvement of SPE over the
best baselines with paired t-test in Table 6. The largest improvement
is observed in LinkedIn-colleague, where SPE improves the best
baseline (PES) by relatively 13.2% in terms of NDGG and 16.9% in
terms of MAP, with t-test p-values less than 0.01.

7.2 Parameter Sensitivity
We also test the parameter sensitivity of SPE using 100 training
tuples. We vary the subgraph embedding’s dimension d (Eq. 3), the
attention parameters’ dimension d ′ (Eq. 7, Eq. 15 and Eq. 18) and
the loss discount λ (Eq. 20).

As shown in Fig. 4, Facebook data set is much more sensitive
to the parameters setting than the other two data sets (especially
LinkedIn). The reason is that the total number of object types in
Facebook is much larger than in LinkedIn and DBLP as shown in
Table 2. When searching for users that meet a particular seman-
tic relation type, the irrelevant types may bring in noises to the
semantic user search process. The more types there are, the more
noises may exist. Therefore, for the data sets with more types, the

parameters need to be carefully tuned so that the embedded sub-
graph, the learned attentions and loss discount help to filter useful
information out of the noises. On the other hand, for the data sets
with less types like LinkedIn, the performance is relatively robust
because the noises introduced by irrelevant object types are limited.

Based on both NDCG andMAP over all the six semantic relations
on three data sets, SPE tends to generate the best performance at
d = 16. Especially, for classmate and family, when d is too small,
the resulting embeddings are unable to capture the rich semantics.
When d is too big, it may bring in more noises and increase the
number of parameters to learn. The attention dimension d ′ also
tends to suffer from the similar performance decrease when d ′ is
too small or too big. d ′ = 16 is the best setting. For the ranking loss
discount parameter λ, we see that λ = 0.1 usually gives the best
results, suggesting the need to discount the ranking loss in Eq. 20.

8 CONCLUSION
In this paper, we study the problem of semantic user search in
heterogeneous social networks. We exploit the opportunity of in-
tegrating the path’s distance awareness and the subgraph’s high-
order structure for learning a better representation of the proximity
between two users. We propose a novel Subgraph-augmented Path
Embedding (SPE) model. It takes object paths as input, and enriches
them into subgraph-augmented paths. Then it addresses the chal-
lenges of incorporating the subgraph structure, the subgraph noise
and the subgraph-augmented path noise. Finally, it embeds the
subgraph-augmented paths between two users into a proximity
embedding vector. With such a proximity embedding vector, we
can easily measure the proximity between two users for semantic
user search. We test SPE with six semantic relations in three public
data sets and it improves the state of the art by at least 1.8%–13.2%
(NDCG) and 1.4%–16.9% (MAP) with 100 training samples.

In the future, we would like to explore the heterogeneous social
networks with rich edge features and graph dynamics.

ACKNOWLEDGMENTS
We thank the support from: Zhejiang Science and Technology Plan
Project (No. 2015C01027), National Natural Science Foundation of
China (No. 61602405), National Research Foundation, Prime Minis-
ter’s Office, Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme, and National
Science Foundation under Grant No. IIS 16-19302. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect
the views of the funding agencies.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1621

REFERENCES
[1] Lars Backstrom and Jure Leskovec. 2011. Supervised Random Walks: Predicting

and Recommending Links in Social Networks. InWSDM. 635–644.
[2] Yoshua Bengio. 2009. Learning Deep Architectures for AI. Foundations and Trends

in Machine Learning 2, 1 (2009), 1–127.
[3] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order Orga-

nization of Complex Networks. Science 353, 6295 (2016), 163–166.
[4] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[5] Hongyun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. A Com-
prehensive Survey of Graph Embedding: Problems, Techniques and Applications.
TKDE (2018).

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for
Learning Graph Representations. In AAAI. 1145–1152.

[7] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent
Variable Models for Structured Data. In ICML. 2702–2711.

[8] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. InKDD. 135–144.

[9] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
2014. GRAMI: Frequent Subgraph and Pattern Mining in a Single Large Graph.
PVLDB 7, 7 (2014), 517–528.

[10] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient Densest
Subgraph Computation in Evolving Graphs. InWWW. 300–310.

[11] Yuan Fang, Wenqing Lin, Vincent W. Zheng, Min Wu, Kevin Chen-Chuan Chang,
and Xiaoli Li. 2016. Semantic proximity search on graphs with metagraph-based
learning. In ICDE. 277–288.

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD.

[13] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy J. Lin. 2014. Real-Time Twitter Recommen-
dation: Online Motif Detection in Large Dynamic Graphs. PVLDB 7, 13 (2014),
1379–1380.

[14] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In NIPS.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780.

[16] Glen Jeh and Jennifer Widom. 2002. SimRank: A Measure of Structural-context
Similarity. In KDD. 538–543.

[17] Glen Jeh and Jennifer Widom. 2003. Scaling Personalized Web Search. In WWW.
271–279.

[18] Ni Lao and William W. Cohen. 2010. Relational retrieval using a combination of
path-constrained random walks. Machine Learning 81, 1 (2010), 53–67.

[19] Rui Li, Chi Wang, and Kevin Chen-Chuan Chang. 2014. User profiling in an ego
network: co-profiling attributes and relationships. InWWW. 819–830.

[20] Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2017. Semantic Proximity Search on Hetero-
geneous Graph by Proximity Embedding. In AAAI.

[21] Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2018. Distance-aware DAG Embedding for

Proximity Search on Heterogeneous Graphs. In AAAI.
[22] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles

in Ego Networks. In NIPS. 548–556.
[23] Feiping Nie, Wei Zhu, and Xuelong Li. 2017. Unsupervised Large Graph Embed-

ding. In AAAI.
[24] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

Convolutional Neural Networks for Graphs. In ICML. 2014–2023.
[25] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.

Matching Node Embeddings for Graph Similarity. In AAAI.
[26] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric Transitivity Preserving Graph Embedding. In KDD. 1105–1114.
[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-

ing of Social Representations. In KDD. 701–710.
[28] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. 2017.

Struc2Vec: Learning Node Representations from Structural Identity. In KDD.
385–394.

[29] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. Journal of
Machine Learning Research 12 (2011), 2539–2561.

[30] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. PVLDB 4, 11 (2011).

[31] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.
Efficient Subgraph Matching on Billion Node Graphs. PVLDB 5, 9 (2012), 788–
799.

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. InWWW. 1067–1077.

[33] Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. CoRR abs/1605.02688 (may 2016).

[34] Cunchao Tu, Zhengyan Zhang, Zhiyuan Liu, and Maosong Sun. 2017. TransNet:
Translation-Based Network Representation Learning for Social Relation Extrac-
tion. In IJCAI. 2864–2870.

[35] Rogier J. P. van Berlo, WynandWinterbach, Marco J. L. de Groot, Andreas Bender,
Peter J. T. Verheijen, Marcel J. T. Reinders, and Dick de Ridder. 2013. Efficient
calculation of compound similarity based on maximum common subgraphs and
its application to prediction of gene transcript levels. IJBRA 9, 4 (2013), 407–432.

[36] ChiWang, Jiawei Han, Yuntao Jia, Jie Tang, Duo Zhang, Yintao Yu, and Jingyi Guo.
2010. Mining advisor-advisee relationships from research publication networks.
In KDD. ACM, 203–212.

[37] Chi Wang, Rajat Raina, David Fong, Ding Zhou, Jiawei Han, and Greg Badros.
2011. Learning Relevance fromHeterogeneous Social Network and Its Application
in Online Targeting. In SIGIR. 655–664.

[38] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In KDD. 1225–1234.

[39] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In AAAI. 1112–1119.

[40] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan
Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In ICML. 2048–2057.

[41] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-Lehman Neural Machine for
Link Prediction. In KDD. 575–583.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1622

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 S-Path Construction
	5 S-Path Embedding
	6 End-to-End Training
	7 Experiments
	7.1 Comparison with Baselines
	7.2 Parameter Sensitivity

	8 Conclusion
	Acknowledgments
	References

