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Abstract

Ubiquitous computing tasks, such as human activity
recognition (HAR), are enabling a wide spectrum of ap-
plications, ranging from healthcare to environment moni-
toring. The success of a ubiquitous computing task relies
on sufficient physical sensor data with groundtruth labels,
which are always scarce due to the expensive annotat-
ing process. Meanwhile, social media platforms provide
a lot of social or semantic context information. People
share what they are doing and where they are frequently
in the messages they post. This rich set of socially shared
activities motivates us to transfer knowledge from social
media to address the sparsity issue of labelled physical
sensor data. In order to transfer the knowledge of social
and semantic context, we propose a Co-Regularized Het-
erogeneous Transfer Learning (CoHTL) model, which
builds a common semantic space derived from two het-
erogeneous domains. Our proposed method outperforms
state-of-the-art methods on two ubiquitous computing
tasks, namely human activity recognition and region
function discovery.

Introduction

Recent years there have been extensive research efforts on
ubiquitous computing, as various physical sensors such as
GPS, accelerometers and Wi-Fi become widely and inex-
pensively available on smart devices. Ubiquitous computing
tasks, such as Human Activity Recognition (HAR), are en-
abling a wide spectrum of applications, ranging from health-
care (Stone and Skubic 2015) to environment monitoring
(Lane et al. 2010).

The success of a ubiquitous computing task relies on suffi-
cient annotated or groundtruth data as in many other machine
learning tasks. In general, obtaining the labelled data is ex-
pensive and tedious, while annotating raw sensor readings
is particular challenging. Take HAR as an example. One
possibility is to ask annotators to provide activity labels in
real time as soon as sensor readings are being generated,
which may be inconsiderate, and even impractical in many
situations (imagine an annotator has to perform labelling
while “jogging” or “driving”). Another possibility is to have
annotators scan through raw sensor readings and manually
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Figure 1: A motivating example on instilling knowledge from
social media into sensors in the physical world.

label activities they performed post-hoc. This is also difficult,
if not impossible, since sensor readings are hardly human
readable and understandable. Meanwhile, people nowadays
proactively share happenings about and around them, as well
as their whereabouts on social media platforms such as Twit-
ter. Such platforms thus provide a huge and rich semantic
repository of activities that people are performing at different
time and locations.

Given that labelled sensor data are difficult to obtain,
and that social media messages capture rich information
about physical activities and locations, an interesting ques-
tion arises: can we transfer knowledge from social media
side to the physical world to solve ubiquitous computing
tasks? We show in this paper that the answer is yes. On one
hand, ubiquitous computing tasks have extensively exploited
different physical sensors, including wearable sensors (Lara
and Labrador 2013), GPS traces (Lin and Hsu 2014), Wi-
Fi (Wang et al. 2014), barometer, temperature, and humidity
sensors (Choudhury et al. 2008), etc. On the other hand,
some recent studies on extracting human activities (Song
et al. 2013) and events (Ritter et al. 2015) from social me-
dia have been reported. Yet, to the best of our knowledge,
no previous work has considered integrating social media
knowledge into physical sensor data. A seemingly related
strand of research that combines the social and physical is
Location Based Social Networks (LBSN). The studies in the
field of LBSN either tackle link prediction or user profiling
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on social side with the help of locations (Cho, Myers, and
Leskovec 2011; Scellato and Mascolo 2011), or address lo-
cation or activity recommendation on physical side with the
help of social media (Bhargava et al. 2015; Gao et al. 2015;
Zheng et al. 2010). Our problem targeting ubiquitous comput-
ing applications on physical side obviously differs from them.
We transfer knowledge between two domains with a clear
gap, i.e., natural language text in social media and raw sensor
readings such as accelerometer in the physical world, while
they deal with only a single domain in which locations act
as a dimension of feature shown in Figure 1. Consequently,
they are more straightforward than our problem in view of
the data alignment because many social platforms have the
data, i.e., messages and corresponding check-ins.

The challenges of bridging the gap between physical sen-
sors and social media lie in both the mismatch of feature
spaces and the missing of direct aligned data across the two
domains. First, physical sensor features and social media
messages have incommensurable representation structures.
For example, a tri-axial accelerometer reading is represented
as numerical values in three dimensions, whereas a tweet is
oftentimes represented as a bag-of-words. Second, we have
no access to directly aligned data out of privacy concerns
which associate the same user’s social media messages with
his sensor records (e.g., via the user’s smartphone). Such
alignment doubtlessly facilitates the knowledge transfer.

Instead, we are only provided with two categories of prior
knowledge that could indirectly align. One is partial label
information which tell whether a sensor record and a message
are semantically related. As shown in Figure 1, sensor1 car-
rying the label “Travel” is related to tweet1 and tweet2 which
are labelled as “Go outdoor” and “Visit exhibitions”, respec-
tively. The label space of social media messages is obviously
more diverse and detailed than that of sensor data, because
natural language has more descriptive power than raw sensor
data in nature. So this is also one of the concerns that we
have to address. The other is the spatio-temporal information.
We reasonably make a simplification: a sensor record and
a social message which are spatio-temporally close enough
share the same semantic meaning. The soundness of such
simplification is guaranteed by our data which show that aver-
agely 75% co-occurred sensor records and Weibo messages
within a geographical distance (0.25 km) and a time period (1
hour) share the semantic meaning, e.g., activity for the HAR
task. In Figure 1, we could infer user5’s activity at time1
according to 1) the unlabelled sensor record sensor2, and
2) activities happening in his geographical proximity at the
moment, which can be inferred from the tweets that Twitter
users (user1, user2, user3) post.

In this paper, we address the two challenges, i.e., the mis-
match of feature spaces and the missing of direct aligned
data, by proposing a Co-Regularized Heterogeneous Transfer
Learning (CoHTL) model. The model alleviates the feature
space mismatch by projecting both domains onto a latent
semantic subspace where they are comparable. The princi-
ples of extracting the subspace include: 1) the structure of
instances in each domain is preserved; and 2) the semantic
similarities between instances across the two domains are
preserved. We formulate CoHTL as a matrix factorization

model with co-regularization, in which matrix factorization
maximizes the empirical likelihood to guarantee the first prin-
ciple while co-regularization guards the second. Moreover,
co-regularization with capability of incorporating both prior
knowledge for alignment addresses the second challenge. As
such, the feature representation of physical sensor data is
enriched by social media messages in the subspace. We em-
pirically show that the enriched feature representation is more
discriminative, especially among activities that may generate
similar raw sensor readings. The more discriminative power
ensures that fewer labelled training sensor data are required,
thereby addresses the sparsity of labelled data.

Instilling Knowledge from Social to Physical

Problem Formulation

Suppose that there are a few labelled instances of physical
sensor data Pl = {pi}ml

i=1 and some test sensor records
Pt = {pi}ml+mt

i=ml+1, where pi = (time, loc,ac) ∈ R
p is

the sensor feature vector. pi.time and pi.loc denote respec-
tively the time and location pi occurred, while pi.ac con-
tains other physical sensor readings, such as accelerome-
ter. yl = {yi}ml

i=1 is the label vector associated with Pl,
while yt = {yi}ml+mt

i=ml+1 corresponds to groundtruth labels of
Pt for evaluation. Note that yi ∈ {ly1 , ly2 , · · · , lya}, and that
P = Pl ∪ Pt ∈ R

m×p is the complete sensor data matrix
where m = ml +mt. We are also provided with abundant
message instances Q = {qj}nj=1 on social media where
qj = (time, loc,wd) ∈ R

q. qj .time and qj .loc indicate
respectively the time and location attached to the message
qj , and qj .wd is a bag-of-words feature vector represent-
ing the content of qj . We assume the existence of a function
g(qj) → gj to map each message qj to gj ∈ {lg1 , lg2 , · · · , lgb}
as semantic supervision information. Our final goal is to learn
a new representation of pi in a u-dimensional latent semantic
space, i.e., ui ∈ R

u, so that we can classify activities better
using ui instead of original pi. We use boldface lowercase
letters and uppercase letters to denote vectors and matrices,
respectively. For a vector x, ‖x‖ denotes its �2 norm. For a
matrix X, ‖X‖2F denotes its Frobenius norm.

Bridging the Physical and the Social

We now illustrate how to bridge physical sensor records and
messages on social media with a semantic similarity matrix
S ∈ R

m×n, in which Sij indicates the extent to which the
ith physical sensor record and the jth social message are
semantically correlated.

Heterogeneous Label Alignment Our goal is to align a
labelled sensor record pi ∈ Pl with a message qj using their
corresponding supervision information yi and gj . The label
space of physical sensor data tends to differ from that of
social messages. Using the labels of our HAR experiments as
an example, Figure 2(a) lists all labels of our physical sensor
data, while Figure 2(c) shows a sample of tags summarizing
user activities in our social media data. Here, we propose
two solutions to obtain the similarity sab between a physical
sensor label lya and a social message label lgb .
Topic model based: first of all, we construct each label in
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Table 1: The first row shows the sensor labels for activity
recognition, and the second and third row show the corre-
sponding most semantically related social media labels de-
termined by topic model based and word embedding based
methods, respectively.

rest drive work eat exercise travel
watch perf-
ormances

drive
halfway work have

dinner exercise go
outdoor

work drive
halfway work break-

fast exercise buy
tickets

each domain as a query which is then used to query an open
knowledge base, such as World Wide Web, for auxiliary doc-
uments. We assume that the retrieved auxiliary documents
are much relevant to each label. Since searching is not the
focus of our work, we omit the details here. Secondly, each
label is represented as the topic distribution vector of its
auxiliary documents by performing Latent Dirichlet Alloca-
tion (LDA) (Blei, Ng, and Jordan 2003). Thirdly, we adopt
Jensen-Shannon divergence (Lin 1991), a symmetric metric
to measure the similarity between two probability distribu-
tions, to measure the similarity sab between lya and lgb in terms
of their topic distribution vectors.
Word embedding based: we learn the embeddings for each
label using word2vec (Mikolov et al. 2013), a neural net-
work based language model that learns word embeddings.
We train the skip-gram architecture of word2vec on the En-
glish Wikipedia corpus with context size equal to 5. Finally,
we measure the similarity sab between lya and lgb by comput-
ing the cosine similarity of their corresponding embeddings.

Consequently, the similarity sij between pi ∈ Pl and
qj equals to sab if pi’s label yi = lya and qj’s label gj =
lgb . Results in Table 1 show that our heterogeneous label
alignment methods are effective.

Spatio-temporal Alignment As detailed in the introduc-
tion, we make a simplification: if a physical sensor record
and a social media message are spatio-temporally close to
each other, they indicate the same activity. Motivated by this,
we define the similarity sij between an unlabelled physical
sensor record pi ∈ Pt and a message qj as:

sij =

⎧⎨
⎩

1 if dij1 = 0 and dij2 ≤ r

b if dij1 �= 0 and dij2 ≤ r

br/dij2 otherwise,

where dij1 = d1(pi.time,qj .time) evaluates the time distance
and equals to 0 if and only if pi.time and qj .time are in the
same hour of the same day of a week, e.g., both occurring
during 3pm - 4pm on Wednesday. dij2 = d2(pi.loc,qj .loc)
is the geographical distance measured according to latitudes
and longitudes. r is the geographical vicinity radius and
0 ≤ b ≤ 1. We empirically determine r = 0.25km, b = 0.9
in the experiments.

Unifying Label and Spatio-temporal Similarity We de-
note the similarity matrix between Pl and Q obtained by
heterogeneous label alignment as Sl ∈ R

ml×n, and the one
between Pt and Q obtained by spatio-temporal alignment
as St ∈ R

mt×n. Due to the inconsistent similarity metrics

adopted by Sl and St, we cannot simply combine them into
the global similarity matrix S. Instead, we adopt a local
scheme, i.e., k-nearest-neighbour, to unify Sl and St. In de-
tail, for each row vector of either Sl or St, we set the values
of the k largest components, i.e., the k most semantically
related messages to a sensor record, as “1” and the rest as
“0”. The value of k is empirically determined in our work.

Co-Regularized Heterogeneous Transfer Learning

Here, we discuss in detail how to find a latent semantic sub-
space onto which both domains are projected. The optimal
subspace is defined as follows.
Definition 1 Given the sensor data matrix P ∈ R

m×p and
the message data matrix Q ∈ R

n×q , the optimal projections
of P and Q onto the optimal subspace, i.e., U ∈ R

m×u

and W ∈ R
n×u respectively, are given by minimizing the

following objective:

min
U,W

�(P,U) + �(Q,W) + βD(U,W), (1)

where �(·, ·) is a distortion function that evaluates the dif-
ference between the original data and projected data (e.g.,
P and U). D(·, ·) is the co-regularizer which encourages
the pairwise similarities between projected data of the two
domains (i.e., between U and W) to be consistent with the
original semantic similarities. β is a trade-off parameter.

On the one hand, according to the first two terms in Equa-
tion (1), we expect the projections to preserve the structures
of the original data as much as possible. We achieve this goal
by defining �(·, ·) as the following,

�(P,U)+�(Q,W) = ‖P−UV1‖2F+‖Q−WV2‖2F , (2)

in which we factorize the original data into the projections (U
and W) and the linear mapping matrices (V1 and V2). Note
that Matrix Factorization is widely known as an effective
tool to extract latent subspaces while preserving the original
data’s structures by maximizing the empirical likelihood. In a
different light, VT

1 ∈ R
p×u and VT

2 ∈ R
q×u map P and Q,

respectively, into a u-dimensional space where the projected
data are comparable.

On the other hand, Equation (1) introduces a co-regularizer
to ensure that the optimal projections U and W in the latent
space should preserve the semantic similarities between the
original physical sensor records and messages. Thus, we
define the co-regularizer as:

D(U,W) =

m∑
i=1

n∑
j=1

Sij‖ui −wj‖22, (3)

where Sij = (S)ij . S is the similarity matrix we have ob-
tained. Minimizing this term enforces two semantically sim-
ilar examples’ projections to be as close as possible in the
latent subspace, otherwise incurring a heavy penalty.

The trade-off parameter β balances the importance of
original structure preservation and semantic similarity co-
regularization. Furthermore, for each sensor record, the simi-
larity matrix S delicately selects the best social media mes-
sages to transfer. The larger the similarity, the more likely the
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corresponding social media messages we transfer. To avoid
“negative transfer” (Pan and Yang 2010), we only select a
subset of messages on social media, which geographically
overlap with our target physical sensor records, e.g., in a city.
We would believe that such data are always available in view
of massive social media datasets nowadays.

Optimization

Substituting Equations (2) and (3) into Equation (1), we
obtain the objective function to minimize w.r.t. U, W, V1

and V2 as follows:

O = ‖P−UV1‖2F + ‖Q−WV2‖2F (4)

+ β
m∑
i=1

n∑
j=1

Sij‖ui −wj‖22 + γR(U,W,V1,V2),

where R(U,W,V1,V2) = ‖U‖2F + ‖W‖2F + ‖V1‖2F +
‖V2‖2F is the regularization term which controls the com-
plexity of U, W, V1, V2. The optimization problem in
Equation (4) is not jointly convex w.r.t. the four matrices
U, W, V1 and V2, thus only has local optimal solutions.
However, it is convex w.r.t. any one of them while fixing the
other three. We therefore adopt an alternating algorithm to
solve this problem, by iteratively fixing three of the matrices
to solve the remaining one until convergence. We define our
algorithm formally as follows.
Fix U, V1, V2: in this case, the objective w.r.t. W is:

Ow = Tr[(Q−WV2)(Q−WV2)
T ] (5)

+ βTr(WTSwW)− 2βTr(UTSW) + γTr(WWT ),

where we introduce a diagonal matrix Sw with diagonal
elements (Sw)jj =

∑m
i=1 Sij . Equation (5) is convex w.r.t.

W, so we can use any gradient-based method to find the
local minimum. Here we adopt the conjugate gradient descent
method with the gradient provided as below:

∂Ow

∂W
= 2[−QVT

2 +WV2V
T
2 +βSwW−βSTU+γW].

(6)
Fix W, V1, V2: similarly, the objective w.r.t. U is:

Ou = Tr[(P−UV1)(P−UV1)
T ] (7)

+ βTr(UTSuU)− 2βTr(UTSW) + γTr(UUT ),

where Su is also diagonal with diagonal elements (Su)ii =∑n
j=1 Sij . The corresponding gradient is given by:

∂Ou

∂U
= 2[−PVT

1 +UV1V
T
1 +βSuU−βSW+γU]. (8)

Fix U, W, V2: we employ the multivariate ridge regression
model (Hoerl and Kennard 1970) to update V1 and yield the
following solution:

V1 = (UTU+ γIu×u)
−1UTP. (9)

Fix U, W, V1: similar to V1, we give the update of V2:

V2 = (WTW + γIu×u)
−1WTQ. (10)

Here we briefly analyze the time complexity of our algorithm.
The first computationally expensive part is to evaluate the
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(a) The category distribu-
tion of activities in the
physical sensor dataset.
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(b) The category distribu-
tion of functionalities in the
trajectories featured region
dataset. Only top ten func-
tionalities are in legend.

(c) 11 out of 30 selected labels extracted in Sina
Weibo dataset.

Figure 2: Overview of the datasets.

gradients during optimizing W and U. The time complex-
ity is O((nq +mp+N)u) where N counts the number of
non-zero elements in S. According to the construction of
S, we know N � mn. Another major computation cost
comes from updating V1 and V2. The time complexity is
O(u2(m+n)+u3+u(mp+nq)). Since the dimension of the
subspace, i.e., u, is small, u3 and u2 are not that computation-
ally expensive. We conclude that our algorithm scales linearly
with the number of physical sensor records (m), the number
of social messages (n), the number of non-zero elements in
S (N ), and the data dimensionality (p and q).

Experiments

Datasets

We verify the effectiveness of social knowledge transfer
on two ubiquitous computing tasks, namely human activ-
ity recognition and region function discovery. In the activity
recognition task, we collected 232 sensor records through
cellphones from 10 volunteers. Each sensor record contains
time, GPS, tri-axial accelerometer, and POI information. Fig-
ure 2(a) shows the distribution of activity labels of the 232
sensor records. In the region function discovery task, our goal
is to discover the functionality of a region (e.g., “residence”).
Our dataset is a collection of taxis trajectories generated by
182 taxis within one month in a big city of South China whose
population is over 10 million. There exist 6,010 regions, each
of which is a 0.25×0.25km2 grid. For each region, we extract
in-region and out-region taxis counts, average taxis speed,
and duration of stay in each hour as features. Figure 2(b)
shows the distribution of groundtruth functionalities of all
the regions.

We obtain social knowledge from Sina Weibo, a Twitter-
like microblogging service in China. The full dataset contains
tweets from about 10 million users. We use all 10,791 tweets
associated with check-ins that lie in a geographical bounding
box determined by all physical sensor records’ GPS locations.
We obtain the activity label of a tweet using the rule-based
algorithm in (Song et al. 2013), making use of a tweet’s loca-
tion, posting time and named entities in the text. Figure 2(c)
selects some of the activity labels to present.
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(a) Performance comparison on
activity recognition.

(b) Performance comparison
on region function discovery.
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(d) Convergence analysis.

Figure 3: Performance comparison.

Evaluation Metrics and Baselines

We use weighted precision (W-Precision), weighted recall
(W-Recall), weighted F1 score (W-F1), and accuracy as our
evaluation metrics. Weighted F1 score is computed by sum-
ming weighted F1 scores of all categories. The weight of a
category’s F1 score is the percentage of instances in the cate-
gory. Weighted precision and recall have similar definitions.

Our models, using topic model based and word embedding
based methods for heterogeneous label alignment, are de-
noted as CoHTL-LDA and CoHTL-w2v, respectively. We
compare them with the following four baselines:
Sensor. This method only uses original physical sensor fea-
tures without social knowledge transfer. The majority of re-
cent work on activity recognition and region function discov-
ery fall into this category, e.g., (Lara and Labrador 2013).
Combined. We directly concatenate features from both the
physical and social. But physical sensor records P ∈ R

m×p

and social messages Q ∈ R
n×q are not directly aligned.

Therefore we obtain the aligned social messages matrix
Q̃ ∈ R

m×q first: for each physical sensor record, we sum
up the features of all tweets within a certain spatio-temporal
threshold to this sensor. The baseline directly combines P
and Q̃ as the final feature matrix which is normalized.
HeMap. Heterogeneous Spectral Mapping (HeMap) (Shi et
al. 2013) projects data in two domains with correspondence
onto a latent space. We adapt HeMap into our problem by
taking P and Q̃ as its input. HeMap, however, cannot incor-
porate any label information for alignment.
DAMA. Heterogeneous Domain Adaptation with Manifold
Alignment (DAMA) (Wang and Mahadevan 2011) aligns
different domains into a latent space using label information
based manifold regularization. However, DAMA only works
on the data that have strong manifold structures, and does
not handle heterogeneous label spaces for different domains.
We adapt DAMA into our problem by letting our similarity
matrix S (in which the label alignment is by word embedding
based method) to substitute its label alignment matrix.

Upon different feature representations obtained by differ-
ent models, we use linear SVM (Chang and Lin 2011) as the
base classifier. The trade-off parameter C of linear SVM is
set according to 10-fold cross validation for each model. We
repeat the experiments 30 times and report average results.

Activity Recognition

Performance comparison In this experiment, we randomly
sample 100 sensor records as training samples to perform
9-class classification, and the other 132 sensor records as test
data. Figure 3(a) shows the comparison. Our methods show
significant, up to 20%, improvement over other methods. A
naive combination of sensor and social features performs bet-
ter than sensor features only (Combined v.s. Sensor), which
validates the necessity of instilling social knowledge into
physical sensor data. HeMap shows a little improvement over
Combined, because employing social messages to enrich
sensor readings’ feature representation in a latent space is
more effective than naive combination. DAMA outperforms
HeMap because DAMA is adapted to regularize with S which
incorporates heterogeneous label alignment besides indirect
correspondence. To preserve the structure of instances in each
domain, DAMA assumes that the data in each domain lie in
a manifold, while our method CoHTL naturally maximizes
the empirical likelihood without any assumption, thus defeats
DAMA. Moreover, our model with word embedding based
method for heterogeneous label alignment shows more su-
periority than with topic model based method. In Figure 4,
we compare the confusion matrix obtained by our method
with the one by Sensor. In general, our method improves the
recalls and precisions of all categories a lot. For activities
that may generate similar sensor readings, such as “work”
and “rest”, Sensor cannot discriminate between them. Our
method however presents both higher precisions and recalls
when classifying such activities. Note that in this experimen-
tal setting our algorithm converges within 10 iterations as
Figure 3(d) shows.
Quality of feature representation In Figure 5(a) and 5(b),

we examine the quality of feature representation in the sub-
space by employing t-SNE (Van der Maaten and Hinton
2008) to visualize the 2D projection. Due to space limitation,
we only compare CoHTL-w2v with DAMA. The experi-
ment setting is the same as in Figure 3(a). Instances with the
same label, in the same color, show more obvious clustering
structures in the latent space obtained by our method, which
explains the superior classification performance of CoHTL.
Varying the number of training sensor records Figure 3(c)
shows that our methods can handle extremely sparse train-
ing data and greatly improve classification accuracies when
more training data are available. CoHTL-w2v improves al-
most 25% over Sensor when only 10% training examples
are available. As the number of training examples increases,
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Figure 4: Confusion matrix comparison of Sensor and Co-
HTL.

(a) DAMA (b) CoHTL-w2v

Figure 5: t-SNE visualization of the latent feature space.

our model dramatically improves as it is capable of taking
advantage of labels for alignment.
Parameter sensitivity We also study the effects of two pa-
rameter settings, i.e., β and u, on the performance of CoHTL.
The average accuracy of 10-fold cross validation on training
data is examined. We perform grid search on β by fixing
u. CoHTL gains the best average accuracy at β = 0.1 as
Figure 6(a) shows. We understand that over-regularization
of semantic similarities across two domains deteriorates the
classification performance, probably because the original
physical sensor data’s structure has been changed. When fix-
ing β, grid search of u shows that u = 300 performs the best.
We adopt β = 0.1, u = 300 in our experiments.

Region Function Discovery

We only present the performance comparison of different
methods on this task due to space limitation. Here we con-
sider an extremely sparse case, where we take only 1% of all
6,010 regions as training instances to train a 20-class clas-
sifier. Figure 3(b) shows that our methods outperform the
baselines by almost 50% in terms of weighted F1 scores.
Thus, when there are few training data, our model can fully
take advantage of social knowledge by aligning two domains
with partial labels as well as the indirect correspondence.

Related Work

We outline related work under two topics, namely human
activity recognition and heterogeneous transfer learning.

Human Activity Recognition

Human activity recognition (HAR) has been an increas-
ingly popular research field, along the way from the earliest
wearable inertial sensors (Bao and Intille 2004) to mobile
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Figure 6: Study of parameter settings.

sensing (Lane et al. 2010). Unfortunately, HAR still suf-
fers from the lack of annotated grountruth data. Some stud-
ies (Cook, Feuz, and Krishnan 2013; Hu and Yang 2011;
Zheng, Hu, and Yang 2009) tried to alleviate this problem
by transferring labelled data from one activity recognition
task to another, but such studies were limited to transferring
between physical sensor data only.

In the social computing area, some studies on detecting
events (Ritter et al. 2015) and classifying user activities (Song
et al. 2013) via mining millions of social media messages
have been reported. These studies focused on extracting ac-
tivities implied or mentioned in text.

The most seemingly related work (Bhargava et al. 2015;
Sattari et al. 2012; Zheng et al. 2010) make location or ac-
tivity recommendation in Location Based Social Networks
(LBSN). The authors used tags or tips that users post in a
check-in location to represent this location’s activity, so that
users’ interests can be modelled for recommendation of lo-
cations or activities by examining users’ check-in histories.
(Bhargava et al. 2015) also investigated the influence of user-
user social relationship on users’ choices of locations and
activities. However, our work obviously tackles a different
problem, i.e., activity recognition instead of recommendation.
Besides, as we mentioned in the introduction, we transfer
knowledge across two domains while these three work actu-
ally focused on a single domain in which the locations and
social posts are well-matched features. As a result, they are
more straightforward since many LBSN platforms nowadays
provide social posts and associated check-ins.

Heterogeneous Transfer Learning

(Yang et al. 2009) first proposed heterogeneous transfer
learning which transfers knowledge across domains in dif-
ferent feature spaces. While this work tackled the clus-
tering task, later a series of studies (Dai et al. 2008;
Duan, Xu, and Tsang 2012; Li et al. 2014; Shi et al. 2013;
Wang and Mahadevan 2011; Zhu et al. 2011) focused on clas-
sification. To bridge the gap between different domains, the
models including TLRisk (Dai et al. 2008), HTLIC (Zhu et
al. 2011) that follows Collective Matrix Factorization (Singh
and Gordon 2008), and HeMap (Shi et al. 2013), make
use of direct correspondence data, e.g., tagged images that
bridge images and text. The other group of models including
DAMA (Wang and Mahadevan 2011), HFA (Duan, Xu, and
Tsang 2012), and SHFA (Li et al. 2014), assumes the avail-
ability of abundant labelled data and aligns different domains
with labels. However, our model, with only spatio-temporal
information and partial labels provided, has to harness the
collective power of these two prior knowledge. Besides, no
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existing work handles the situation where label spaces of two
domains are different. Most importantly, these methods are
all used for applications involving images and text which are
quite different from the ubiquitous computing applications.

Conclusion

In this paper, we propose a novel co-regularized heteroge-
neous transfer learning model to improve the performance of
ubiquitous computing tasks by transferring knowledge from
messages on social media. The social knowledge enriches the
feature representation of physical sensors, thereby addresses
the sparsity of labelled data in such tasks and the ambiguity
of sensor data. Extensive experimental results demonstrate
the superiority of our proposed method. In the future, we
consider a more sophisticated case where activities of spatio-
temporally close physical sensor records and social messages
follow a distribution instead of being the same, and expect
further performance improvement.
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